

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショニ ろくの

A Simple Linear-Time Algorithm for Finding Path-Decompositions of Small Width

Kevin Cattell Michael J. Dinneen Michael R. Fellows

Department of Computer Science University of Victoria Victoria, B.C. Canada V8W 3P6

Information Processing Letters 57 (1996) 197-203

Outline

- Introduction
 - Motivation
 - History
- Preliminary Definitions
 - Boundaried graphs
 - Path-decompositions
 - Topological tree obstructions
- 3 Pathwidth Algorithm
 - Main result
 - Linear-time algorithm
 - Proof of correctness
 - Other results

ヨト イヨト ヨヨ のへの

Motivation History

Motivation

• Pathwidth is related to several VLSI layout problems:

- vertex separation
- gate matrix layout
- edge search number
- . . .
- Usefullness of bounded treewidth in:
 - study of graph minors (Robertson and Seymour)
 - input restrictions for many NP-complete problems
 - (fixed-parameter complexity)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Motivation History

History

- General problem(s) is NP-complete *Input:* Graph G, integer t *Question:* Is tree/path-width(G) ≤ t?
- Algorithmic development (fixed *t*):
 - *O*(*n*²) **nonconstructive** treewidth algorithm by Robertson and Seymour (1986)
 - O(n^{t+2}) treewidth algorithm due to Arnberg, Corneil and Proskurowski (1987)
 - O(n log n) treewidth algorithm due to Reed (1992)
 - $O(2^{t^2}n)$ treewidth algorithm due to Bodlaender (1993)
 - O(n log² n) pathwidth algorithm due to Ellis, Sudborough and Turner (1994)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Motivation History

History

 General problem(s) is NP-complete *Input:* Graph G, integer t *Question:* Is tree/path-width(G) ≤ t?

• Algorithmic development (fixed t):

- *O*(*n*²) nonconstructive treewidth algorithm by Robertson and Seymour (1986)
- O(n^{t+2}) treewidth algorithm due to Arnberg, Corneil and Proskurowski (1987)
- O(n log n) treewidth algorithm due to Reed (1992)
- $O(2^{t^2}n)$ treewidth algorithm due to Bodlaender (1993)
- O(n log² n) pathwidth algorithm due to Ellis, Sudborough and Turner (1994)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Boundaried graphs Path-decompositions Topological tree obstructions

Boundaried graphs

- A distinguished set of vertices labeled 1, 2, ..., k, is called the boundary of a (finite simple) graph.
- A boundary size k factorization of a graph G is two k-boundaried graphs A and B such that G = A ⊕ B.

Example

The \oplus operator on two 3-boundaried graphs *A* and *B* is illustrated below.

Linear-Time Path-Decomposition Algorithm

Boundaried graphs Path-decompositions Topological tree obstructions

Path-decompositions

Definition

A *path-decomposition* of a graph G = (V, E) is a sequence X_1, X_2, \ldots, X_r of subsets of V that satisfy the following:

$$\bigcirc \bigcup_{1\leq i\leq r} X_i=V,$$

(2) for every edge $(u, v) \in E$, there exists an X_i such that $u \in X_i$ and $v \in X_i$, and

3 for
$$1 \le i < j < k \le r$$
, $X_i \cap X_k \subseteq X_j$.

Definition

The *pathwidth of a path-decomposition* $X_1, X_2, ..., X_r$ is $\max_{1 \le i \le r} |X_i| - 1$. The *pathwidth of a graph G* is the minimum pathwidth over all path-decompositions of *G*.

Boundaried graphs Path-decompositions Topological tree obstructions

Path-decompositions

Definition

A *path-decomposition* of a graph G = (V, E) is a sequence X_1, X_2, \ldots, X_r of subsets of V that satisfy the following:

$$\bigcirc \bigcup_{1\leq i\leq r} X_i=V,$$

(2) for every edge $(u, v) \in E$, there exists an X_i such that $u \in X_i$ and $v \in X_i$, and

Definition

The *pathwidth of a path-decomposition* $X_1, X_2, ..., X_r$ is $\max_{1 \le i \le r} |X_i| - 1$. The *pathwidth of a graph G* is the minimum pathwidth over all path-decompositions of *G*.

