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Abstract

The Graph Minor Theorem of Robertson and Seymour establishes nonconstructively that many
natural graph properties are characterized by a �nite set of forbidden substructures, the obstruc-
tions for the property. We prove several general theorems regarding the computation of obstruc-
tion sets from other information about a family of graphs. The methods can be adapted to other
partial orders on graphs, such as the immersion and topological orders. The algorithms are in
some cases practical and have been implemented. Two new technical ideas are introduced. The
�rst is a method of computing a stopping signal for search spaces of increasing pathwidth. This
allows obstruction sets to be computed without the necessity of a prior bound on maximum
obstruction width. The second idea is that of a second order congruence for a graph property.
This is an equivalence relation de�ned on �nite sets of graphs that generalizes the recognizability
congruence that is de�ned on single graphs. It is shown that the obstructions for a graph ideal
can be e�ectively computed from an oracle for the canonical second-order congruence for the
ideal and a membership oracle for the ideal. It is shown that the obstruction set for a union
F=F1 ∪F2 of minor ideals can be computed from the obstruction sets for F1 and F2 if there
is at least one tree that does not belong to the intersection of F1 and F2. As a corollary, it is
shown that the set of intertwines of an arbitrary graph and a tree are e�ectively computable.
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1. Introduction

The celebrated Graph Minor Theorem (GMT) of Robertson and Seymour [3, 23–26]
proves the existence of �nite obstruction sets for arbitrary minor order ideals, of which
there are many natural examples. Planar graphs are famously an ideal for which the
obstructions are K3;3 and K5 (Kuratowski’s Theorem). The proof of the GMT is not
e�ective, in the sense that knowing only a decision procedure for a lower ideal F does
not provide enough information to be able to compute the obstruction set for F [13].
For this reason the Graph Minor Theorem is commonly regarded as “nonconstructive”
since usually we know at least a decision algorithm for a natural ideal.
The purpose of this paper is to explore the question:

What combinations of information about an ideal F allow us to e�ectively
compute the obstruction set for F?

We are currently far from having a satisfactory account of this issue. Some of
the open problems that remain in this area are both elegant and apparently di�cult.
Previous work can be summarized as follows.
(1) Fellows and Langston proved in [13] that there is no algorithm that will, provided

with only a decision oracle for an ideal F, compute the set of obstructions O for F.
(2) Fellows and Langston proved in [14] that if we have access to the three pieces

of information:
(i) A decision algorithm for F.
(ii) A bound B on the maximum treewidth (or pathwidth) of the F obstructions.
(iii) A decision algorithm for a �nite index congruence that re�nes the canonical

congruence for F on t-boundaried graphs (for t=1; · · · ; B).
Then O can be computed. (The full argument is given here for the �rst time.)
A curious aspect of this result is that given (i) and (iii) as oracles (which is the

assumption of the theorem), then it is impossible to calculate in advance when the
procedure to calculate O will terminate, although the proof guarantees that the procedure
will eventually halt, having correctly computed O. In other words, the stopping time
of the algorithm is nonconstructive. The proof employs the GMT for �nitely edge-
colored graphs to establish that the algorithm will halt, and this is the source of the
nonconstructivity concerning the stopping time.
(3) Lagergren and Arnborg [18, 19] showed that if we are given (i)–(iii) as above,

and are additionally given:
(iv) A computable functionf(t) that bounds the index of the �nite congruences of (iii).
Then it is possible to e�ectively compute in advance a stopping time for the above

procedure and to remove the dependence of the termination argument on the GMT.
This also means that given (i)–(iv) we can e�ectively compute a bound on the size of
the largest obstruction, and from this information could compute O by exhaustive
search.
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(4) An important class of lower ideals for which we have the pieces of information
(i), (iii) and (iv) are those that we know how to describe in Monadic Second Order
(MSO) logic. In other words, if we are given the information:
(v) An MSO expression � that describes the graphs of the lower ideal F.
Then from this we can e�ectively derive (i), (iii) and (iv). This result is mainly due

to Courcelle [8].
(5) Other work on the systematic computation of obstruction sets has appeared in

