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Base invariance of randomness notions

Algorithmic randomness notions are usually defined not for real
numbers, but for their digit representations with respect to a fixed
base.

That a randomness notion R is base invariant means:

if X and Y are infinite sequences over different alphabets
that denote the same real, then X satisfies R iff Y
satisfies R.
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Notation

A rational in base r is a rational number with finite
representation in base r, i.e. a rational of the form z · r−n, for
some z ∈ Z and n ∈ N.

Ratr is the set of rationals in base r

Σr = {0, . . . , r − 1}
We represent q ∈ Ratr with the pair 〈σ, τ〉, where σ and τ are
strings in Σ∗r representing the integer and fractional part of q,
respectively. If p, q ∈ Ratr have both length n then

〈p, q〉 7→ p+ q ∈ DTIME(n)
〈p, q〉 7→ p · q ∈ DTIME(n · log2 n).

The function t will be a time bound such that t(n) ≥ n.
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Betting strategies
A martingale formalizes the concept of betting strategy that tries to
gain capital along Z ∈ Σ∞r by predicting Z(n) after having seen
Z(0), . . . , Z(n− 1).

Definition

Let r ∈ N>1.

A martingale in base r is a function M : Σ∗r → R≥0 such that

(∀σ ∈ Σ∗r) r ·M(σ) =
∑
b∈Σr

M(σab) (∗)

M is a t(n)-martingale in base r if M is Rat≥0
r -valued and

M ∈ DTIME(t(n)).

M(σ) represents the capital after having seen σ.

We start with capital M(λ) > 0
(∗) is a fairness condition: the expected value of our capital after
a bet is equal to our capital before the bet.

The underlying strategy is as follows:

Bet M(σab)
rM(σ) of your current capital to the symbol will be b.
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Success of a betting strategy

Definition
M succeeds on Z ∈ Σ∞r iff

lim sup
n

M(Z �n) =∞.

M succeeds on Z when, following the strategy given by M , the
capital we get along Z is unbounded.
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Polynomial time randomness

Definition
Let Z ∈ Σ∞r

Z is computably random if no computable martingale in base r
succeeds on Z.

Z is t(n)-random in base r if no t(n)-martingale in base r
succeeds on Z.

Z is polynomial time random in base r if Z is nc-random for all
c ≥ 1.
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Real-valued to rational-valued martingales

Definition

Let M : Σ∗r → R≥0. A computable function M̂ : Σ∗r ×N→ Rat≥0
r such

that
|M̂(σ, i)−M(σ)| ≤ r−i

is called a computable approximation of M .

The complexity of M̂ on argument (σ, i) is measured in |σ|+ i.

A t(n)-computable approximation is a computable approximation
in DTIME(t(n)).

Recall that a t(n)-martingale is always Rat≥0
r -valued.

Lemma

If M is a martingale in base r with a t(n)-computable approximation
then there is an n · t(n)-martingale N in base r such that N ≥M .
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Savings property
If M is a martingale in base r then

M(σ) ≤M(∅) · r|σ|.
We say that a martingale M in base r has the savings property if
there is c > 0 such that for all τ, σ ∈ Σ∗r ,

τ � σ ⇒M(τ) ≥M(σ)− c.

Proposition

If M is a martingale in base r with the savings property via c then

(∀σ ∈ Σ∗r) M(σ) ≤ (r − 1) · c · |σ|+M(∅).

Lemma (Time bounded savings property)

For each t(n)-martingale L in base r there is an n · t(n)-martingale M
in base r such that

M has the savings property and

M succeeds on all the sequences that L succeeds on.
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Savings property

Given a t(n)-martingale L in base r, let M = G+ E, where

G(σ) is the balance of the savings account at σ

E(σ) is the balance of the checking account at σ

Example

copy L/r

r = 3

2

1

E

X �n
G

X �n

If τ � σ then

G(τ) ≥ G(σ)
M(σ)−M(τ) ≤
E(σ)− E(τ) ≤ E(σ) ≤ r

lim supn L(X �n) =∞⇒
limnG(X �n) =∞
E(σ), G(σ) ∈ DTIME(n · t(n))

M is an n · t(n)-martingale in
base r.
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More notation

If σ ∈ Σ∗r then 〈0.σ〉r represents the rational in [0, 1] whose
representation in base r is 0.σ, i.e.