Boundaried graphs Path-decompositions Topological tree obstructions

Graph embeddings

Definition

An *(homeomorphic) embedding* of a graph $G_1 = (V_1, E_1)$ in a graph $G_2 = (V_2, E_2)$ is an injection from vertices V_1 to V_2 such that the edges E_1 are mapped to disjoint paths of G_2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショニ ろくの

Boundaried graphs Path-decompositions Topological tree obstructions

Topological order

Definition

The set of homeomorphic embeddings between graphs gives a partial order, called the *topological order*.

Definition

A *lower ideal* \mathcal{J} in a partial order (\mathcal{U}, \geq) is a subset of \mathcal{U} such that if $X \in \mathcal{J}$ and $X \geq Y$ then $Y \in \mathcal{J}$. The *obstruction set* for \mathcal{J} is the set of minimal elements of $\mathcal{U} - \mathcal{J}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Boundaried graphs Path-decompositions Topological tree obstructions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Recursively generated tree obstructions

Some recursive rules for generating all topological tree obstructions of pathwidth *t*:

- The tree K_2 is the only obstruction of pathwidth 0.
- 2 If T_1 , T_2 and T_3 are any 3 tree obstructions for pathwidth t then the tree T consisting of a new degree 3 vertex attached to any vertex of T_1 , T_2 and T_3 is a tree obstruction for pathwidth t + 1.

Boundaried graphs Path-decompositions Topological tree obstructions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Embedding tree obstructions in binary trees.

This shows that the complete binary tree of height h(t) = 2t + 1and order $f(t) = 2^{2t+1} - 1$ has pathwidth greater than *t*.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Main result

Theorem

Let H be an arbitrary undirected graph, and let t be a positive integer. One of the following two statements must hold:

- The pathwidth of H is at most f(t) 1.
- P can be factored: H = A ⊕ B, where A and B are boundaried graphs with boundary size f(t), the pathwidth of A is greater than t and less than f(t).

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Proof idea of main result

- Assume we can embed a *guest tree* $B_{h(t)}$ in the *host graph* H then we know that the pathwidth of H is greater than t. (e.g. height $h(t) \ge \lg f(t)$)
- Refer to the vertices of B_{h(t)} as tokens, and call tokens placed (or unplaced) if they are (not) mapped to vertices of *H* in the current partial embedding.
 A vertex v of *H* is tokened if a token maps to v.
- Let *P*[*i*] denote the set of vertices of *H* that are tokened at time step *i*.

The sequence $P[0], P[1], \ldots, P[s]$ will describe either a path-decomposition of H or of a factor A.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Proof idea of main result

- Assume we can embed a *guest tree* B_{h(t)} in the *host graph* H then we know that the pathwidth of H is greater than t.
 (e.g. height h(t) ≥ lg f(t))
- Refer to the vertices of B_{h(t)} as tokens, and call tokens placed (or unplaced) if they are (not) mapped to vertices of *H* in the current partial embedding.
 A vertex *v* of *H* is tokened if a token maps to *v*.
- Let *P*[*i*] denote the set of vertices of *H* that are tokened at time step *i*.

The sequence $P[0], P[1], \ldots, P[s]$ will describe either a path-decomposition of H or of a factor A.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Proof idea of main result

- Assume we can embed a *guest tree* $B_{h(t)}$ in the *host graph* H then we know that the pathwidth of H is greater than t. (e.g. height $h(t) \ge \lg f(t)$)
- Refer to the vertices of B_{h(t)} as tokens, and call tokens placed (or unplaced) if they are (not) mapped to vertices of *H* in the current partial embedding.
 A vertex v of *H* is tokened if a token maps to v.
- Let *P*[*i*] denote the set of vertices of *H* that are tokened at time step *i*.

