A hierarchy of the countably computable functions

Takayuki Kihara

Japan Advanced Institute of Science and Technology (JAIST) Japan Society for the Promotion of Science (JSPS) research fellow PD

December 2, 2013

(Joint work with Kojiro Higuchi)

Motivations

- Continuous = Computable Relative to an Oracle
- We want to obtain deep understanding of the behavior of discontinuous (nonuniform), but degree-preserving maps.

Question

How can we study the effective content of discontinuous functions?

Our Answer

Effectivize Luzin's idea concerning countable-decomposability!

- (N. Luzin) A function $f : X \to Y$ is <u>countably continuous</u> or <u> σ -continuous</u> if f is decomposable into countably many continuous functions, that is, there is a countable cover $\{X_i\}_{i \in \omega}$ of X such that $f|_{X_i}$ is continuous.
- A function *f* : *X* → *Y* is <u>countably computable</u> if *f* is decomposable into countably many computable functions.

Proposition

A function $f : \omega^{\omega} \to \omega^{\omega}$ is countably computable if and only if $f(x) \leq_T x$ for every $x \in \omega^{\omega}$.

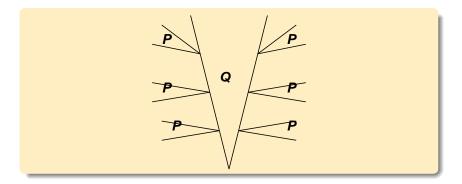
 $f : X \to Y$ is \prod_{1}^{0} -finitely computable if there exists a finite increasing sequence $\{X_i\}_{i \le k}$ of \prod_{1}^{0} sets with $X_k = X$ such that $f|_{X_{i+1} \setminus X_i}$ is computable for every *i*.

A set $P \subseteq 2^{\omega}$ is <u>special</u> if it is nonempty and it contains no computable element.

Anti-Cupping Theorem

Let $P \subseteq 2^{\omega}$ be a special Π_1^0 set. Then, there exists a Π_1^0 set $Q \subseteq 2^{\omega}$ such that

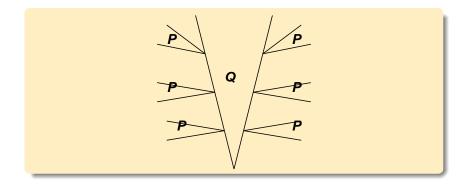
- there exists a computable function $f: P \rightarrow Q$,
- there exists a Π_1^0 -finitely computable function $g: Q \to P$,
- for every *R* ≠ Ø, there exists NO computable function
 h: *Q* × *R* → *P*.



Definition (Concatenation)

For trees $P, Q \subseteq 2^{<\omega}$,

$$\mathbf{Q}^{\widehat{}}\mathbf{P} = \{\sigma^{\widehat{}}\langle \mathbf{2}\rangle^{\widehat{}}\tau : \sigma \in \mathbf{Q}, \ \tau \in \mathbf{P}\}.$$



Q^**P** represents the mass problem:

- "First we try to solve **Q**",
- "If we failed to solve **Q**, then next we try to solve **P**".
- i.e., Solve "P or Q" with a mind-change!

Definition (Concatenation)

For trees $P, Q \subseteq 2^{<\omega}$,

$$\mathbf{Q}^{\widehat{}}\mathbf{P} = \{\sigma^{\widehat{}}\langle \mathbf{2}\rangle^{\widehat{}}\tau : \sigma \in \mathbf{Q}, \ \tau \in \mathbf{P}\}.$$

T: a computable binary tree with [T] special.

Anti-Cupping Theorem

- \exists a computable $f : [T] \rightarrow [T^{\uparrow}T]$,
- \exists a Π_1^0 -finitely computable $g : [T^T] \to [T]$,
- $\forall R \neq \emptyset \neg \exists$ computable $h : [T^T] \times R \rightarrow [T]$.

 $f : X \to Y$ is Γ -finitely computable if there exists a finite increasing sequence $\{X_i\}_{i \le k}$ of Γ sets with $X_k = X$ such that $f|_{X_{i+1} \setminus X_i}$ is computable for every *i*.

