
Network Trace analysis using Python

Nevil Brownlee

U Auckland | WAND

NZNOG 2015 Tutorial
26 January 2015

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 2

Introduction
● Using Network Traces

– There are lots of tools
● tcpdump, wireshark, libtrace, python-libtrace, ...

– Why use python?
● to answer questions involving big traces
● to produce reports, plot, etc that are specific to

your site/network/user(s)

● Assumptions
– You understand network protocols well
– You've already tried using python

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 3

Python – Nevil's view
● python is deliberately simple-minded

– It forces you to write many simple lines
– Indenting as syntax (!)

● at least for classes and function declarations
● ; can separate multiple statements on same line
● emacs has syntax-colouring, and commands to

move blocks of lines in or out

● python has a huge collection of modules
– We'll only look at a few of them

● python-libtrace (of course)
● numpy, scipy and mathplotlib

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 4

Python – Nevil's view (2)

● python has lots of built-in functions
– You often need to use them for common

operations, e.g. enumerate() to step through
a python dictionary (i.e. hash)

● python objects have a big set of
pre-defined functions
– e.g. for comparison and iteration
– you have to understand these, and use them!

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 5

Libtrace
● Web page

 http://wand.net.nz/trac/libtrace
● C library for analysing packet traces
● Reads and write compressed trace files

directly (.gz or .bz2)
● URI specifies a 'trace',

 e.g. pcap:test.pcap.gz
● pcap:, pcapfile: or erf: for trace files
● live interfaces

– linux int:, ring:, pcapint: BSD bpf:
– documented in SupportedTraceFormats

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 6

Libtrace utilities
● tracesplit

– Can collect new traces from an interface
● tracesplit -c 10000 -m 1 -Zgzip -z5 pcap:eth5 \

 pcapfile:10kpackets.pcap.gz
● reads packets from a pcap interface, writes

10kpackets to a single compressed pcap file
– Can also split a trace file into smaller files

● traceanon
– Anonymises IP addresses in packet headers

● traceanon -sd -c"x yz" pcapfile:10kp-raw.pcap \
 pcapfile:10kp-anon.pcap

● -c "key" uses cryptopan with key 'x yz'
● -sd anonymises both source and destination addresses

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 7

python-libtrace (plt)
● Python module providing access to fields

in packets via libtrace
● plt provides a clean, object-oriented view

of packets
– Network layers are subclasses of Packet class

● Includes pldns and natkit
– python access to NLnetLabs ldns C library
– natkit; a collection of 'useful' tools for

network analysis, i.e.
● get 2- and 4-byte integers from a ByteArray
● TCP sequence number arithmetic
● classes for building flow tables

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 8

Installing python-libtrace
● Libtrace

– Check that you have libz and libbz2
– Download latest libtrace from

● research.wand.net.nz/software/libtrace.php
– Follow instructions in INSTALL file

● ldns
– Requires latest version of openssl
– Download ldns C library from

● www.nlnetlabs.nl/projects/ldns

● python
– Requires python-dev
– Can build for python 2 or 3 (I use python 2)
–

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 9

Installing python-libtrace (2)
● python-libtrace

– Download latest python-libtrace (plt) from
● www.cs.auckland.ac.nz/~nevil

– Follow instructions in INSTALL file
● tar zxf python-libtrace-x.y.tgz (currently 1.4)
● cd python-libtrace-1.4
● make install-py2 # for python 2 # or py3

– Install will run tests, don't panic if some fail
● Tests compare output of test programs on your

system with output on my development system
● Please send bug reports to me so that I can

improve the testing!
– Nevil Brownlee <n.brownlee@auckland.ac.nz>

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 10

python-libtrace documentation
● html documentation included in the

distribution tarball, along with some
simple example programs
– In python-libtrace-1.4/doc
– Also on web at

● www.cs.auckland.ac.nz/~nevil/python-libtrace
– A page for each part or subclass within plt

http://www.cs.auckland.ac.nz/~nevil/python-libtrace

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 11

plt overview
● plt provides a class hierarchy for a Packet

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 12

Tutorial plt programs
● This tutorial provides a set of programs,

intended to show how to use python-
libtrace (plt)

● My example traces have been
anonymised using traceanon
– 10,000 packets from a network edge,

 snap length 80 (i.e. only first 80 bytes)
– smaller anonymised DNS traces

● As we work through them, I'll explain
how they work, and the python and plt
features they use ...

