
Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

A Simple Linear-Time Algorithm for Finding
Path-Decompostions of Small Width

Kevin Cattell Michael J. Dinneen Michael R. Fellows

Department of Computer Science
University of Victoria

Victoria, B.C. Canada V8W 3P6

Information Processing Letters 57 (1996) 197–203

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Outline

1 Introduction
Motivation
History

2 Preliminary Definitions
Boundaried graphs
Path-decompositions
Topological tree obstructions

3 Pathwidth Algorithm
Main result
Linear-time algorithm
Proof of correctness
Other results

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Motivation
History

Motivation

Pathwidth is related to several VLSI layout problems:
vertex separation link

gate matrix layout
edge search number
. . .

Usefullness of bounded treewidth in:
study of graph minors (Robertson and Seymour)
input restrictions for many NP-complete problems
(fixed-parameter complexity)

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Motivation
History

History

General problem(s) is NP-complete
Input: Graph G, integer t
Question: Is tree/path-width(G) ≤ t?

Algorithmic development (fixed t):
O(n2) nonconstructive treewidth algorithm by Robertson
and Seymour (1986)
O(nt+2) treewidth algorithm due to Arnberg, Corneil and
Proskurowski (1987)
O(n log n) treewidth algorithm due to Reed (1992)
O(2t2n) treewidth algorithm due to Bodlaender (1993)
O(n log2 n) pathwidth algorithm due to Ellis, Sudborough
and Turner (1994)

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Motivation
History

History

General problem(s) is NP-complete
Input: Graph G, integer t
Question: Is tree/path-width(G) ≤ t?

Algorithmic development (fixed t):
O(n2) nonconstructive treewidth algorithm by Robertson
and Seymour (1986)
O(nt+2) treewidth algorithm due to Arnberg, Corneil and
Proskurowski (1987)
O(n log n) treewidth algorithm due to Reed (1992)
O(2t2n) treewidth algorithm due to Bodlaender (1993)
O(n log2 n) pathwidth algorithm due to Ellis, Sudborough
and Turner (1994)

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Boundaried graphs
Path-decompositions
Topological tree obstructions

Boundaried graphs

A distinguished set of vertices labeled 1,2, . . . , k , is called
the boundary of a (finite simple) graph.
A boundary size k factorization of a graph G is two
k -boundaried graphs A and B such that G = A⊕ B.

Example
The ⊕ operator on two 3-boundaried graphs A and B is
illustrated below.

A B A ⊕ B

1

2

3

1

2

3

2

1

3

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Boundaried graphs
Path-decompositions
Topological tree obstructions

Path-decompositions

Definition
A path-decomposition of a graph G = (V ,E) is a sequence
X1,X2, . . . ,Xr of subsets of V that satisfy the following:

1
⋃
1≤i≤r Xi = V ,

2 for every edge (u, v) ∈ E , there exists an Xi such that
u ∈ Xi and v ∈ Xi , and

3 for 1 ≤ i < j < k ≤ r , Xi ∩ Xk ⊆ Xj .

Definition
The pathwidth of a path-decomposition X1,X2, . . . ,Xr is
max1≤i≤r |Xi |− 1. The pathwidth of a graph G is the minimum
pathwidth over all path-decompositions of G.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Boundaried graphs
Path-decompositions
Topological tree obstructions

Path-decompositions

Definition
A path-decomposition of a graph G = (V ,E) is a sequence
X1,X2, . . . ,Xr of subsets of V that satisfy the following:

1
⋃
1≤i≤r Xi = V ,

2 for every edge (u, v) ∈ E , there exists an Xi such that
u ∈ Xi and v ∈ Xi , and

3 for 1 ≤ i < j < k ≤ r , Xi ∩ Xk ⊆ Xj .

Definition
The pathwidth of a path-decomposition X1,X2, . . . ,Xr is
max1≤i≤r |Xi |− 1. The pathwidth of a graph G is the minimum
pathwidth over all path-decompositions of G.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Boundaried graphs
Path-decompositions
Topological tree obstructions

Graph embeddings

Definition
An (homeomorphic) embedding of a graph G1 = (V1,E1) in a
graph G2 = (V2,E2) is an injection from vertices V1 to V2 such
that the edges E1 are mapped to disjoint paths of G2.

Example

1

23

5 1 44

2 3

5

G1 G2

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Boundaried graphs
Path-decompositions
Topological tree obstructions

Topological order

Definition
The set of homeomorphic embeddings between graphs gives a
partial order, called the topological order.

Definition
A lower ideal J in a partial order (U ,≥) is a subset of U such
that if X ∈ J and X ≥ Y then Y ∈ J . The obstruction set for J
is the set of minimal elements of U − J .