〈0.σ〉r =

|σ|−1∑
i=0

σ(i) · r−i−1.

If Z ∈ Σ∞r , then 〈0.Z〉r represents the real in [0, 1] whose
expansion in base r is Z, i.e.

〈0.Z〉r =
∑
i∈N

Z(i) · r−i−1.
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Base conversion

We want a functional Γ : Σ∞r ×N→ Σs which converts from base r to
base s:

for all X ∈ Σ∞r , Y ∈ Σ∞s

ΓX is total and ΓX = Y ⇒ 〈0.X〉r = 〈0.Y 〉s

Example

r = 2 0 1r = 2 0.0 0.1 1.0

0.0

r = 2 0.00 0.01 0.10 0.11 1.00

0.0

r = 2 0.00 0.01 0.10 0.11 1.00

0.01

r = 2 0.000 0.001 0.010 0.011 0.100 0.101 0.110 0.111 1.000

0.010

r = 3 0 1r = 3 0.0 0.1 0.2 1.0

0.0

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.02

r = 3 0 1

0.021
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Base conversion is not honest!
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So there is no such Γ.

15



Base conversion is not honest!

Example

X = . . . Y = . . .

r = 2 0.0 0.1 1.0

r = 3 0 1

r = 3 0.0 0.1 0.2 1.0

0.1

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.11

r = 3 0 1

0.111

r = 3 0 1

0.1111

So there is no such Γ.

15



Base conversion is not honest!

Example

X = 1 . . . Y = . . .

r = 2 0.0 0.1 1.0

r = 3 0 1

r = 3 0.0 0.1 0.2 1.0

0.1

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.11

r = 3 0 1

0.111

r = 3 0 1

0.1111

So there is no such Γ.

15



Base conversion is not honest!

Example

X = 11 . . . Y = . . .

r = 2 0.0 0.1 1.0

r = 3 0 1r = 3 0.0 0.1 0.2 1.0

0.1

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.11

r = 3 0 1

0.111

r = 3 0 1

0.1111

So there is no such Γ.

15



Base conversion is not honest!

Example

X = 111 . . . Y = . . .

r = 2 0.0 0.1 1.0

r = 3 0 1r = 3 0.0 0.1 0.2 1.0

0.1

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.11

r = 3 0 1

0.111

r = 3 0 1

0.1111

So there is no such Γ.

15



Base conversion is not honest!

Example

X = 1111 . . . Y = . . .

r = 2 0.0 0.1 1.0

r = 3 0 1r = 3 0.0 0.1 0.2 1.0

0.1

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.11

r = 3 0 1

0.111

r = 3 0 1

0.1111

So there is no such Γ.

15



Base conversion with small error

For τ ∈ Σ∗s and i ∈ N, let

bc−s to r(τ, i) be the string σ in Σ∗r of minimal length such that

0 ≤ 〈0.τ〉s − 〈0.σ〉r < r−i,

bc+
s to r(τ, i) be the string σ in Σ∗r of minimal length such that

0 ≤ 〈0.σ〉r − 〈0.τ〉s < r−i,

Example

s = 3 0.0 0.1 0.2 1.0

〈0.τ〉s

r = 2 0 10.10.01 0.11

01 = bc−s to r(τ, i)

0.001 0.011 0.101 0.111

bc+
s to r(τ, i) = 011

<r−i<r−i
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Base conversion with small error

Approximation of a rational in base s with a rational in
base r

input : τ ∈ Σ∗s and i ∈ N
output: σ ∈ Σ∗r , σ = bc−s to r(τ, i)

σ := ∅
while 〈0.τ〉s − 〈0.σ〉r > r−i do

Find the largest x ∈ Σr such that 〈0.σax〉r ≤ 〈0.τ〉s
σ := σax

The time complexity of bc+
s to r or bc−s to r on argument (τ, i) is

measured in n = |τ |+ i.