[2, 5, 6, 16, 17, 22]. Some of these results support practical implementations that have
led to some signi�cant mechanical or partly-mechanical proofs of new and nontrivial
forbidden substructure theorems.
There has been a considerable amount of overlapping work in this area which is

sometimes confusing to sort through. The above review is framed from the point of
view that we will develop further here. In particular, we are concerned with identifying
those combinations of abstract information about a lower ideal F that either do or do
not provide enough information to allow us to compute the obstruction set O for F. It
is important to be attentive to exactly how the information about F is presented. For
example, in our Theorem 1 we prove the result (1) above that (i)–(iii) are enough to
e�ectively compute O. In this theorem, (i) and (iii) are hypothesized to be available
only via oracles, i.e., (iii) is not assumed to be concretely available via a �nite state
machine or dynamic programming algorithm.
Part of our purpose in this paper is to articulate this area of research, which we

believe to be an appealing blend of combinatorics and recursion theory. There are
clear models of both positive and negative results in this area, with much that remains
unresolved. For example, in view of (4), it is natural to ask whether (v) alone is
su�cient information about F to allow us to compute O. Ideally, we should be able
to settle this one way or the other, either by proving a positive result along the lines
of (2) – perhaps using the new techniques introduced in this paper – or by proving a
negative result along the lines of (1).
One of the main ingredients of the positive result (2) is a collection of �nite-index

congruences. There are several notions of congruence in the literature of this area that
in many situations are essentially equivalent or e�ectively interchangeable. The basic
notion that we use is provided by the following de�nitions.

De�nition. A t-boundaried graph G=(V; E; B; f) is an ordinary graph G=(V; E)
together with
(1) a distinguished subset of the vertex set B⊆V of cardinality t, the boundary of

G, and
(2) a bijection f :B→{1; : : : ; t}.
In some situations, we will forget the boundary. (For example, if G is a boundaried

graph and F is a family of ordinary graphs, we may write G ∈F, meaning by this that
G belongs to F when the boundary of G is ignored.) A fundamental operation (de-
noted ⊕) on t-boundaried graphs is that of gluing them together along their boundaries
by identifying like-labeled vertices.
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De�nition. If G=(V; E; B; f) and G′=(V ′; E′; B′; f′) are t-boundaried graphs, then
G⊕G′ denotes the t-boundaried graph obtained from the disjoint union of the graphs
G=(V; E) and G′=(V ′; E′) by identifying each vertex u∈B with the vertex v∈B′
for which f(u)=f′(v).

In the sequel, we will consider both large and small universes of t-boundaried graphs.
Many of the main issues concern the large universe, which is easier to think about.

De�nition. The large universe Ut
large is the set of all t-boundaried graphs.

De�nition. If F is a family of graphs then the large canonical congruence for F is
de�ned for t-boundaried graphs X; Y ∈Ut

large by X ≈F Y if and only if

∀Z ∈Ut
large : (X ⊕Z ∈F)⇔ (Y ⊕Z ∈F)

The following de�nition is from Abrahamson and Fellows [1].

De�nition. A graph family F is fully cutset regular if for every t, the large canonical
congruence on Ut

large has �nite index.

Courcelle and Lagergren proved in [9] that this notion is equivalent to that of recog-
nizable graph families introduced in [8]. This must be regarded as an extremely pretty
idea, as it captures an essential feature of the complexity of the “information ow”
across a bounded-size cutset necessary for determining membership in a graph family.
We will refer to the large canonical congruence for a graph family F as the canonical
recognizability congruence for F.
It follows from the Graph Minor Theorem and Courcelle’s Theorem on MSO graph

properties [8] that every minor order lower ideal is recognizable. It is interesting that
only a few natural graph families are presently known not to be recognizable [1, 4, 11].
The positive results of [14] (our Theorem A) apply to (many if not most) natural

lower ideals. “Normally” we have the information (i) about F. Note that since we
are concerned here with the issue of whether O can be recursively computed, any
algorithm that correctly decides membership in F will serve for (i), i.e., the e�ciency
of the algorithm is not an issue. It is also the case that “usually” we can �nd (iii)
constructively. The exceptions include the ideals associated with the problems KNOTLESS
EMBEDDING and PLANAR DIAMETER IMPROVEMENT described in [10].
By far the most problematic aspect of Theorem A is the bound (ii) on the maxi-

