SDE Seminar: Network Measurement

U Auckland’s Campus Network

and the

global Domain Name System

Computer Science, Auckland, 13 Aug 2008

Nevil Brownlee
Overview

I’m giving this seminar on behalf of SDE

it’s intended to be representative of work in our group

but of course, I’ll only look at projects I’ve been directly involved with

I’ll talk about:

- overview of our Campus Network’s topology
- performance of UA web servers via various ISPs
- response times for top-level nameservers
- the ‘DNS History Database’ project
1. U Auckland campus network (schematic)
Measurement Hosts

- **nevil-res1.itss** and **nevil-res2.itss**
- Two 1U PCs, each with
 - 1TB disk, four Ethernet ports
 - one DAG card
- Located in OGG Data Centre, between our firewall and our border router
- Can observe packets going to/from Internet
 - through the border router
 - via KAREN or TelstraClear
- Used by Nevil and SDE postgrad students
Meters to observe U Auckland Internet traffic

Diagram:
- Grafton
- Tamaki
- Epsom
- Data Centre
- FW
- BR
- Meter
- TelstraClear
- KAREN
- 100 Arts
- 200 HSB
- 300 Science
- 400 Engineering
KAREN: NZ’s Research and Education network

- Run by REANNZ
 - REANNZ members are Universities, CRIs, National Library
 - starting to connect schools
- 10 GB/s backbone in New Zealand
- 622 Mb/s link to U.S., 155 Mb/s link to Australia

http://weathermap.karen.net.nz/
2. ISP Performance Monitoring

- Project initiated (and funded) by ITS
- Goals:
 - find out what proportion of users have ‘high-speed’ Internet access, i.e. better than dial-up
 - measure performance of U Auckland web servers
 - As seen by users of various ISPs
 - Using only passive measurements
Li Li’s MSc project, 2005

Goal: determine “what would suitable as ISP Performance metrics?”

Infrastructure work

need to build an ISP address table,
 Start by assuming we know /24 address prefix
 Aggregate up as we get adjoining prefixes. [Future work: implement dynamic ptrie search for longest match]

connection type: couldn’t measure, guess from FQDN

metrics: download rate, RTT, loss rate

 Connection RTT: can’t assume 3-way handshake succeeds first time, but . . .
 Can use SYN-ACK RTT if no retransmissions
 Download rate: measure over each stream, average per connection/user/ISP
 Loss rate: data was too noisy for a reliable measurement
Fei Liu (Jonathan)'s Diploma project

- Nevil wrote code for **uspmon.rb**, running on nevil-res2
- Use RRD database tool to collect the data and aggregate it for day/fortnight/month/year

- System has been running since Oct 06
 - download rates are rather conservative!
 - RTTs seem reasonable
 - problems with IP address changes for cecil
3. Observing the Top-level Nameservers

- Dots show server locations *in late 2001*
- Each city lists (*root* : *gTLD*), using their 1-letter names
- Geographic locations are mostly in the U.S.
- Only 13 (A..M) of each – no anycasting
Setup for Measurements of DNS traffic

- Passive data collection using *NeTraMet*
 - tap link using fibre splitter or SPAN switch port
 - write ruleset to specify flows of interest *in SRL*
 - collect flow data files

- DNS performance measurements
 - observe DNS request and response packets on link
 - meter builds distributions of request–response times
 - 5-minute stats files sent to CAIDA web site each day
Nevil’s Root/gTLD Server RTT page

- Measures Request-Response times to root (and gTLD) nameservers from several locations
- Stores RTT plots in a database
- Web interface to examine data . . .
- http://www.caida.org/cgi-bin/dns_perf/main.pl

(look at week starting 19 Jul 08)
Visualising DNS RTT behaviour

- Ilze Ziedins and Ross Ihaka have been working with our DNS data
- Ross has produced DNS RTT vs time contour plots ..
gTLD RTT distributions (1)

RTT/100 μs, F gTLD, observed at Auckland, Thursday 21 Aug 2003 (UTC)
gTLD RTT distributions (2)

RTT/100 µs, I gTLD, observed at Auckland, Tuesday 19 Aug 2003 (UTC)
gTLD RTT distributions (3)

RTT/100 μs, I gTLD, observed at Auckland, Wednesday 20 Aug 2003 (UTC)
4. The DNS History Database Project, DHDB

- Started as Bojan Zdrnja’s 780 project in S1 2005
- Idea is to watch DNS reply messages, and build a database of Domain Names (FQDNs) and the IP addresses they use
- Why do this?
 - attacks on DNS are becoming more common
 - for example, it’s easy to capture a nameserver, and use it to divert user enquiries
 - FQDN mappings change often - when investigating network security incidents it’s useful to know what address a rogue FQDN mapped to
 - DNS is distributed, each nameserver only knows about its own zone(s)
 - there’s no way to retrieve the whole zone from a well-configured nameserver
 - DNS has no notion of history
DHDB: the technology

- Observe DNS packets at the edge of U Auckland’s network
- Record authoritative DNS replies (the whole packet)
 - we only see replies to the site caching nameservers (e.g. 130.216.1.1), so there’s minimal privacy risk
 - it’s non-intrusive and low-impact
- At hourly intervals, process the DNS replies
 - reduce the data, push it back into the database
 - database keeps first and last time we saw an FQDN or address, along with other information from its DNS record
- Started doing this at U Auckland, plus second collector at UUNET, in Trondheim, Norway from about Nov 05
- Bojan’s paper at DIMVA 2007
 - Detection of Intrusions & Malware, and Vulnerability Assessment conference
Authoritative DNS Replies at Auckland

