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.
Motivations
..

......

...1 Continuous = Computable Relative to an Oracle

...2 We want to obtain deep understanding of the behavior of
discontinuous (nonuniform), but degree-preserving maps.

.
Question
..
......How can we study the effective content of discontinuous functions?

.
Our Answer
..
......Effecivize Luzin’s idea concerning countable-decomposability!
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.

......

(N. Luzin) A function f : X → Y is countably continuous or
σ-continuous if f is decomposable into countably many
continuous functions, that is, there is a countable cover
{Xi }i∈ω of X such that f |Xi is continuous.

A function f : X → Y is countably computable if f is
decomposable into countably many computable functions.

.
Proposition
..

......

A function f : ωω → ωω is countably computable
if and only if f (x) ≤T x for every x ∈ ωω.
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.
Definition
..

......

f : X → Y is Π0
1
-finitely computable if there exists a finite

increasing sequence {Xi }i≤k of Π0
1

sets with Xk = X such that
f |Xi+1\Xi is computable for every i .

A set P ⊆ 2ω is special if it is nonempty and it contains no
computable element.
.
Anti-Cupping Theorem
..

......

Let P ⊆ 2ω be a special Π0
1

set. Then, there exists a Π0
1

set
Q ⊆ 2ω such that

there exists a computable function f : P → Q,

there exists a Π0
1
-finitely computable function g : Q → P,

for every R , ∅, there exists NO computable function
h : Q × R → P.
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.. Proof Idea

.

......
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.
Definition (Concatenation)
..

......

For trees P ,Q ⊆ 2<ω,

Q⌢P = {σ⌢⟨2⟩⌢τ : σ ∈ Q , τ ∈ P}.
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.. Proof Idea

.

......
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.

......

Q⌢P represents the mass problem:

“First we try to solve Q”,

“If we failed to solve Q, then next we try to solve P”.

i.e., Solve “P or Q” with a mind-change!
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.. Proof Idea

.
Definition (Concatenation)
..

......

For trees P ,Q ⊆ 2<ω,

Q⌢P = {σ⌢⟨2⟩⌢τ : σ ∈ Q , τ ∈ P}.

T : a computable binary tree with [T] special.
.
Anti-Cupping Theorem
..

......

∃ a computable f : [T] → [T⌢T],

∃ a Π0
1
-finitely computable g : [T⌢T] → [T],

∀R , ∅ ¬∃ computable h : [T⌢T] × R → [T].
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.
Definition
..

......

f : X → Y is Γ-finitely computable if there exists a finite increasing
sequence {Xi }i≤k of Γ sets with Xk = X such that f |Xi+1\Xi is
computable for every i .

.
Proposition (Upper Bound)
..

......

The following are equivalent for any Π0
1

classes P ,Q ⊆ 2ω:

There exists a finitely computable function f : P → Q.

There exists a Π0
2
-finitely computable function g : P → Q.
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.
Definition
..

......

f : X → Y is Γ-finitely computable if there exists a finite increasing
sequence {Xi }i≤k of Γ sets with Xk = X such that f |Xi+1\Xi is
computable for every i .

.
Collapsing Theorem
..

......

There exists a special Π0
1

class Q ⊆ 2ω such that for every Π0
1

class P ⊆ 2ω, the following are equivalent:

there exists a finitely computable function f : P → Q.

there exists a Π0
1
-finitely computable function g : P → Q.
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.
Separation Theorem I
..

......

There are Π0
1

classes P ,Q ⊆ 2ω such that:

There exists a computable function f : Q → P.

There exists a ∆0
2
-finitely computable function g : P → Q.

There exists NO Π0
1
-finitely computable function h : P → Q.

.
Separation Theorem II
..

......

There are Π0
1

classes P ,Q ⊆ 2ω such that:

There exists a computable function f : Q → P.

There exists a Π0
2
-finitely computable function g : P → Q.

There exists NO ∆0
2
-finitely computable function h : P → Q.
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.. Proof Idea

.

......