Theorem

bc−s to r(τ, i), bc
+
s to r(τ, i) ∈ DTIME(n2).
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Martingales and analysis - Brattka, Miller, Nies 2011
Each martingale M in base r induces a measure µM on the algebra of
clopen sets defined by

µM ([σ]) =
M(σ)

r|σ|
, for σ ∈ Σ∗r .

Via Carathéodory’s extension theorem this measure can be extended
to a Borel measure on Cantor space, and if µM is atomless, we can
also think of it as a Borel measure on [0, 1]: µM is determined by

µM

([
〈0.σ〉r, 〈0.σ〉r + r−|σ|

])
=
M(σ)

r|σ|
.

Fact
If M has the savings property then µM is atomless.

The cumulative distribution function associated with µM , notated
cdfM (x) : [0, 1]→ [0, 1], is defined by:

cdfM (x) = µM ([0, x)).
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Martingales and analysis - Brattka, Miller, Nies 2011

Lemma (BMN 2011)

Suppose M is a martingale in base r with the savings property. Let
N : Σ∗s → R≥0 be the following martingale in base s:

N(τ) = slope of cdfM at points 〈0.τ〉s + s−|τ | and 〈0.τ〉s

=
cdfM (〈0.τ〉s + s−|τ |)− cdfM (〈0.τ〉s)

s−|τ |
.

Suppose X ∈ Σ∞r and Y ∈ Σ∞s are such that 〈0.X〉r /∈ Ratr,
〈0.Y 〉s /∈ Rats and 〈0.X〉r = 〈0.Y 〉s. If M succeeds on X then N
succeeds on Y .

Corollary (BMN 2011)

Computable randomness is base invariant.
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Some properties of cdfM

Proposition (An ‘almost Lipschitz’ condition)

Let M be a martingale in base r with the savings property. Then there
are constants k, ε > 0 such that for every x, y ∈ [0, 1], if y− x ≤ ε then

cdfM (y)− cdfM (x) ≤ −k · (y − x) · log(y − x).

Lemma (Complexity of cdfM)

Let M be a t(n)-martingale in base r with the savings property.

cdfM restricted to rationals in base r is a rational in base r.

For σ ∈ Σnr , cdfM (〈0.σ〉r) ∈ DTIME(n · t(n)) (output represented
in base r).
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Polynomial time randomness is base invariant

Lemma (F, Nies 2013)

For any t(n)-martingale M in base r with the savings property there
is a (real-valued) martingale N in base s such that:

if M succeeds on X ∈ Σ∞r , and Y ∈ Σ∞s is such that
〈0.X〉r = 〈0.Y 〉s, then N succeeds on Y .

N has an n · t(n)-computable approximation.
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Proof of the lemma
Restatement. Given M an nk-martingale with the savings property in base r. Get
a martingale N in base s with a nk+1-computable approximation such that

M succeeds on a real ⇒ N succeeds on it

Define N(τ) = cdfM (q)−cdfM (p)

s−|τ|
, p = 〈0.τ〉s, q = 〈0.τ〉s + s−|τ |

Approximate
p, q ∈ Rats with p̃, q̃ ∈ Ratr resp. Approximate cdfM (q)− cdfM (p) with
cdfM (q̃)− cdfM (p̃)

∈ Ratr

cdfM (x)

s = 3 0.0 0.1 0.2 1.0

τ

p q

R

R

r = 2 0.000 0.001 0.010 0.011 0.100 0.101 0.110 0.111 1.000

p̃ q̃

Ratr

Ratr

small small

small

small

almost Lipschitz
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Polynomial time randomness is base invariant

Theorem (F, Nies 2013)

Let k ≥ 1. If Y ∈ Σ∞s is nk+3-random in base s and X ∈ Σ∞r is such
that 〈0.X〉r = 〈0.Y 〉s then X is nk-random in base r. In particular,
polynomial time randomness is base invariant.