Proposition (Upper Bound)

The following are equivalent for any Π_1^0 classes $P, Q \subseteq 2^{\omega}$:

- There exists a finitely computable function $f: P \rightarrow Q$.
- There exists a Π_2^0 -finitely computable function $g: P \to Q$.

 $f : X \to Y$ is Γ -finitely computable if there exists a finite increasing sequence $\{X_i\}_{i \le k}$ of Γ sets with $X_k = X$ such that $f|_{X_{i+1} \setminus X_i}$ is computable for every *i*.

Collapsing Theorem

There exists a special Π_1^0 class $Q \subseteq 2^{\omega}$ such that for every Π_1^0 class $P \subseteq 2^{\omega}$, the following are equivalent:

- there exists a finitely computable function $f : P \rightarrow Q$.
- there exists a Π^0_1 -finitely computable function $g: P \to Q$.

Separation Theorem I

There are Π_1^0 classes $P, Q \subseteq 2^{\omega}$ such that:

- There exists a computable function $f : Q \rightarrow P$.
- There exists a Δ_2^0 -finitely computable function $g: P \to Q$.
- There exists NO Π_1^0 -finitely computable function $h: P \to Q$.

Separation Theorem II

There are Π_1^0 classes $P, Q \subseteq 2^{\omega}$ such that:

- There exists a computable function $f: Q \rightarrow P$.
- There exists a Π_2^0 -finitely computable function $g: P \to Q$.
- There exists NO Δ_2^0 -finitely computable function $h: P \to Q$.

We introduce the notion of "<u>disjunction</u>" of trees.

 $\sigma = (0, 7, 1, 11, 0, 2, 0, 1, 0, 5, 1, 4, 1, 22, 0, 7, \dots).$

•
$$pr_0(\sigma) = (7, 2, 1, 5, 7, ...).$$

•
$$pr_1(\sigma) = (11, 4, 22, ...).$$

The disjunction of trees **S** and **T** is defined as follows:

$$S\nabla_{\infty}T = \{\sigma : \operatorname{pr}_{0}(\sigma) \in S \text{ and } \operatorname{pr}_{1}(\sigma) \in T\}.$$

Definition (Disjunction)

For $\sigma \in (2 \times \omega)^{<\omega}$, and i < 2,

- \mathbf{z}_n^i = the *n*-th least element of { $\mathbf{m} : (\exists \mathbf{k}) \sigma(\mathbf{m}) = \langle \mathbf{i}, \mathbf{k} \rangle$ }.
- $\operatorname{pr}_i(\sigma)(n) = k$ if $z_n^i \downarrow$ and $\sigma(z_n^i) = \langle i, k \rangle$.
- $\operatorname{mc}(\sigma) = \#\{n : (\exists i, k, l) \ \sigma(n) = \langle i, k \rangle \& \sigma(n+1) = \langle 1 i, l \rangle \}$
- $\sigma = (0, 7, 1, 11, 0, 2, 0, 1, 0, 5, 1, 4, 1, 22, 0, 7, \dots).$
 - $pr_0(\sigma) = (7, 2, 1, 5, 7, ...).$
 - $pr_1(\sigma) = (11, 4, 22, ...).$
 - $mc(\sigma) \ge 4$ (the number of times of mind-changes).

Definition (Disjunction)

The disjunction of trees S_0 and S_1 is defined as follows:

$$S_0 \nabla_{\infty} S_1 = \{ \sigma : (\forall i < 2) \text{ } \text{pr}_i(\sigma) \in S_i \}.$$

$$S_0 \nabla_n S_1 = \{ \sigma : (\forall i < 2) \text{ } \text{pr}_i(\sigma) \in S_i \text{ and } \text{mc}(\sigma) < n \}$$

- $S_0 \nabla_1 S_1 \approx S_0 \oplus S_1$.
- $S_0 \nabla_2 S_1 \approx S_0^{-} S_1$.

Separation Theorem I

There is a computable trees $T \subseteq 2^{<\omega}$ such that:

- \exists a computable function $f : [T] \rightarrow [T \nabla_{\omega} T]$.
- \exists a Δ_2^0 -finitely computable function $g : [T \nabla_{\omega} T] \rightarrow [T]$.

• $\neg \exists$ a Π_1^0 -finitely computable function $h : [T \nabla_{\omega} T] \rightarrow [T]$.

Separation Theorem II

There is a computable trees $T \subseteq 2^{<\omega}$ such that:

- \exists a computable function $f : [T] \rightarrow [T\nabla_{\infty}T]$.
- \exists a Π_2^0 -finitely computable function $g : [T \nabla_{\infty} T] \rightarrow [T]$.

• $\neg \exists a \Delta_2^0$ -finitely computable function $h : [T \nabla_{\infty} T] \rightarrow [T]$.

 $f : X \to Y$ is <u> Γ -countably computable</u> if there exists a uniform Γ covering $\{X_i\}_{i \in \omega}$ of X such that $f|_{X_i}$ is computable uniformly in *i*.

 Π^{0}_{α} -countably computable iff $\Sigma^{0}_{\alpha+1}$ -countably computable.

Proposition (Upper Bound)

The following are equivalent for any Π_1^0 classes $P, Q \subseteq 2^{\omega}$:

- There exists a countably computable function $f: P \rightarrow Q$.
- There exists a Π_2^0 -countably computable function $g: P \to Q$.

 $f : X \to Y$ is <u> Γ -countably computable</u> if there exists a uniform Γ covering $\{X_i\}_{i \in \omega}$ of X such that $f|_{X_i}$ is computable uniformly in *i*.

Separation Theorem III

Let $P \subseteq 2^{\omega}$ be a special Π_1^0 set. Then, there exists a Π_1^0 set $Q \subseteq 2^{\omega}$ such that

- there exists a computable function $f: P \rightarrow Q$,
- there exists a Π_1^0 -countably computable function $g: Q \to P$,
- there exists NO finitely computable function $h: Q \rightarrow P$.

 $f: X \to Y$ is Σ_2^0 -excluded-middle computable if there exists a Σ_2^0 formula $\exists m \forall n \varphi(m, n, \alpha)$ and a computable sequence of computable functions $\{g_m\}_{m \in \omega}$ and h such that for every $\alpha \in X$,

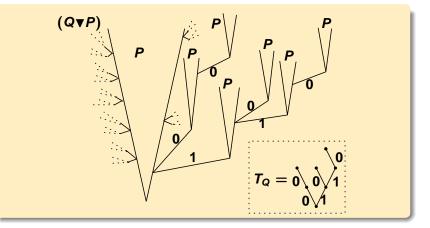
- $f(\alpha) = g_m(\alpha)$ if $\forall n\varphi(m, n, \alpha)$ is true.
- $f(\alpha) = h(\alpha)$ if $\exists m \forall n \varphi(m, n, \alpha)$ is false.

Anti-Cupping Theorem II

Let $P \subseteq 2^{\omega}$ be a special Π_1^0 set. Then, there exists a Π_1^0 set $Q \subseteq 2^{\omega}$ such that

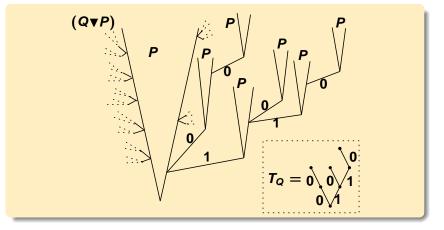
- \exists a computable $f : P \rightarrow Q$,
- \exists a Σ_2^0 -excluded-middle computable $g: Q \to P$,
- $\forall R \neq \emptyset, \neg \exists \Sigma_2^0$ -countably computable $h : Q \times R \to P$.

- One can iterate the concatenation $\hat{}$ such as $T^{T}T^{T}T$.
- Indeed, one can iterate ^ along any well-founded tree.
- The <u>hyperconcatenation</u> *Q*▼*P* is obtained by iterating ^ along an ill-founded tree *T_Q*.