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Boundaried graphs
Path-decompositions
Topological tree obstructions

Recursively generated tree obstructions

Some recursive rules for generating all topological tree
obstructions of pathwidth t :

1 The tree K2 is the only obstruction of pathwidth 0.
2 If T1,T2 and T3 are any 3 tree obstructions for pathwidth t
then the tree T consisting of a new degree 3 vertex
attached to any vertex of T1,T2 and T3 is a tree obstruction
for pathwidth t + 1.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Boundaried graphs
Path-decompositions
Topological tree obstructions

Embedding tree obstructions in binary trees.

λ

1

11

111

0

10

101

Tree-t

Tree-tTree-t

Tree-1
Tree-2

Tree-(t + 1)

This shows that the complete binary tree of height h(t) = 2t + 2
and order f (t) = 22t+2 − 1 has pathwidth greater than t .

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

mjd

mjd

mjd

mjd
1

mjd
1

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Main result

Theorem
Let H be an arbitrary undirected graph, and let t be a positive
integer. One of the following two statements must hold:

1 The pathwidth of H is at most f (t)− 1.
2 H can be factored: H = A⊕ B, where A and B are
boundaried graphs with boundary size f (t), the pathwidth
of A is greater than t and less than f (t).

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Proof idea of main result

Assume we can embed a guest tree Bh(t) in the host graph
H then we know that the pathwidth of H is greater than t .
(e.g. height h(t) ≥ lg f (t))
Refer to the vertices of Bh(t) as tokens, and call tokens
placed (or unplaced) if they are (not) mapped to vertices of
H in the current partial embedding.
A vertex v of H is tokened if a token maps to v .
Let P[i] denote the set of vertices of H that are tokened at
time step i .
The sequence P[0],P[1], . . . ,P[s] will describe either a
path-decomposition of H or of a factor A.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Proof idea of main result

Assume we can embed a guest tree Bh(t) in the host graph
H then we know that the pathwidth of H is greater than t .
(e.g. height h(t) ≥ lg f (t))
Refer to the vertices of Bh(t) as tokens, and call tokens
placed (or unplaced) if they are (not) mapped to vertices of
H in the current partial embedding.
A vertex v of H is tokened if a token maps to v .
Let P[i] denote the set of vertices of H that are tokened at
time step i .
The sequence P[0],P[1], . . . ,P[s] will describe either a
path-decomposition of H or of a factor A.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Proof idea of main result

Assume we can embed a guest tree Bh(t) in the host graph
H then we know that the pathwidth of H is greater than t .
(e.g. height h(t) ≥ lg f (t))
Refer to the vertices of Bh(t) as tokens, and call tokens
placed (or unplaced) if they are (not) mapped to vertices of
H in the current partial embedding.
A vertex v of H is tokened if a token maps to v .
Let P[i] denote the set of vertices of H that are tokened at
time step i .
The sequence P[0],P[1], . . . ,P[s] will describe either a
path-decomposition of H or of a factor A.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Identifying tokens and tokened vertices

We recursively label the tokens of the guest binary tree by the
following standard rules:

1 The root token of Bh(t) is labeled by the empty string λ.
2 The left child token and right child token of a height h
parent token P = b1b2 · · ·bh are labeled P · 1 and P · 0,
respectively.

The token placement algorithm is described as follows.
1 Initially consider that every vertex of H is colored blue.
2 A vertex of H has its color changed to red when a token is
placed on it, and stays red if the token is removed.

3 Only blue vertices can be tokened, and so a vertex can
only receive a token once.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Identifying tokens and tokened vertices

We recursively label the tokens of the guest binary tree by the
following standard rules:

1 The root token of Bh(t) is labeled by the empty string λ.
2 The left child token and right child token of a height h
parent token P = b1b2 · · ·bh are labeled P · 1 and P · 0,
respectively.

The token placement algorithm is described as follows.
1 Initially consider that every vertex of H is colored blue.
2 A vertex of H has its color changed to red when a token is
placed on it, and stays red if the token is removed.

3 Only blue vertices can be tokened, and so a vertex can
only receive a token once.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Linear-time algorithm (grow part)

function GrowTokenTree
1 if root token λ is not placed on H then

arbitrarily place λ on a blue vertex of H
endif

2 while there is a vertex u ∈ H with token T and blue neighbor v ,
and token T has an unplaced child T · b do

2.1 place token T · b on v
endwhile

3 return {tokened vertices of H}

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Linear-time algorithm (main program)

program PathDecompositionOrSmallFatFactor
1 i ← 0
2 P[i]← call GrowTokenTree
3 until |P[i]| = f (t) or H has no blue vertices repeat

3.1 pick a token T with an unplaced child token
3.2 remove T from H
3.3 if T had one tokened child then

replace all tokens T · b · S with T · S
endif

3.4 i ← i + 1
3.5 P[i]← call GrowTokenTree
enduntil
done

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ 0

1

11

111

01 011

110

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ 0

1

11

111

01 011

110

10
101

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ 0

1

11

111

01
011

110

10
101

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ 0

1

11

111

01
011

110

10 101

100

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ 0

1

11

111

01

110

10 101

100

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ 0

1

11

111

110

10 101

100

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ

1

11

111

110

10 101

100

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ

1

11

111

110

10 101

100

0

01

011

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ

1

11

111

110

10 101

100

0

01

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ

1

11

111

110

10 101

100

0

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ

1

11

111

110

10 101

100

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ

1

11

10

0 01

00

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm execution

Trying to embed a complete binary tree of height 3.

λ

1

11

10

0 01

00

111

101

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algorithm is correct (1 of 2)

Some properties of the algorithm:
The root token λ of Bh(t) is placed at most once for each
component of H. But can move in steps 3.2-3.3 .
GrowTokenTree only returns when either Bh(t) is
completely embedded or there are no blue neighbors for
the unplaced tokens.
The algorithm terminates since each iteration of step 3.2

a tokened red vertex becomes untokened.
(This can happen at most n times.)

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algorithm is correct (1 of 2)

Some properties of the algorithm:
The root token λ of Bh(t) is placed at most once for each
component of H. But can move in steps 3.2-3.3 .
GrowTokenTree only returns when either Bh(t) is
completely embedded or there are no blue neighbors for
the unplaced tokens.
The algorithm terminates since each iteration of step 3.2

a tokened red vertex becomes untokened.
(This can happen at most n times.)

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algorithm is correct (1 of 2)

Some properties of the algorithm:
The root token λ of Bh(t) is placed at most once for each
component of H. But can move in steps 3.2-3.3 .
GrowTokenTree only returns when either Bh(t) is
completely embedded or there are no blue neighbors for
the unplaced tokens.
The algorithm terminates since each iteration of step 3.2

a tokened red vertex becomes untokened.
(This can happen at most n times.)

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algorithm is correct (2 of 2)

Why P[0], . . . ,P[s] is a path-decomposition of H or A?
Since each vertex u is tokened at most once, the
interpolation property holds.
Let (u, v) be an edge and assume vertex u is tokened first.
We only untoken a vertex when there is an unplaced child
token step 3.2 .
Thus, vertex v will be tokened as a child token of u.
Therefore, there is some P[i] containing both u and v .

If all tokens of Bh(t) are embedded into a subgraph of H we
claim that A contains a subdivision of Bh(t).
Since GrowTokenTree only attaches pendant tokens to parent
tokens we need only observe that the operation in step 3.3

subdivides the edge between T and its parent.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algorithm is correct (2 of 2)

Why P[0], . . . ,P[s] is a path-decomposition of H or A?
Since each vertex u is tokened at most once, the
interpolation property holds.
Let (u, v) be an edge and assume vertex u is tokened first.
We only untoken a vertex when there is an unplaced child
token step 3.2 .
Thus, vertex v will be tokened as a child token of u.
Therefore, there is some P[i] containing both u and v .

If all tokens of Bh(t) are embedded into a subgraph of H we
claim that A contains a subdivision of Bh(t).
Since GrowTokenTree only attaches pendant tokens to parent
tokens we need only observe that the operation in step 3.3

subdivides the edge between T and its parent.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algoritm runs in linear time

If graph H has more than t · n edges then the pathwidth is
greater than t (i.e. input has O(n) edges).
All operations on Bh(t) are constant time.
In GrowTokenTree step 2 if we find an edge (u, v) where v
is a red vertex, we can delete it.
Also it is safe to remove (u, v) after step 2.1 .
Therefore, across all calls, each edge of H needs to be
considered at most once.
The number of iterations in PathDecompositionOrSmallFatFactor is at
most n.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algoritm runs in linear time

If graph H has more than t · n edges then the pathwidth is
greater than t (i.e. input has O(n) edges).
All operations on Bh(t) are constant time.
In GrowTokenTree step 2 if we find an edge (u, v) where v
is a red vertex, we can delete it.
Also it is safe to remove (u, v) after step 2.1 .
Therefore, across all calls, each edge of H needs to be
considered at most once.
The number of iterations in PathDecompositionOrSmallFatFactor is at
most n.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algoritm runs in linear time

If graph H has more than t · n edges then the pathwidth is
greater than t (i.e. input has O(n) edges).
All operations on Bh(t) are constant time.
In GrowTokenTree step 2 if we find an edge (u, v) where v
is a red vertex, we can delete it.
Also it is safe to remove (u, v) after step 2.1 .
Therefore, across all calls, each edge of H needs to be
considered at most once.
The number of iterations in PathDecompositionOrSmallFatFactor is at
most n.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Why the algoritm runs in linear time

If graph H has more than t · n edges then the pathwidth is
greater than t (i.e. input has O(n) edges).
All operations on Bh(t) are constant time.
In GrowTokenTree step 2 if we find an edge (u, v) where v
is a red vertex, we can delete it.
Also it is safe to remove (u, v) after step 2.1 .
Therefore, across all calls, each edge of H needs to be
considered at most once.
The number of iterations in PathDecompositionOrSmallFatFactor is at
most n.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Other results

Corollary
Any subtree of the binary tree Bh(t) that has pathwidth greater
than t may be used in the pathwidth algorithm.