The sequence $P[0], P[1], \ldots, P[s]$ will describe either a path-decomposition of *H* or of a factor *A*.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Identifying tokens and tokened vertices

We recursively label the tokens of the guest binary tree by the following standard rules:

- The root token of $B_{h(t)}$ is labeled by the empty string λ .
- 2 The left child token and right child token of a height *h* parent token $P = b_1 b_2 \cdots b_h$ are labeled $P \cdot 1$ and $P \cdot 0$, respectively.

The token placement algorithm is described as follows.

- Initially consider that every vertex of *H* is colored blue.
- A vertex of *H* has its color changed to red when a token is placed on it, and stays red if the token is removed.
- Only blue vertices can be tokened, and so a vertex can only receive a token once.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Identifying tokens and tokened vertices

We recursively label the tokens of the guest binary tree by the following standard rules:

- The root token of $B_{h(t)}$ is labeled by the empty string λ .
- 2 The left child token and right child token of a height *h* parent token $P = b_1 b_2 \cdots b_h$ are labeled $P \cdot 1$ and $P \cdot 0$, respectively.
- The token placement algorithm is described as follows.
 - Initially consider that every vertex of H is colored blue.
 - A vertex of *H* has its color changed to red when a token is placed on it, and stays red if the token is removed.
 - Only blue vertices can be tokened, and so a vertex can only receive a token once.

Main result Linear-time algorithm Proof of correctness Other results

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Linear-time algorithm (grow part)

function GrowTokenTree

- 1 **if** root token λ is not placed on *H* **then** arbitrarily place λ on a blue vertex of *H* **endif**
- 2 **while** there is a vertex $u \in H$ with token T and blue neighbor v, and token T has an unplaced child $T \cdot b$ **do**
 - 2.1 place token $T \cdot b$ on v endwhile
- 3 return {tokened vertices of *H*}

Main result Linear-time algorithm Proof of correctness Other results

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Linear-time algorithm (main program)

program PathDecompositionOrSmallFatFactor

- 1 *i* ← 0
- 2 $P[i] \leftarrow call GrowTokenTree$
- 3 until |P[i]| = f(t) or *H* has no blue vertices repeat
 - 3.1 pick a token T with an unplaced child token
 - 3.2 remove T from H
 - 3.3 if *T* had one tokened child then

replace all tokens $T \cdot b \cdot S$ with $T \cdot S$

endif

- 3.4 $i \leftarrow i + 1$
- 3.5 $P[i] \leftarrow$ call GrowTokenTree enduntil

done

Main result Linear-time algorithm Proof of correctness Other results

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

▶ < ∃ >

ELE DQC

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

▶ < Ξ

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

< E

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

- 王

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

< E

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

▶ < Ξ

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

- K 🗉

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

< E

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

- 王

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

- 王

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

- 王

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

▶ < Ξ

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

< E

 $= \mathcal{O} Q \cap$

Illustration of algorithm execution

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Why the algorithm is correct (1 of 2)

Some properties of the algorithm:

- The root token λ of B_{h(t)} is placed at most once for each component of *H*. But can move in steps 3.2-3.3.
- GrowTokenTree only returns when either $B_{h(t)}$ is completely embedded or there are no blue neighbors for the unplaced tokens.
- The algorithm terminates since each iteration of step 3.2 a tokened red vertex becomes untokened. (This can happen at most *n* times.)

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Why the algorithm is correct (1 of 2)

Some properties of the algorithm:

- The root token λ of B_{h(t)} is placed at most once for each component of *H*. But can move in steps 3.2-3.3.
- GrowTokenTree only returns when either B_{h(t)} is completely embedded or there are no blue neighbors for the unplaced tokens.
- The algorithm terminates since each iteration of step 3.2 a tokened red vertex becomes untokened. (This can happen at most *n* times.)