mum obstruction treewidth or pathwidth. For example, although a congruence for torus
embedding is relatively easy to produce, a bound on the maximum obstruction width
is much more di�cult, although a (very large) bound is now known. Tight bounds
seem to be beyond current proof techniques in most situations. Thus it is natural to
ask whether the information (ii) is really needed for obstruction set computations.
The basic computational machinery that we develop here shows how we can improve

on the ideas of Theorem A and e�ectively compute O without having to know a prior
bound on the maximum obstruction width. In this approach we use a second order
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congruence for a graph family – a �nite-index equivalence relation de�ned on �nite
sets of boundaried graphs. Instead of having to prove a prior bound on obstruction
width, it is necessary that this second-order congruence have an “eventual termination”
property. Since termination can be established computationally, we believe this may be
a signi�cant breakthrough for implementations of obstruction set theorem-provers.

1.1. The basic approach

In [14] (our Theorem A) the computation procedure uses (i) and (iii) to compute, for
successive width bounds t, the set Ot of obstructions for F that have width (pathwidth
or treewidth, either of these can be used) at most t. The main argument shows that for
each �xed t this is a �nite procedure. The role of hypothesis (ii) is simply to supply
a bound on the maximum width t that needs to be considered.
Here we extend this procedure by computing Ot for successively larger t, and tackle

the question: “Is O=Ot?” (i.e., Can we stop now?) computationally. We consider two
di�erent reasons for which the answer to the question “Can we stop now?” might be, “No”:
(1) A small counterexample (to O=Ot) is an element of O−Ot of width less than

some known recursive function f(t).
(2) A large counterexample is one whose width is more than f(t).
Our computational strategy is based on the fact that large counterexamples can be

easier to detect. For a particular recursive f(t), we can determine whether there is a
small counterexample to O=Ot by simply computing Ot

′
for t′= t + 1; : : : ; f(t), and

checking that no new obstructions are found in these widths. To determine whether
there is a large counterexample we compute an alarm function � :N→{0; 1}. We
interpret �=1 as a signal that we cannot stop at width t because there is (or may
be) a counterexample. What we would like to have is an alarm function that simply
determines whether there is a counterexample of width more than f(t). But even this
might not be possible, and so we relax our requirements. The hypothesis we employ
instead of (ii) is that we can compute an alarm function � that is:
(a) reliable: if there is a counterexample of width more than f(t) then �(f(t))= 1,

and
(b) eventually quiescent: there is constant t0 depending only on F such that ∀t¿t0,

�(t)= 0.
These weaker requirements allow for one-sided errors in answering the “t-stopping

question” (with errors on the side of continuing the search), while insuring that only
�nitely many stages of such “false alarms” will be possible. This method is codi�ed
in Theorem B.
Theorem C provides a second general computational engine based on an alarm pro-

vided by a terminating second-order congruence (explained in the next section). This
is in some sense a specialization of Theorem B. The naturality of the notion of a ter-
minating second-order congruence is established by our Theorem D: If we have access
to an oracle for the canonical second-order recognizability congruence for an ideal F
and an oracle for membership in F, then we can compute the obstruction set for F.
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We describe a natural second order congruence for the problem of computing the
obstruction set for a union of ideals for which the obstructions are known, and show
that this is a terminating congruence if at least one of the constituent ideals excludes a
tree. As a corollary, we show that it is possible to e�ectively compute the topological
intertwines of an arbitrary graph and a tree.
The main signi�cance of Theorems B and C is in the new general techniques for

obstruction set computation that we introduce. In particular, the notion of a width
stopping signal seems to be of importance not only in the study of recursive aspects
of the GMT, but also for practical implementations of obstruction set theorem provers.
This area of algorithmic graph theory has reached a depth where it is no longer

possible for a paper to be entirely self-contained. We assume that the reader is familiar
with the results of [8, 1] and the basics of the theory of graph minors and well-
quasiordering [12, 21, 24].
The plan of the paper is as follows. In the next section we deal with most of the

preliminaries. In Section 3 we prove Theorem A. In Section 4 we prove Theorems B
and C. In Section 5 we prove that the canonical second-order recognizability congru-
ence terminates, Theorem D. In Section 6 we address the problem of computing the
obstructions for unions and intertwines. In the �nal section we summarize and discuss
some open problems.

2. