A Characterization of Graphs
with Vertex Cover up to Five

Kevin Cattell' and Michael J. Dinneen'-?

! Department of Computer Science, University of Victoria,
P.O. Box 3055, Victoria, B.C. Canada V8W 3P6
2 Computer Research and Applications, Los Alamos National Laboratory,
M.S. B265, Los Alamos, New Mexico 87545 U.S.A.

Abstract. For the family of graphs with fixed-size vertex cover k, we
present all of the forbidden minors (obstructions), for k up to five. We de-
rive some results, including a practical finite-state recognition algorithm,
needed to compute these obstructions.

1 Introduction

The proof of Wagner’s conjecture by Robertson and Seymour (see [RS85,RS]),
now known as the Graph Minor Theorem (GMT), has led to an explosion of
interest in obstruction sets. Though the GMT is primarily of theoretical inter-
est, our research group has been exploring applications of the theory. We have
developed a system called VACS to help determine obstruction sets for certain
graph families. One of these families, vertex cover, is the subject of this paper.

We make two main contributions in this paper. First, we present a linear-time
algorithm that determines the vertex cover for the class of graphs with bounded-
pathwidth (partial t-paths). There are related results as discussed below, but the
algorithm we present has an important property of being minimal (defined in
Section 3). It is this property which allows us to compute the second contribution
of this paper: the obstruction sets for the first five fixed-parameter instances of
the vertex cover problem.

The general problem of determining if a graph has a vertex cover of size k,
with & part of the input, is well known to be AN'P-complete [GJ79]. However,
several N'P-complete problems have polynomial-time fized-parameter versions
for some fixed, problem-specific integer k. Vertex cover is an example of such
a problem; the brute force approach of checking all k subsets of the vertices
gives a crude O(n*¥*+2) algorithm. Alternatively, if a tree or path decomposition
is available, determining the minimal vertex cover of a graph can be done linear
time [ALS91]. In addition to our obstruction set characterizations, we present
a practical, finite-state algorithm for path-decomposed graphs. Furthermore, by
the facts (1) that path decompositions for fixed k can be found in linear time (see
[Bod93,K1093]) and (2) a pathwidth bound exists (see Theorem 10), we have an
O(n) algorithm. Interestingly, a direct fixed-parameter algorithm is presented in
[DF] with the same complexity.

The rest of this paper is organized as follows. Section 2 formally defines
the vertex cover problem, and introduces results and notation used in the paper.
Section 3 presents our general vertex-cover algorithm and its minimal, finite-state
variation for graphs of bounded pathwidth. Next, Section 4 contains results that
reduce the amount of work needed to compute the obstructions sets. Finally,
Section 5 presents the obtained obstructions sets.

2 Background

The most famous example of an obstruction set is found in Kuratowski’s The-
orem for planar graphs. It states that a graph G is planar if and only if G
does not homeomorphically contain the complete bipartite graph K33 or the
complete graph K. This indicates the form of all obstruction set characteriza-
tion of graph families; for some fixed graph family F, G € F if and only if G
does not contain (under some partial order) any member of some set of graphs
O(F) ={01,04,...}.

For two graphs G and H, the graph H is a minor of the graph G if a graph
isomorphic to H can be obtained from G by taking a subgraph and then con-
tracting (possibly zero) edges. The GMT states that any set of finite graphs is a
well-partial order under the minor order. A family F of graphs is a lower ideal
(under the minor order) if G € F implies that H € F for any minor H of G.
An obstruction O for a lower ideal F is a minor-order minimal graph not in
F. Hence, by using the GMT, a complete set of obstructions provides a finite
characterization for any minor-order lower ideal.

For the remainder of this section, we formally define the vertex-cover lower
ideals that are characterized in this paper along with other preliminary material.
We first define the general vertex-cover decision problem (see [GJ79]) as follows:
Problem:Vertex Cover
Input: Graph G = (V, E) and a positive integer k < |V].