We introduce the notion of “disjunction” of trees.
σ = (0, 7,1, 11,0, 2, 0, 1, 0, 5,1, 4, 1, 22,0, 7, . . . ).

pr0(σ) = (7, 2, 1, 5, 7, . . .).

pr1(σ) = (11, 4, 22, . . .).

The disjunction of trees S and T is defined as follows:

S▽∞T = {σ : pr0(σ) ∈ S and pr1(σ) ∈ T}.
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.. Proof Idea

.
Definition (Disjunction)
..

......

For σ ∈ (2 × ω)<ω, and i < 2,

z i
n = the n-th least element of {m : (∃k ) σ(m) = ⟨i , k ⟩}.
pri(σ)(n) = k if z i

n ↓ and σ(z i
n) = ⟨i , k ⟩.

mc(σ) = #{n : (∃i , k , l) σ(n) = ⟨i , k ⟩&σ(n + 1) =
⟨1 − i , l⟩}

.

......

σ = (0, 7,1, 11,0, 2, 0, 1, 0, 5,1, 4, 1, 22,0, 7, . . . ).

pr0(σ) = (7, 2, 1, 5, 7, . . .).

pr1(σ) = (11, 4, 22, . . .).

mc(σ) ≥ 4 (the number of times of mind-changes).
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.. Proof Idea

.
Definition (Disjunction)
..

......

The disjunction of trees S0 and S1 is defined as follows:

S0▽∞S1 = {σ : (∀i < 2) pri(σ) ∈ Si }.
S0▽nS1 = {σ : (∀i < 2) pri(σ) ∈ Si and mc(σ) < n}.

.

......

S0▽1S1 ≈ S0 ⊕ S1.

S0▽2S1 ≈ S0
⌢S1.
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.. Proof Idea

.
Separation Theorem I
..

......

There is a computable trees T ⊆ 2<ω such that:

∃ a computable function f : [T] → [T▽ωT].

∃ a ∆0
2
-finitely computable function g : [T▽ωT] → [T].

¬∃ a Π0
1
-finitely computable function h : [T▽ωT] → [T].

.
Separation Theorem II
..

......

There is a computable trees T ⊆ 2<ω such that:

∃ a computable function f : [T] → [T▽∞T].

∃ a Π0
2
-finitely computable function g : [T▽∞T] → [T].

¬∃ a ∆0
2
-finitely computable function h : [T▽∞T] → [T].
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.
Definition
..

......

f : X → Y is Γ-countably computable if there exists a uniform Γ
covering {Xi }i∈ω of X such that f |Xi is computable uniformly in i .

Π0
α-countably computable iff Σ0

α+1
-countably computable.

.
Proposition (Upper Bound)
..

......

The following are equivalent for any Π0
1

classes P ,Q ⊆ 2ω:

There exists a countably computable function f : P → Q.

There exists a Π0
2
-countably computable function g : P → Q.
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.
Definition
..

......

f : X → Y is Γ-countably computable if there exists a uniform Γ
covering {Xi }i∈ω of X such that f |Xi is computable uniformly in i .

.
Separation Theorem III
..

......

Let P ⊆ 2ω be a special Π0
1

set. Then, there exists a Π0
1

set
Q ⊆ 2ω such that

there exists a computable function f : P → Q,

there exists a Π0
1
-countably computable function g : Q → P,

there exists NO finitely computable function h : Q → P.
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.
Definition
..

......

f : X → Y is Σ0
2
-excluded-middle computable if there exists a Σ0

2
formula ∃m∀nφ(m , n , α) and a computable sequence of
computable functions {gm}m∈ω and h such that for every α ∈ X ,

f (α) = gm(α) if ∀nφ(m , n , α) is true.

f (α) = h(α) if ∃m∀nφ(m , n , α) is false.

.
Anti-Cupping Theorem II
..

......

Let P ⊆ 2ω be a special Π0
1

set. Then, there exists a Π0
1

set
Q ⊆ 2ω such that

∃ a computable f : P → Q,

∃ a Σ0
2
-excluded-middle computable g : Q → P,

∀R , ∅, ¬∃ Σ0
2
-countably computable h : Q × R → P.
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.

......

One can iterate the concatenation ⌢ such as T⌢T⌢T⌢T .