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Why the algorithm is correct (1 of 2)

Some properties of the algorithm:

- The root token λ of B_{h(t)} is placed at most once for each component of *H*. But can move in steps 3.2-3.3.
- GrowTokenTree only returns when either B_{h(t)} is completely embedded or there are no blue neighbors for the unplaced tokens.
- The algorithm terminates since each iteration of step 3.2 a tokened red vertex becomes untokened. (This can happen at most *n* times.)

Main result Linear-time algorithm Proof of correctness Other results

・ロト ・ 同ト ・ ヨト ・ ヨ

Why the algorithm is correct (2 of 2)

Why $P[0], \ldots, P[s]$ is a path-decomposition of H or A?

- Since each vertex *u* is tokened at most once, the interpolation property holds.
- Let (u, v) be an edge and assume vertex u is tokened first.
 We only untoken a vertex when there is an unplaced child token step 32.

Thus, vertex v will be tokened as a child token of u. Therefore, there is some P[i] containing both u and v.

If all tokens of $B_{h(t)}$ are embedded into a subgraph of H we claim that A contains a subdivision of $B_{h(t)}$. Since GrowTokenTree only attaches pendant tokens to parent tokens we need only observe that the operation in (step 3.3) subdivides the edge between T and its parent.

Main result Linear-time algorithm Proof of correctness Other results

Why the algorithm is correct (2 of 2)

Why $P[0], \ldots, P[s]$ is a path-decomposition of H or A?

- Since each vertex *u* is tokened at most once, the interpolation property holds.
- Let (u, v) be an edge and assume vertex u is tokened first.
 We only untoken a vertex when there is an unplaced child token step 32.

Thus, vertex v will be tokened as a child token of u. Therefore, there is some P[i] containing both u and v.

If all tokens of $B_{h(t)}$ are embedded into a subgraph of H we claim that A contains a subdivision of $B_{h(t)}$. Since GrowTokenTree only attaches pendant tokens to parent tokens we need only observe that the operation in step 3.3 subdivides the edge between T and its parent.

ロトス得とくほとくほど

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

- If graph *H* has more than t · n edges then the pathwidth is greater than t (i.e. input has O(n) edges).
- All operations on $B_{h(t)}$ are constant time.
- In GrowTokenTree [step2] if we find an edge (u, v) where v is a red vertex, we can delete it.
 Also it is safe to remove (u, v) after [step 2.1].
 Therefore, across all calls, each edge of H needs to be considered at most once.
- The number of iterations in PathDecompositionOrSmallFatFactor is at most *n*.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

- If graph *H* has more than t · n edges then the pathwidth is greater than t (i.e. input has O(n) edges).
- All operations on $B_{h(t)}$ are constant time.
- In GrowTokenTree [step2] if we find an edge (u, v) where v is a red vertex, we can delete it.
 Also it is safe to remove (u, v) after [step 2.1].
 Therefore, across all calls, each edge of H needs to be considered at most once.
- The number of iterations in PathDecompositionOrSmallFatFactor is at most *n*.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

- If graph *H* has more than *t* · *n* edges then the pathwidth is greater than *t* (i.e. input has *O*(*n*) edges).
- All operations on $B_{h(t)}$ are constant time.
- In GrowTokenTree step2 if we find an edge (u, v) where v is a red vertex, we can delete it.
 Also it is safe to remove (u, v) after step2.1.
 Therefore, across all calls, each edge of H needs to be considered at most once.
- The number of iterations in PathDecompositionOrSmallFatFactor is at most *n*.

Main result Linear-time algorithm Proof of correctness Other results

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

- If graph *H* has more than *t* · *n* edges then the pathwidth is greater than *t* (i.e. input has *O*(*n*) edges).
- All operations on $B_{h(t)}$ are constant time.
- In GrowTokenTree step2 if we find an edge (u, v) where v is a red vertex, we can delete it.
 Also it is safe to remove (u, v) after step2.1.
 Therefore, across all calls, each edge of H needs to be considered at most once.
- The number of iterations in PathDecompositionOrSmallFatFactor is at most *n*.