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 13

p01_read_test.py
● Create a trace, start it
● Read its packets, count them
● Note:

– import plt to use python-libtrace
– Specify the trace URI
– start() the trace

● must do this before trying to use it
– iterate through the traces Packets

● python iterator loop using 'in'
– close the trace (function with no parameters)
– print the count; printf-style, format using '%'

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 14

p02_count_ethertypes.py
● Count the number of packets for each

ethertype in a trace
● Note:

– ; separating two statements on same line
– python dictionary for ethertypes seen
– dictionary keys must be Strings (immutable)
– value of dictionary items is just an integer
– print dictionary in sorted() order

● no parameters → increasing order of item values
– tuple of objects to print (et, ethertypes[et])

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 15

p03_count_protos.py
● Count the number of packets for each IP

or IP6 protocol in a trace
● Note:

– nested if statements
– python dictionary for ethertypes seen
– trace contains IP and IP6 packets
– print dictionary in sorted() order

● key= expects a function parameter,
 protocols.get is a function that gets the
 value for each key

● reverse=True for descending order
 ('T' for python true)

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 16

p04_transit_ip_pkts.py
● Count packets that are transiting a

'home' network
● Notes:

– Using IPprefix methods, imported by plt
– from_s() to make an IPprefix for 'home'
– ignore IP6 packets in this example
– have to set src_ and dst_prefix length to 32
– home.is_prefix(a) tests whether home is a

 prefix of a, i.e. a lies within home
– print src_ and dst_prefixes for each new

 'foreign' packet

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 17

p05_tcp_fin_vs_reset.py
● Count the FIN and RESET flags in the

trace's TCP packets
● Notes:

– pkt.tcp gets a TCP object from a packet,
 it returns False if it wasn't TCP

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 18

p06_http_fin_vs_reset.py
● Separate http FIN and RESTS counts from

total FIN and RESET counts
● Notes:

– Same as p05, but tests for http first

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 19

p07_tcp_port_counts.py
● Looks for ports with highest byte counts
● Notes:

– class port_counts to hold information for
each port

● class functions (methods) have self as first
parameter

● instance variables are prefixed with self.
● __init()__ creates a class object
● __str()__ prints the object

– sorted()'s key is an anonymous function
● here k is lambda's only parameter

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 20

p08_ports_fin_vs_reset.py
● Count FIN and RESET flags for each

TCP port
● Notes:

– Combination of p07 and p05

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 21

p09_pldns_demo.py
● Demonstration of pldns – working with

DNS packets
● Notes:

– must import pldns – it's not part of plt
– reads 1kp-dns-anon file, 1k full DNS records
– pldns.ldns() makes a pldns object from a

packet's UDP payload
● ldns expects a complete packet!
● pldns has functions that return (python) lists of

LdnsRR objects
● an LdnsRR object has attributes that return

information about a DNS RR

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 22

p10_pldns_count_dnssec.py
● Count DNS records that contain

DNSSEC RRs
● Notes:

– tuple for RR types (integers)
– gets authority list of RRs for each packet
– searches it for an RR in the tuple

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 23

p11_dns_find_our_servers.py
● Counts the nameservers in our 'home'

network
● Notes:

– combination of p04 and p10
– uses pldns to look for DNS request src_dests,

i.e. incoming requests from other networks
– counts are high for our site nameservers, but

there are lots of unanswered requests to
other hosts !?

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 24

p12_dns_server_users.py
● Count users (i.e. requesting hosts) of a

nameserver
● Notes:

– h = str() # Need to tell python we
 want a string

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 25

p13_dns_response_lengths.py
● Plot distribution of DNS response lengths
● Notes:

– gets lengths of DNS response packets in a
python list

– converts that to a numpy array
– uses numpy and scipy modules to print

statistics of the distribution
– uses mathplotlib module to plot it

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 26

p14_ipflow_demo.py
● Demonstrates natkit's IPflow class
● Notes:

– build IPflow object from packet
– trap exceptions from non-ip packet
– fwd_key is a ByteArray containing

● version, protocol, src/dst ports, src/dst addresses
– rev_key has same data, but src and dst fields

are swapped

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 27

p15_find_biggest_flows.py
● Builds a flow table, then prints data about

the largest few flows
● Notes:

– class flow holds the flow's IPflow, plus
fwd/rev byte counts

– 'fwd' direction is that of flow's first packet
– direction matching algorithm is from

RFC 2722 (1999)

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 28

p16_biggest_home_flows.py
● Uses 'FlowHome' objects in a flow table
● We only need one lookup for each packet
● Notes:

– class flow has
● separate functions count_in and count_out
● sort_key function returns flow's total bytes
● is_inward() is True if only one of src/dst addresses

 is in one of our home networks
● sorted's lambda function uses flow.sort_key()

python trace analysis tutorial NZNOG 2015 Rotorua, 28 Jan 15 29

Summary
● It's fun to work with plt, pldns, natkit
● These example are just a beginning -

 what would you find useful in your
 own network?

● Thanks for the feedback on the NZNOG
list!

● Please email comments, suggestions,
bug reports, etc to
– n.brownlee@auckland.ac.nz

mailto:n.brownlee@auckland.ac.nz