Indeed, one can iterate ⌢ along any well-founded tree.

The hyperconcatenation Q▼P is obtained by iterating ⌢ along
an ill-founded tree TQ .

.

......

P P

P

0
1

0

P
P

P

0
1

0

P

TQ =

0
0

1
0 1

0

(Q▼P)
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.
Definition (Hyperconcatenation)
..

......

Q▼P = {σ0
⌢2⌢m0

⌢σ1
⌢2⌢m1 . . . σi :

(∀j ≤ i)σj ∈ P and ⟨m0 . . .m i−1⟩ ∈ Q}.

.

......

P P

P

0
1

0

P
P

P

0
1

0

P

TQ =

0
0

1
0 1

0

(Q▼P)
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The proof structure of Jockusch’s Theorem (1987) is essentially
the hyperconcatenation ▼ in the following sense.
.
Theorem
..

......

There exists a (uniform) computable function
f : DNRk ·k → DNRk▼DNRk .

.

......

P P

P

0
1

0

P
P

P

0
1

0

P

TQ =

0
0

1
0 1

0

(Q▼P)
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.
Proof of Jockusch’s Theorem
..

......

∃comp. (a, b ) 7→ a ◦ b s.t. Φa◦b (a ◦ b ) = ⟨Φa(a),Φb (b )⟩.
Fix g = λn .⟨g0(n), g1(n)⟩ ∈ DNRk ·k , where g0, g1 ∈ k ω.

Then (∀a, b ) g0(a ◦ b ) , Φa(a) or g1(a ◦ b ) , Φb (b ).

Consider the following Σ0
2

sentence ψ:
ψ ≡ (∃a)(∀b ) Φb (b ) ↓ → g1(a ◦ b ) , Φb (b ).

...1 ψ⇒ we eventually construct ga = λb .g1(a ◦ b ) ∈ DNRk .

...2 ¬ψ⇒ we eventually construct h = λa.g0(a ◦ ba) ∈ DNRk ,
where ba = min {b : g1(a ◦ b ) = Φb (b ) ↓}.

In other words, (∃computable Φ)(∀g ∈ DNRk ·k )
Φ(g) = τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τn+1 ∗ h(n + 1) ∗ . . . ;

...1 ψ ⇒ Φ(g) = τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τa−1 ∗ h(a − 1) ∗ ga ;

...2 ¬ψ ⇒ Φ(g) =
τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τa−1 ∗ h(a − 1) ∗ τa ∗ h(a) ∗ . . .
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.
Proof of Jockusch’s Theorem
..

......

∃comp. (a, b ) 7→ a ◦ b s.t. Φa◦b (a ◦ b ) = ⟨Φa(a),Φb (b )⟩.
Fix g = λn .⟨g0(n), g1(n)⟩ ∈ DNRk ·k , where g0, g1 ∈ k ω.

Then (∀a, b ) g0(a ◦ b ) , Φa(a) or g1(a ◦ b ) , Φb (b ).

Consider the following Σ0
2

sentence ψ:
ψ ≡ (∃a)(∀b ) Φb (b ) ↓ → g1(a ◦ b ) , Φb (b ).

...1 ψ⇒ we eventually construct ga = λb .g1(a ◦ b ) ∈ DNRk .

...2 ¬ψ⇒ we eventually construct h = λa.g0(a ◦ ba) ∈ DNRk ,
where ba = min {b : g1(a ◦ b ) = Φb (b ) ↓}.

In other words, (∃computable Φ)(∀g ∈ DNRk ·k )
Φ(g) = τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τn+1 ∗ h(n + 1) ∗ . . . ;

...1 ψ ⇒ Φ(g) = τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τa−1 ∗ h(a − 1) ∗ ga ;

...2 ¬ψ ⇒ Φ(g) =
τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τa−1 ∗ h(a − 1) ∗ τa ∗ h(a) ∗ . . .
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.
Proof of Jockusch’s Theorem
..

......

∃comp. (a, b ) 7→ a ◦ b s.t. Φa◦b (a ◦ b ) = ⟨Φa(a),Φb (b )⟩.
Fix g = λn .⟨g0(n), g1(n)⟩ ∈ DNRk ·k , where g0, g1 ∈ k ω.