Corollary
Every graph with no minor isomorphic to forest F , where F is a
minor of a complete binary tree B, has pathwidth at most
c = |B|− 2.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Other results

Corollary
Any subtree of the binary tree Bh(t) that has pathwidth greater
than t may be used in the pathwidth algorithm.

Corollary
Every graph with no minor isomorphic to forest F , where F is a
minor of a complete binary tree B, has pathwidth at most
c = |B|− 2.

This is basically the main result of Bienstock, Robertson, Seymour and
Thomas (1991) that for any forest F there is a constant c, such that any
graph not containing F as a minor has pathwidth at most c.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm (revised)

Trying to directly embed the Tree-1 obstruction.

After 3.5

λ 0

1

11

ba

c

d

h ig

fe

P [1] = {a, b, d, e, f, h}

111

10

After 3.3, T = 1

λ 0

1

11

ba

c

d

h ig

fe

λ 0

1

10

101

After step 2,

ba

c

d

h ig

fe

P [0] = {a, b, c, d, e}

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Main result
Linear-time algorithm
Proof of correctness
Other results

Illustration of algorithm (revised)

Trying to directly embed the Tree-1 obstruction.
λ 0ba

c

d

h ig

fe

11

T = 1, after 3.5

P [4] = {a, b, g, h, i}

1

10

T = 1, after 3.5

λ 0

1

ba

c

d

h ig

fe

11

111

P [3] = {a, b, e, h, i}

T = 10, after 3.5

λ 0

1

11

ba

c

d

h ig

fe

111

P [2] = {a, b, d, e, h}

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Summary

We have presented a simple linear-time algorithm (for each
fixed constant t) that either establishes that the pathwidth of a
graph is greater than t , or finds a path-decomposition of width
at most O(2t).

The width is equal to the number of tokens used. In
practice this may be smaller than the complete binary tree.
Can the width of the path-decomposition be bounded to
the number of vertices in tree obstructions?
There may be placement heuristics that can improve our
performance on “typical” instances.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Summary

We have presented a simple linear-time algorithm (for each
fixed constant t) that either establishes that the pathwidth of a
graph is greater than t , or finds a path-decomposition of width
at most O(2t).

The width is equal to the number of tokens used. In
practice this may be smaller than the complete binary tree.
Can the width of the path-decomposition be bounded to
the number of vertices in tree obstructions?
There may be placement heuristics that can improve our
performance on “typical” instances.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Summary

We have presented a simple linear-time algorithm (for each
fixed constant t) that either establishes that the pathwidth of a
graph is greater than t , or finds a path-decomposition of width
at most O(2t).

The width is equal to the number of tokens used. In
practice this may be smaller than the complete binary tree.
Can the width of the path-decomposition be bounded to
the number of vertices in tree obstructions?
There may be placement heuristics that can improve our
performance on “typical” instances.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Summary

We have presented a simple linear-time algorithm (for each
fixed constant t) that either establishes that the pathwidth of a
graph is greater than t , or finds a path-decomposition of width
at most O(2t).

The width is equal to the number of tokens used. In
practice this may be smaller than the complete binary tree.
Can the width of the path-decomposition be bounded to
the number of vertices in tree obstructions?
There may be placement heuristics that can improve our
performance on “typical” instances.

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Introduction
Preliminary Definitions
Pathwidth Algorithm

Summary

Thank you!

Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

Vertex separation

Definition
A layout L of a graph G = (V ,E) is a one to one mapping
L : V → {1,2, . . . , |V |}.

For a graph G = (V ,E) we conveniently write a layout L as a
permutation of the vertices (v1, v2, . . . , vn).
For any layout L = (v1, v2, . . . , vn) of G let

Vi = {vj | j ≤ i and (vj , vk) ∈ E for some k > i}
for each 1 ≤ i ≤ n.
Definition
The vertex separation of a graph G with respect to a layout L is
vs(L,G) = max1≤i≤|G|{|Vi |}.
The vertex separation of a graph G, denoted by vs(G), is the
minimum vs(L,G) over all layouts L of G.
Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm

	Introduction
	Motivation
	History

	Preliminary Definitions
	Boundaried graphs
	Path-decompositions
	Topological tree obstructions

	Pathwidth Algorithm
	Main result
	Linear-time algorithm
	Proof of correctness
	Other results

	Summary