Question: Is there a subset V' C V with |V'| < k such that V' contains at least
one vertex from every edge in E7

A set V' in the above problem is called a vertex cover for the graph G. The
family of graphs that have a vertex cover of size at most £ will be denoted by
VC-k. For a given graph G, let VC(G) denote the least k such that G has a
vertex cover of cardinality k.

Lemma 1. The graph family VC—k is a lower ideal in the minor order.

Proof. Assume a graph G(V, E) € VC—k has a minimal vertex cover V' C V. If
H =G\ (u,v) for some (u,v) € E (edge deletion), then V' is also a vertex cover
for H. Likewise, if u € V' is an isolated vertex of G, V' also covers H = G \ {u}
(vertex deletion). For any edge (u,v) € E, observe that |{u,v} NV'| > 1. Let
w be the new vertex created from u and v in H = G/(u,v) (edge contraction).
Clearly, V"' = (V' U {w}) \ {u,v} is a vertex cover of H with cardinality at
most k. Since any minor of GG can be created by repeating the above operations,
VC-k is a lower ideal.

Our computational system works with graphs of bounded pathwidth, which are
defined below (see [CD] for detailed information). These graphs are somewhat
related to the graphs of bounded treewidth characterized in [Ros73].

Definition 2. A path-decomposition of a graph G = (V, E) is a sequence X1, Xo,
..., X, of subsets of V' that satisfy the following three conditions:

1. Ulgigr Xt = V,

2. for every edge (u,v) € E, there exists an X;, 1 <4 < r, such that v € X;
and v € X;, and

3. fOYlSi<j<kST‘,XiﬂngXj.

The pathwidth of a path-decomposition X1, Xo,..., X, is maxi<;<, | X;| — 1.
The pathwidth of a graph G is the minimum pathwidth over all path-decomposit-
ions of G. Finding pathwidth is equivalent to many problems such as gate matriz
layout and vertex separation [M6h90,EST87,KT92].

The family of graphs of pathwidth ¢ or less, denoted by PW—t¢, can be repre-
sented by strings of operators from some operator set. There are many operators
sets that can be used (e.g., for treewidth see [Wim87,ACPS91]), and we have
chosen one of ours that eases both theory and implementation.

Our operator set X; for bounded pathwidth graphs is defined by

Xy =ViUE; where
Vi={@©,...,(®»} and
By ={[ij]: i.j€Vii#j)

The semantics of these operators on (t+ 1)-boundaried graphs are as follows:

@ Add an isolated vertex to the graph, and label it as the new bound-
ary vertex i.
Add an edge between boundary vertices ¢ and j (ignore if operation
causes a self loop).

A graph described by a string of these operators is called a t-parse, and has
an implicit labeled boundary 0 of t + 1 vertices. By convention, a t-parse always
begins with the string [@, @, ceey @] which represent the edgeless graph of
order t+1. When G is any t-parse and Z € X} is any sequence of operators from
the operator set Y; the concatenation of G and Z forms a new t-parsedenoted
by G - Z. The labeled boundary of the graph described by G - Z is different from
G if the extension Z contains any ‘new vertex’ operators from V;.

In [CD] it is shown that a graph G has a t-parse representation if and only
if G € PW—.

Ezample 8. A t-parse with ¢t = 2 and the graph it represents. (The shaded
vertices denote the final boundary.)

(@ © @ [o1}[12] O fo1}[12] @[o1}[0o2] @ [02][12]]

3 Finite State Algorithm

In this section we give a practical, finite-state algorithm for the vertex cover
problem on graphs of bounded pathwidth in ¢-parse form. This linear-time al-
gorithm is a dynamic program that makes a single left to right scan of a t-parse
G, =191,92,---,9n]. The computational process resembles a finite-state automa-
ton in that it accepts words over the operator alphabet X;. Let m be the current
scan position of the algorithm on input G,. The state table at operator g, is
indexed by each subset S of the boundary d. These 2!*! different entries are
defined as follows:

Vi (S) = min{ |V'| : V' is a vertex cover of G, and V' D S}
Two important observations about the state table are:

1. For each boundary subset S € 9, V;,,(S) is a non-decreasing sequence of
non-negative integers as m increases.

2. For any boundary subset S € 0 and any boundary vertex i ¢ S, either
Vin(S) = Vi (S U {i}) or Vi, (S) = Vi (SU {i}) — 1.