Definition (Hyperconcatenation)

$$\mathbf{Q} \mathbf{\nabla} \mathbf{P} = \{ \sigma_0^2 \mathbf{n}_0^{-1} \sigma_1^2 \mathbf{n}_1 \dots \sigma_i : \\ (\forall j \le i) \sigma_j \in \mathbf{P} \text{ and } \langle \mathbf{m}_0 \dots \mathbf{m}_{i-1} \rangle \in \mathbf{Q} \}.$$

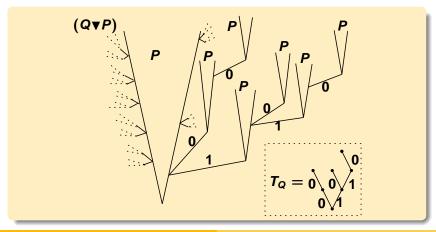


The proof structure of Jockusch's Theorem (1987) is essentially the hyperconcatenation \checkmark in the following sense.

Theorem

There exists a (uniform) computable function

 $f: \mathsf{DNR}_{k\cdot k} \to \mathsf{DNR}_k \mathbf{\nabla} \mathsf{DNR}_k.$



Proof of Jockusch's Theorem

- $\exists \text{comp.} (a, b) \mapsto a \circ b \text{ s.t. } \Phi_{a \circ b}(a \circ b) = \langle \Phi_a(a), \Phi_b(b) \rangle.$
- Fix $g = \lambda n.\langle g_0(n), g_1(n) \rangle \in \text{DNR}_{k \cdot k}$, where $g_0, g_1 \in k^{\omega}$.
- Then $(\forall a, b) g_0(a \circ b) \neq \Phi_a(a)$ or $g_1(a \circ b) \neq \Phi_b(b)$.

Proof of Jockusch's Theorem

- $\exists \text{comp.} (a, b) \mapsto a \circ b \text{ s.t. } \Phi_{a \circ b}(a \circ b) = \langle \Phi_a(a), \Phi_b(b) \rangle.$
- Fix $g = \lambda n \langle g_0(n), g_1(n) \rangle \in \text{DNR}_{k \cdot k}$, where $g_0, g_1 \in k^{\omega}$.
- Then $(\forall a, b) g_0(a \circ b) \neq \Phi_a(a)$ or $g_1(a \circ b) \neq \Phi_b(b)$.
- Consider the following Σ_2^0 sentence ψ :
 - $\psi \equiv (\exists a)(\forall b) \Phi_b(b) \downarrow \rightarrow g_1(a \circ b) \neq \Phi_b(b).$
 - $\psi \Rightarrow$ we eventually construct $g_a = \lambda b.g_1(a \circ b) \in DNR_k$.
 - ② ¬ ψ ⇒ we eventually construct $h = \lambda a.g_0(a \circ b_a) \in DNR_k$, where $b_a = \min\{b : g_1(a \circ b) = \Phi_b(b) \downarrow\}$.

Proof of Jockusch's Theorem

- $\exists \text{comp.} (a, b) \mapsto a \circ b \text{ s.t. } \Phi_{a \circ b}(a \circ b) = \langle \Phi_a(a), \Phi_b(b) \rangle.$
- Fix $g = \lambda n \langle g_0(n), g_1(n) \rangle \in \text{DNR}_{k \cdot k}$, where $g_0, g_1 \in k^{\omega}$.
- Then $(\forall a, b) g_0(a \circ b) \neq \Phi_a(a)$ or $g_1(a \circ b) \neq \Phi_b(b)$.
- Consider the following Σ_2^0 sentence ψ :
 - $\psi \equiv (\exists a)(\forall b) \Phi_b(b) \downarrow \rightarrow g_1(a \circ b) \neq \Phi_b(b).$
 - $\psi \Rightarrow$ we eventually construct $g_a = \lambda b.g_1(a \circ b) \in DNR_k$.
 - 2 $\neg \psi \Rightarrow$ we eventually construct $h = \lambda a.g_0(a \circ b_a) \in DNR_k$, where $b_a = \min\{b : g_1(a \circ b) = \Phi_b(b) \downarrow\}$.
- In other words, $(\exists \text{computable } \Phi)(\forall g \in \text{DNR}_{k \cdot k})$ $\Phi(g) = \tau_0 * h(0) * \tau_1 * h(1) * \cdots * \tau_{n+1} * h(n+1) * \ldots;$ $\Psi \Rightarrow \Phi(g) = \tau_0 * h(0) * \tau_1 * h(1) * \cdots * \tau_{a-1} * h(a-1) * g_a;$ $\neg \psi \Rightarrow \Phi(g) = \tau_0 * h(0) * \tau_1 * h(1) * \cdots * \tau_{a-1} * h(a-1) * \tau_a * h(a) * \ldots$