Then (∀a, b ) g0(a ◦ b ) , Φa(a) or g1(a ◦ b ) , Φb (b ).

Consider the following Σ0
2

sentence ψ:
ψ ≡ (∃a)(∀b ) Φb (b ) ↓ → g1(a ◦ b ) , Φb (b ).

...1 ψ⇒ we eventually construct ga = λb .g1(a ◦ b ) ∈ DNRk .

...2 ¬ψ⇒ we eventually construct h = λa.g0(a ◦ ba) ∈ DNRk ,
where ba = min {b : g1(a ◦ b ) = Φb (b ) ↓}.

In other words, (∃computable Φ)(∀g ∈ DNRk ·k )
Φ(g) = τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τn+1 ∗ h(n + 1) ∗ . . . ;

...1 ψ ⇒ Φ(g) = τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τa−1 ∗ h(a − 1) ∗ ga ;

...2 ¬ψ ⇒ Φ(g) =
τ0 ∗ h(0) ∗ τ1 ∗ h(1) ∗ · · · ∗ τa−1 ∗ h(a − 1) ∗ τa ∗ h(a) ∗ . . .
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.
Definition
..

......

f : X → Y is Σ0
2
-excluded-middle computable if there exists a Σ0

2
formula ∃m∀nφ(m , n , α) and a computable sequence of
computable functions {gm}m∈ω and h such that for every α ∈ X ,

f (α) = gm(α) if ∀nφ(m , n , α) is true.

f (α) = h(α) if ∃m∀nφ(m , n , α) is false.

T : a computable binary tree with [T] special.
.
Anti-Cupping Theorem II
..

......

∃ a computable f : [T] → [T▼T],

∃ a Σ0
2
-excluded-middle computable g : [T▼T] → T ,

∀R , ∅, ¬∃ Σ0
2
-countably computable h : [T▼T] × R → T .
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We say that f is Σ0
2
-EM∗ computable if it is of the form

f = g1 ◦ g2 ◦ · · · ◦ gk ,

where each g i is Σ0
2
-excluded-middle computable.

.
Separation Theorem IV
..

......

Let P ⊆ 2N be a special Π0
1

set. Then there exists a Π0
1

set

Q ⊆ 2N such that:

There exists a computable function f : P → Q.

There exists a Π0
2
-countably computable function g : Q → P.

There exists NO Σ0
2
-EM∗ computable function h : Q → P.
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.

......

The notion of countable-decomposability has been an
important notion in Descriptive Set Theory.

The notion of countable-decomposability is also related to
some notion of Algorithmic Learning.

Perhaps, it is also related to the hierarchy of Excluded-Middle.

.
Further Work
..
......Borel/hyperarithmetic version of countable-decomposability, etc.
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Measurability Characterizations
.
Theorem (K., Gregoriades-K.)
..

......

The following are equivalent:

f is Π
∼

0
α countably continuous.

f is Σ
∼

0
α+1

countably continuous.

If A ∈ Σ
∼

0
α+1

then f −1[A ] ∈ Σ
∼

0
α+1

.

A ∈ Σ
∼

0
α+1
7→ f −1[A ] ∈ Σ

∼
0
α+1

is continuous.

.
Theorem (K.)
..

......

The following are equivalent:
...1 f is Π0

α countably computable.
...2 f is Σ0

α+1
countably computable.

...3 A ∈ Σ
∼

0
α+1
7→ f −1[A ] ∈ Σ

∼
0
α+1

is computable.
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Learnability Characterizations
.
Theorem (de Brecht-Yamamoto, Higuchi-K.)
..

......

f is Π0
1

countably computable.

f is Σ0
2

countably computable.

f is the discrete limit of a sequence of computable functions.

f is identifiable in the limit.

.
Theorem (de Brecht-Yamamoto, Higuchi-K.)
..

......

f is Π0
1

finitely computable if and only if
it is identifiable in the limit with bounded mind changes.

f is ∆0
2

finitely computable if and only if
it is identifiable in the limit with bounded errors.
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