- Big rise in DNS requests in Aug–Sep 2006
- Anti-spam system was attempting to resolve all FQDNs and IP addresses it saw in email messages!
DNS Resource Records in the Database

<table>
<thead>
<tr>
<th>RR type</th>
<th>Records</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24096932</td>
<td>57.00</td>
</tr>
<tr>
<td>NS</td>
<td>757825</td>
<td>1.79</td>
</tr>
<tr>
<td>CNAME</td>
<td>652126</td>
<td>1.54</td>
</tr>
<tr>
<td>SOA</td>
<td>16281</td>
<td>0.04</td>
</tr>
<tr>
<td>PTR</td>
<td>11261024</td>
<td>26.64</td>
</tr>
<tr>
<td>MX</td>
<td>2433120</td>
<td>5.76</td>
</tr>
<tr>
<td>TXT</td>
<td>3047556</td>
<td>7.21</td>
</tr>
<tr>
<td>AAAA</td>
<td>2202</td>
<td>0.005</td>
</tr>
<tr>
<td>SRV</td>
<td>705</td>
<td>0.002</td>
</tr>
<tr>
<td>Total:</td>
<td>42267771</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Our biggest A record contributors were anti-spam engines, looking up real-time black lists (RBLs)**
- **PTR records hold addresses for reverse lookups**
Typo-squatter domains

- No exploits – based on users incorrectly entering URLs
- Manual inspection revealed several big sites hosting typo-squatter web sites
- Most typo-squatting sites host hundreds of domains

<table>
<thead>
<tr>
<th>DNS query</th>
<th>Answer RR</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.gmaio.com</td>
<td>64.20.33.131</td>
<td>A</td>
</tr>
<tr>
<td>openopffice.com</td>
<td>64.20.33.131</td>
<td>A</td>
</tr>
<tr>
<td>www.eikipedia.org</td>
<td>64.20.33.131</td>
<td>A</td>
</tr>
<tr>
<td>auckland.ac.nz</td>
<td>64.111.218.142</td>
<td>A</td>
</tr>
<tr>
<td>webmail.ec.auckland.ac.nz</td>
<td>auckland.ac.nz</td>
<td>CNAME</td>
</tr>
</tbody>
</table>
Fast flux domains

- Domains with rapidly changing resource records
- Today (2006) typically used for command and control servers by bot-herders
- Characteristically have low TTL records, otherwise it takes long(er) for clients to resolve the new domain
- Easy to enumerate in the database.

For example: `contryloansnow.com domain`

<table>
<thead>
<tr>
<th>Answer</th>
<th>RR type</th>
<th>TTL</th>
<th>Time seen</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.105.118.33</td>
<td>A</td>
<td>5</td>
<td>Wed, 24 May 06 19:31:10 UTC</td>
</tr>
<tr>
<td>84.90.205.67</td>
<td>A</td>
<td>5</td>
<td>Wed, 24 May 06 21:11:55 UTC</td>
</tr>
<tr>
<td>86.203.193.193</td>
<td>A</td>
<td>5</td>
<td>Wed, 24 May 06 23:21:37 UTC</td>
</tr>
</tbody>
</table>
Bojan Zdrnja’s MSc project
Collectors at U Auckland (New Zealand) and UUNET (Norway)
Running on Bojan’s desktop machine
Database had about 120 million records
Accessible at https://dnsparse.insec.auckland.ac.nz/dns
Username: dimva
Password: 2007

Strong interest from REN-ISAC in providing better hardware
Later in 2007 …

- Continuing strong interest
 - seven collectors
 - still running on Bojan’s desktop machine
 - France CERT asked to mirror the database

- REN-ISAC were not able to actually provide assistance, alas
- Decided to develop the project into a global, long-term effort
The Developing project – 2008

- Name change to ‘DNS History Database’
 - describes what we’re actually doing
 - no confusion with earlier ‘passive DNS’ work

- Project based at U Auckland, with clear MOU
 - stable, long-term co-ordination
 - neutral party to own and oversee the MOU

- MOU sets out:
 - what project participants may do (e.g. collect data, mirror the database, analyse/summarise the data)
 - security/Confidentiality aspects to be observed
This year, so far …

- U Auckland bought a real machine to run the database
 - 1 TB of SAN disk, lots of memory
 - will gather data from the collectors, and update the database

- BeSTGRID (NZ’s ‘Grid Computing on KAREN’ project) has also provided resources
 - VM with 2 GB of memory, and 2 TB of NFS disk
 - will run the web access server(s)

- Our DVC (Research) has agreed to sign the MOU on behalf of U Auckland
 - REN-ISAC’s lawyers are deciding whether they can sign it

- Bojan has moved the database to its new machine

- Next steps
 - ask the present ‘Collector’ sites to sign the MOU
 - make a much better DHDB web page (on BeSTGRID site)
 - approach a few more possible Collector sites, e.g. in China
Conclusion

- I’ve presented a few network measurement projects
- Of course, the SDE group members have their own research interests and activities
- Plenty of possibilities for more seminars . . .