 $f: X \to Y$ is Σ_2^0 -excluded-middle computable if there exists a Σ_2^0 formula $\exists m \forall n \varphi(m, n, \alpha)$ and a computable sequence of computable functions $\{g_m\}_{m \in \omega}$ and h such that for every $\alpha \in X$,

- $f(\alpha) = g_m(\alpha)$ if $\forall n\varphi(m, n, \alpha)$ is true.
- $f(\alpha) = h(\alpha)$ if $\exists m \forall n \varphi(m, n, \alpha)$ is false.

T: a computable binary tree with [T] special.

Anti-Cupping Theorem II

- \exists a computable $f : [T] \rightarrow [T \lor T]$,
- \exists a Σ_2^0 -excluded-middle computable $g: [T \lor T] \to T$,
- $\forall R \neq \emptyset, \neg \exists \Sigma_2^0$ -countably computable $h : [T \forall T] \times R \rightarrow T$.

We say that **f** is $\sum_{n=1}^{\infty} \frac{\sum_{i=1}^{\infty} EM^{*}}{2}$ computable if it is of the form

$$f=g_1\circ g_2\circ\cdots\circ g_k,$$

where each g_i is Σ_2^0 -excluded-middle computable.

Separation Theorem IV

Let $P \subseteq 2^{\mathbb{N}}$ be a special Π_1^0 set. Then there exists a Π_1^0 set $Q \subseteq 2^{\mathbb{N}}$ such that:

- There exists a computable function $f: P \rightarrow Q$.
- There exists a Π_2^0 -countably computable function $g: Q \to P$.
- There exists NO Σ_2^0 -EM* computable function $h: Q \rightarrow P$.

- The notion of countable-decomposability has been an important notion in Descriptive Set Theory.
- The notion of countable-decomposability is also related to some notion of Algorithmic Learning.
- Perhaps, it is also related to the hierarchy of Excluded-Middle.

Further Work

Borel/hyperarithmetic version of countable-decomposability, etc.

Measurability Characterizations

Theorem (K., Gregoriades-K.)

The following are equivalent:

- f is \prod_{α}^{0} countably continuous.
- f is $\sum_{\alpha=1}^{0}$ countably continuous.

• If
$$A \in \sum_{\sim \alpha+1}^{0}$$
 then $f^{-1}[A] \in \sum_{\sim \alpha+1}^{0}$

•
$$A \in \sum_{\alpha \neq 1}^{0} \mapsto f^{-1}[A] \in \sum_{\alpha \neq 1}^{0}$$
 is continuous.

Theorem (K.)

The following are equivalent:

- *f* is Π^0_{α} countably computable.
- **2** *f* is $\Sigma_{\alpha+1}^{0}$ countably computable.

3 *A* ∈
$$\sum_{\alpha + 1}^{0}$$
 → *f*⁻¹[*A*] ∈ $\sum_{\alpha + 1}^{0}$ is computable.

Learnability Characterizations

Theorem (de Brecht-Yamamoto, Higuchi-K.)

- f is Π_1^0 countably computable.
- f is Σ_2^0 countably computable.
- f is the discrete limit of a sequence of computable functions.
- f is identifiable in the limit.

Theorem (de Brecht-Yamamoto, Higuchi-K.)

- *f* is Π₁⁰ finitely computable if and only if it is identifiable in the limit with bounded mind changes.
- *f* is Δ⁰₂ finitely computable if and only if it is identifiable in the limit with bounded errors.