Proof.

Suppose that X ∈ Σ∞r is not nk-random in base r

Let M be an nk-martingale in base r which succeeds on X

There is a nk+1-martingale M̃ in base r with the savings
property such that M̃ succeeds on X

By the lemma there is a (real-valued) martingale N in base s
with an nk+2-computable approximation, which succeeds on Y .

There is an nk+3-martingale Ñ ≥ N in base s
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Normality and absolute normality

Let occσ(τ) denote the number of occurrences of σ in τ ,

Definition
Z ∈ Σ∞r is normal in base r if it satisfies a general form of the
law of large numbers:

(∀σ ∈ Σ∗r) lim
n

occσ(Z �n)

n
=

1

r|σ|
.

z ∈ [0, 1] is absolutely normal if whenever z = 〈0.Z〉r for some
Z ∈ Σωr , we have that Z is normal in base r.
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How much randomness is needed to be (abs.) normal?

The following result similar to Schnorr’s (1971) and Wang’s (1996)
but with better complexity and relative to any base:

Theorem (F, Nies 2013)

If Z is n · log2 n-random in base r then Z is normal in base r.

Using the change-of-base lemma for martingales one can show:

Theorem (F, Nies 2013)

If Y ∈ Σ∞s is n4-random in base s then y = 〈0.Y 〉s is absolutely
normal.
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Computing nk-randoms

Proposition

There is an nk-random computable in time O(nk+2 · log3 n).

Proposition

There is an absolutely normal real computable in time O(n5 · log3 n).

Becher, Heiber, Slaman (2013) have a direct construction for an
absolutely normal real in time just above O(n2).
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Uniformly distributed sequences and normality

A sequence (yj)j∈N of reals in [0, 1] is uniformly distributed in [0, 1]
(u.d.) if for each interval [u, v] ⊆ [0, 1], the proportion of i < N with
yj ∈ [u, v] tends to v − u as N →∞, that is:

lim
N→∞

|{j < N | yj ∈ [u, v]}|
N

= v − u.

The following result is well-known:

Theorem

Let Z ∈ Σ∞r and let z = 〈0.Z〉r. Then Z is normal in base r iff
({z · rn})n∈N is u.d.

({x} denotes the fractional part of x.)
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Rationally normal reals

A real z is absolutely normal iff for all integers a > 1, the sequence
({z · an})n∈N is u.d.

Definition

z ∈ [0, 1] is rationally normal if for all rationals r > 1 the sequence
({z · rn})n∈N is u.d.

Proposition (Special case of Brown, Moran, Pearce 1986)

Rationally normal is stronger than absolutely normal.
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Open questions

Theorem (F, Nies, at the retreat 2013)

Schnorr randomness implies rational normality.

The proof is a modification of a result of Avigad (2013):

if z is Schnorr random then for any computable sequence of
distinct integers (an)n∈N, the sequence ({z · an})n∈N is u.d.

In fact, we can show something stronger:

if z is Schnorr random then for any computable sequence of
rationals (qn)n∈N such that (∃c > 0)(∀k, l, k 6= l)|qk − ql| > c,
the sequence ({z · qn})n∈N is u.d.

Conjecture

Polynomial time randomness implies rational normality.

In fact for some k, nk-random should imply rational normality.

Question

What is the smallest such k?
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Other open questions
For many of our results it may be possible to improve time bounds.

We showed a method for approximating rationals in a given base with
rationals in another.

Question

Is it possible to compute bc−s,r(σ) in less than quadratic time?

We showed that nk+3-randomness in a given base implies
nk-randomness in another base.

Question

Can we lower the ‘+3’, or even show that nk-randomness is base
invariant (for large enough k)?

We showed that n · log2 n-randomness implies normality.

Question

Does linear-randomness in base r imply normality in base r?
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