Main result Linear-time algorithm Proof of correctness Other results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Other results

Corollary

Any subtree of the binary tree $B_{h(t)}$ that has pathwidth greater than t may be used in the pathwidth algorithm.

Corollary

Every graph with no minor isomorphic to forest F, where F is a minor of a complete binary tree B, has pathwidth at most c = |B| - 2.

Main result Linear-time algorithm Proof of correctness Other results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Other results

Corollary

Any subtree of the binary tree $B_{h(t)}$ that has pathwidth greater than t may be used in the pathwidth algorithm.

Corollary

Every graph with no minor isomorphic to forest F, where F is a minor of a complete binary tree B, has pathwidth at most c = |B| - 2.

This is basically the main result of Bienstock, Robertson, Seymour and Thomas (1991) that for any forest F there is a constant c, such that any graph not containing F as a minor has pathwidth at most c.

Main result Linear-time algorithm Proof of correctness Other results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Illustration of algorithm (revised)

Main result Linear-time algorithm Proof of correctness Other results

Illustration of algorithm (revised)

Summary

We have presented a simple linear-time algorithm (for each fixed constant *t*) that either establishes that the pathwidth of a graph is greater than *t*, or finds a path-decomposition of width at most $O(2^t)$.

- The width is equal to the number of tokens used. In practice this may be smaller than the complete binary tree.
- Can the width of the path-decomposition be bounded to the number of vertices in tree obstructions?
- There may be placement heuristics that can improve our performance on "typical" instances.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Summary

We have presented a simple linear-time algorithm (for each fixed constant *t*) that either establishes that the pathwidth of a graph is greater than *t*, or finds a path-decomposition of width at most $O(2^t)$.

- The width is equal to the number of tokens used. In practice this may be smaller than the complete binary tree.
- Can the width of the path-decomposition be bounded to the number of vertices in tree obstructions?
- There may be placement heuristics that can improve our performance on "typical" instances.

▲■ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Summary

We have presented a simple linear-time algorithm (for each fixed constant *t*) that either establishes that the pathwidth of a graph is greater than *t*, or finds a path-decomposition of width at most $O(2^t)$.

- The width is equal to the number of tokens used. In practice this may be smaller than the complete binary tree.
- Can the width of the path-decomposition be bounded to the number of vertices in tree obstructions?
- There may be placement heuristics that can improve our performance on "typical" instances.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ● ● ● ●

Summary

We have presented a simple linear-time algorithm (for each fixed constant *t*) that either establishes that the pathwidth of a graph is greater than *t*, or finds a path-decomposition of width at most $O(2^t)$.

- The width is equal to the number of tokens used. In practice this may be smaller than the complete binary tree.
- Can the width of the path-decomposition be bounded to the number of vertices in tree obstructions?
- There may be placement heuristics that can improve our performance on "typical" instances.

◇ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ▲ 国 ▶ ◇ ◇ ◇

Thank you!

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Vertex separation

Definition

A layout *L* of a graph G = (V, E) is a one to one mapping $L : V \rightarrow \{1, 2, ..., |V|\}.$

For a graph G = (V, E) we conveniently write a layout L as a permutation of the vertices $(v_1, v_2, ..., v_n)$. For any layout $L = (v_1, v_2, ..., v_n)$ of G let $V_i = \{v_j \mid j \le i \text{ and } (v_j, v_k) \in E \text{ for some } k > i\}$ for each $1 \le i \le n$.

Definition

The vertex separation of a graph *G* with respect to a layout *L* is $vs(L, G) = \max_{1 \le i \le |G|} \{|V_i|\}$. The vertex separation of a graph *G*, denoted by vs(G), is the minimum vs(L, G) over all layouts *L* of *G*.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows

Linear-Time Path-Decomposition Algorithm