The algorithm, given in Fig. 1, starts by setting the sizes for the minimal
vertex covers on the empty graph Gy = [@, @, ceey @], for all subsets S of
the initial boundary 0.

The type of the operator g,,+1 (a vertex operator or an edge operator) de-
termines how the state table is updated during the scan. The update of an
entry for a specific subset of the boundary S is further broken up according to
the relationship between S and the operator. These transitions are described in
cases 1-4 of Fig. 1.

When the algorithm reaches the end of the t-parse, it has computed the
minimum number of vertices needed for a vertex cover of (¢,,. This is because

I Form =t+1,set forall S € 29
Vi+1(S) = 18|

IT For t+1 < m < n, do the following cases:
Case 1: vertex operator @ andi ¢ S

Vim41(8) = Vin(S)
Case 2: vertex operator @ andt € S
Vim+1(S) = Vi (S\ {i}) +1
Case 3: edge operator , where i € Sorj e S
Vint1(8) = Vi (S5)
Case 4: edge operator , where i ¢ Sand j € S
Vint1(8) = min{Vin (SU{i}), Vi (S U {5} }
IIT The vertex cover of GG is

Va (D)

Fig. 1. General vertex cover algorithm for ¢-parses.

the entry V() contains the size of the smallest vertex cover that contains the
subset @) of the boundary. As this is an empty condition, V,,(()) is the size of the
smallest vertex cover in G,,.

Theorem 4. For any t-parse G,, = [g1, 92, - - -, gn), the algorithm in Fig. 1 cor-
rectly computes VC(G,,).

Proof. If G is the empty graph then only steps I and III are executed and the
correct result of VC(G) = 0 is returned. Assume that the algorithm is correct
for all (prefix-) graphs of length m and less. We show that cases 1-4 of step II
correctly update the state table, V,,11(S) for S € 29.

Case 1: g,, 11 = () and i g S

Let V' be a witness vertex cover for V,,,(S). Since the new vertex created by
gm+1 does not add any edges, V' is a vertex cover for G,,,11. Since V' O S for
Gnandi g S, V' DS for Gpy1. Therefore, Vi, 11(S) < Vi (S).

Let V' be a witness vertex cover for V,,1+1(S). Since V' is minimal, the isolated
vertex created by gm,+1 is not in V'. Thus V' is a vertex cover for G,,. Since the
property V' D S is preserved, V,,,(S) < Vig1(S).

Case 2: gmi1 = @ andie S

Let 8" = S\ {i} and V' be a witness vertex cover for V,,(S"). Now W =

V'U{i} is a vertex cover for G, 41 such that W D S. So, V,;,11(S) < Vi (S') + 1.

For the other direction, let V' be a witness vertex cover for V,,+1(S). Since
the new boundary vertex ¢ does not help in any vertex cover of G,, V" = V'\ {i}
is a vertex cover for Gy, such that V"' D S. Hence V;;11(S) > Vi (S') + 1.

Case 3: gm+1 :Where teESorjes

Let V' be a witness vertex cover for V,,,(.S). Since the boundary is not changed
by the edge operator g,,,+1 and i € S or j € S, V' also covers the edges of G4 1.
Thus, Vg1 (S) < Vi (S). If V" is a vertex cover of Gy with i € Sor j € S,
then V" also covers the edges of G,,. So Vip1(S) > Vi (S).

Case 4: g1 : where i ¢ Sand j &€ S

Let S" = SU{i} and V' be a witness vertex cover for V,,,(S’). Since V! D Sisa
vertex cover for G,41, as vertex i isin V', Vi, 41(S) < V(") Likewise, if " =
SU{j}, then V11 (S) < Vi (S"). So Vi1 (S) < min{V,,,(SU{i}), Vi (SU{j})}.

Let V' be a witness vertex cover for Vp,41(S5). Since (4,) is an edge, either
i€eV'orjeV' . Thus V' D SU{ilor V! D SU{j}.If V' D SU{i}, then V'isa
vertex cover for G, and so Vi, (SU{i}) < V511 (S). Otherwise, V! O SU{j}, and
Vin(SU{4}) < Vipt1(S). Therefore, min{V,,(SU{i}), Vi (SU{j}} < Vint1(S).

Example 5. The following table shows the application of the algorithm to the
t-parse given in Example 3. As can been seen by examining the graph in Exam-
ple 3, a minimum vertex cover has cardinality 3, which equals V14 (0).

ml 3 4 5 6 7 & 9 10 11 12 13 14

S gm| —[01][12] ©01][12] ®[01][02] @[02][12]
] 1 2 3
{0}

{1}

{2}
{0,1}
{0,2}
{1,2}
{0,1,2}

WNNN === O
LN NN N ===
LN NNDNFN -
W WN WM NN
W WN WNNNDN
CLOWLW N WN NN
= W w NN W
W W wwNn wN
= W W Ww Ww www
B = = W s W w
= = s W s W ww
= R W ke W W w

The following lemma shows that we can limit the vertex-cover membership
algorithm to a finite number of possible configurations when testing for mem-
bership in VC-k.

Lemma 6. The algorithm in Fig. 1 is finite state for any fized upper-bound k.

Proof. We show that for fixed k, there are only a finite number of possible states.
Consider the state table entry for a boundary subset S. If V;(S) becomes k + 1
for some 4, then the monotonicity of V,(S) guarantees that V;(S) > k+1 for all
j > i. As we are only interested in knowing whether or not there exists a vertex
cover of size k containing S, we can restrict V,,,(S) tobe in {0,1,2,...,k, k+1}.
As there are 2% entries in the state table, the number of states is bounded by
(k+2)2"".

To make a fixed-parameter algorithm for VC-k, change any update function
Vint1(S) = f(Vin) in the four cases with V,41(S) = min(f(V,,), k + 1). It is
straightforward to verify that this modified algorithm correctly computes the
same state table except that any entry greater than k + 1 is replaced by k + 1.

We define the final state of a t-parse G, denoted by Vi, to be the state of the
finite-state algorithm when the algorithm terminates. For each boundary subset
S, let Viz(S) denote the S entry of Viz. If G and H are t-parses and Vg = Vi, it
follows immediately that for any operator string Z € X}, we have Vg.z = Vi.z.
This in turn implies that G - Z € F & H - Z € F for all Z. That is, G and
H agree on all extensions. The converse of this property is described by the
following important definition.

Definition 7. A finite state algorithm for a family F is minimal if for any two
t-parses G and H satisfying

G-ZeF& H-ZeFforal ZelXy

then the final states of the algorithm are equal for the inputs G and H.

To show that our vertex-cover algorithm is minimal, we need to show that if
G and H are t-parses, and G and H agree on all extensions, then Vg = V. We
will show the contrapositive; that is, if Vi # Vg, then there exists an extension
Z such that G and H do not agree on Z (that is, there exists Z such that either
G-ZeFandH-Z¢gF,orG-Z¢Fand H-Z¢€F).

Before proving that our VC-k algorithm is minimal, we need the following
lemma that provides us with an available boundary vertex for building such an
extension Z.

Lemma 8. If G and H are t-parses such that Vg (0) # Vi (D), then there exists
an S C 0 such that Vg(S) # Vi (S).

Proof. Assume that V(0) # Vi (0) is the only difference in the state table. The
following three facts

1. Va(@\{i}) =Vu(0\{i}) for all i € 9,

2. Va(O\{i}) <V5(0) < Vg(@\{i})+1forallie€d and

3. Va(0\{i}) <Vu(0) < Vg(@\{i})+1foralliecd
imply that

Ve(0) < Va(@\ {i)+1=Vg@\{i})+1< Vg(d) +1forallicd

and
Va(0) > Va(0\ {i}) = Va0 \ {i}) > Vy(d) —1forallied .

After combining the above, Vg (9) — 1 < V5(9) < Vg (0) + 1. So, without loss
of generality, assume Vg (0) = Vg (0) — 1 = d. From this identity and facts 1
and 3 above (also see the partial state tables below), we must have Vg (9) =

Va(@\ {i}) =dforall i€ d.

graph G graph H
Va(9) d < Va(@) [d+1
d-1 d
Va(@\{i})| or | ¢ =9 [Va(d\{i})| or
d d+1

This can happen if and only if each of the boundary vertices of G are attached
to some non-boundary vertex. If not, then a vertex cover V' O 9 of G would
have a redundant vertex i € 0. The vertex cover created by eliminating vertex 4
from V' contradicts the value of V(0 \ {i}). However, such a graph G can not
exist since the last vertex operator can only have boundary vertex neighbors.
Therefore, we can conclude that Vg(0) = Vi (0) or there exists a S C 0 such
that Vg (S) # Vi (S).

Theorem 9. The finite-state algorithm in Fig. 1 is minimal for VC-k.

Proof. Let G and H be t-parses. As discussed above, we show that if Vg # Vi,
then there exists an extension Z such that G and H do not agree on Z. Note
that the theorem holds trivially if either one of G or H is not in F = VC-k
by the empty extension Z = []. If both G ¢ F and H ¢ F then Vg = Vg =
[k+1,k+1,...,k+1] since Vg(#) = k+ 1 implies Vg(S) = k+1forall S CJ.

So suppose that Vg # V. Then without loss of generality, there is a bound-
ary subset S with minimum cardinality such that Vz(S) < Vg (S) < k + 1.
Lemma 8 guarantees that S # 9.

Let {vi,v2,...,v/5/} be the boundary vertices in S. Pick a boundary vertex
i € S and any other boundary vertex j # i. Construct an extension Z as follows.

k—Vu (S)+1 times

A

Z: [@77@’7"'@77©’ @77""@’ @7

The extension Z essentially forces the boundary vertices S to be covered
while adding k — Vi (S) + 1 isolated edges. Now, VC(H - Z) is given by Vi (S) +
(k — Vg (S) + 1), which equals k + 1, and so H - Z ¢ F. However, VC(G - Z) is
Va(S)+(k=Vu(S)+1) <Vu(S)+(k=Vu(S)+1)=k+1,andso G- Z € F.
Therefore, the t-parses G and H do not agree on all extensions.

4 VC-k Obstructions

Two ingredients suffice to compute obstruction sets for a lower ideal F. First,
we need to know a bound on the pathwidth (or treewidth) of the obstruction
set. Such a bound always exists, as the obstruction set is finite. Given such a
bound, we can compute all of the obstructions by restricting our search to a
fixed pathwidth. Second, we require a minimal finite-state algorithm for F that
operates on t-parses. An overview of how such an algorithm is used is given in
Section 5. Our approach for computing obstruction sets is derived from the two
theoretical approaches that appear in [FL89] and [LA91].

For vertex cover, we have both of these ingredients. A minimal finite-state
algorithm was described in the previous section, and a pathwidth bound is shown
later in this section.

In summary, computing the obstruction set for a vertex-cover family VC—k
is as follows:

input: e pathwidth ¢
e minimal finite-state algorithm for VC—£, that operates on t-parses
output: e obstructions of pathwidth ¢

The next two subsections show what value of ¢ is needed to get the complete
set of obstructions O(VC—k) for VC—k and why we can restrict our search to
connected graphs.

4.1 Pathwidth of VC-k Obstructions

As discussed, a bound is required on the pathwidth of the obstruction set. That
is, we need a result of the form if G € O(VC-k), then G is of pathwidth k' or
less. For vertex cover, such a bound is easily obtained. We first show that the
family VC-k is contained in the family PW-£. It follows from this that O(VC-k)
is contained in PW—(k + 1).

Theorem 10. The pathwidth of any member of VC-k is at most k.

Proof. For a given graph G of VC-k, let V' be a subset of of the vertices of size
k that covers all edges. Denote the order of G by n. Let the vertices V of G
be indexed by 1,2,...,n with the vertices V \ V' coming first. We claim that
{X;|1<i<n-—k} where X; =V'U{i} is a path decomposition of G.

Since every vertex is either in V' oris in V\V' we have J; .;«,,_, Xi = V. Let
(u,v) be an edge of G. Since V' is a vertex cover, without loss of generality assume
w € V'. If also v € V' then any subset X; contains both u and v. Otherwise, v
must be indexed between 1 and n — k and the subset X, contains both u and v.
Finally, note that for any 1 <i < j < n—k we have X;NX; = V' (interpolation
property satisfied). Thus, we have a path decomposition of pathwidth k.

The above theorem can not be improved, as the complete graph Kj,1 with
pathwidth k is a member of VC-k.

Corollary 11. If G € O(VC-k), then the pathwidth of G is at most k + 1.

Proof. For any edge (u,v) € E(G), let G' = G\ (u,v). Since G is an obstruction
for VC-k, G' € VC-k and hence VC(G') < k by Theorem 10. Let V' be a witness
vertex cover for G'. Now V = V' U {u} is a vertex cover for G of order at most
k + 1. Therefore, by Theorem 10 again, the pathwidth of G is at most k + 1.

4.2 Disconnected Obstructions

The number of obstructions we need to find can be reduced by some straight-

forward observations. The following are special cases of the more general results
found in [CD].

Remark 12. Let C; and C> be graphs. Then VC(C;UC:) = VC(Cy)
+ VC(Cy).

Lemma 13. If O = C; U Cy is an obstruction for VC-k, then Cy and Cs are
obstructions for VC—k' and VC—k", respectively, for some 0 < k', k" < k, with
E+kE' =k-1.

Hence we can restrict our attention to connected obstructions; any discon-
nected obstruction O of VC—k is a union of graphs from Uf;ol O(VC-i) such
that VC(O) = k + 1.

Example 1. Since K3 is an obstruction for VC-1, and K4 is an obstruction for
VC-2, the graph K3 U K4 is an obstruction for VC—4.

5 Results

The obstructions were computed using our VACS machinery (described in [CD]),
which allows us to compute for any ¢ all of the obstructions that have pathwidth
at most t. However, tractability problems arise as ¢ increases. As shown in the
preceding section, we need to use pathwidth k41 to obtain all of the obstructions
for VC—.

A brief description of the obstruction set computation is as follows. The
set of all t-parses can be viewed as a tree, in which the parent of a length n
t-parse G is the length n — 1 prefix of GG. The root of the tree is the empty
graph [(©),), ..., (®]- The minimality of the finite-state algorithm allows us
to compute a ‘pruning rule’ for the tree. When this is done, the tree becomes
finite, and the ¢-parses represented by the leaves form a set closely related to the
VC-Ek obstruction set. This set, in fact, contains the obstruction set for VC-k.

A summary of our obstruction set computations (using a SPARC-2) for vari-
ous VC-k families is shown in Table 1. The total graphs column shows the size
of the pruned tree described above. In the minimal graphs column, the number
of internal graphs plus obstructions is shown; that is, the leaves that are not
obstructions have not been counted. The growth rate of the tree can be seen to
be extremely high as k& (and hence the pathwidth ¢) increases.

Table 1. Summary of obstruction set computation for vertex cover.

& Elapsed || Minimal | Total Connected Total
time graphs | graphs || obstructions |obstructions

1|| 5 seconds 8 31 1 2

2|25 seconds 42 301 2 4

3|| 3 minutes 320 3,871 3 8

4| 4 hours 4,460 82,804 8 18

5| 6 days | 121,228 |3,195,445 31 56

Besides the single obstruction K5 for the trivial family VC-0, the connected
obstructions for VC-k, 1 < k < 5, are shown in Figs. 2-6. Some patterns become
apparent in this set of obstructions. One such easily-proven observation is as
follows.

Remark 15. For the family VC—k, both the complete graph K}, o and the cycle
Csk41 are obstructions.

6 Conclusions

In this paper, we have presented the minor-order obstruction sets for the graph
families VC—k, 1 < k < 5. To calculate these obstructions, a minimal finite-state
algorithm was developed. This algorithm was described and proven to be correct.

We are hopeful that this paper is the first in a succession of successful com-
putations of obstruction sets for the plethora of graph families that are lower
ideals in the minor order (e.g., k feedback vertex set and within-k-vertices of
planarity). The system used to compute the obstruction sets is constantly im-
proving, allowing us to reach higher pathwidths and more complicated problems.

Acknowledgement

The authors wish to thank Mike Fellows for introducing us to this exciting field
of study and Todd Wareham for comments on an earlier version of this paper.

References

[ACPS91] Stefan Arnborg, Derek G. Corneil, Andrzej Proskurowski, and Detlef Seese.

[ESTS87]

[FL89]

[GJT79]

[K1093]

[KT92]

[LA9I]

An algebraic theory of graph reduction. In Proceedings of the Fourth Work-
shop on Graph Grammars and Their Applications to Computer Science, vol-
ume 532, pp. 70-83. Lecture Notes in Computer Science, Springer-Verlag,
1991. To appear in Journal of the ACM.

Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12 (1991), pp. 308-340.
Hans L. Bodlaender. A linear time algorithm for finding tree-decompostions
of small treewidth. In Proc. 25th Annual ACM Symposium on Theory of
Computing. ACM Press, 1993.

Kevin Cattell and Michael J. Dinneen. VLSI Automated Compilation Sys-
tem — obstruction set computations (technical notes). In preparation.

Rod Downey and Michael R. Fellows. Parameterized computational feasibil-
ity. In P. Clote and J. Remmel, editors, Feasible Mathematics II. Birkhauser.
To appear.

J. Ellis, I. H. Sudborough, and J. Turner. Graph separation and search num-
ber. Report DCS-66-IR, Dept. of Computer Science, University of Victoria,
August 1987. To appear in Information and Computation.

Michael R. Fellows and Michael A. Langston. An analogue of the Myhill-
Nerode Theorem and its use in computing finite-basis characterizations. In
Proc. Symposium on Foundations of Computer Science (FOCS), pp. 520-
525, 1989.

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

Ton Kloks. Treewidth. Ph.D. dissertation, Dept. of Computer Science,
Utrecht University, Utrecht, the Netherlands, 1993.

Andras Kornai and Zsolt Tuza. Narrowness, pathwidth, and their application
in natural language processing. Discrete Applied Mathematics, 36 (1992),
pp. 87-92.

Jens Lagergren and Stefan Arnberg. Finding minimal forbidden minors using
a finite congruence. In Proceedings of the 18th International Colloquium on
Automata, Languages and Programming, volume 510, pp. 533-543. Springer-
Verlag, Lecture Notes in Computer Science, 1991.

[M5h90]

[Ros73]
[RS]

[RS85]

[Wim87]

Rolf H. Mohring. Graph problems releted to gate matrix layout and PLA
folding. In G. Tinhofer, E. Mayr, H. Noltemeier, and M. Syslo, editors,
Computational Graph Theory, pp. 17-51. Springer-Verlag, 1990.

Donald J. Rose. On simple characterizations of k-trees. Discrete Mathemat-
ics, 7 (1973), pp. 17-322.

Neil Robertson and Paul D. Seymour. Graph Minors. XVI. Wagner’s con-
jecture. To appear Journal of Combinatorial Theory, Series B.

Neil Robertson and Paul D. Seymour. Graph Minors — A Survey, In Surveys
in Combinatorics, volume 103, pp. 1563-171, Cambridge University Press,
1985.

T. V. Wimer. Linear algorithms on k-terminal graphs. Ph.D. dissertation,
Dept. of Computer Science, Clemson University, August 1987.

Co

K

ngog

Fig. 2. Connected obstructions for Vertex Cover 1.

Ky Cs

Fig. 3. Connected obstructions for Vertex Cover 2.

Fig. 4. Connected obstructions for Vertex Cover 3.

Fig. 5. Connected obstructions for Vertex Cover 4.

Cr

Ks

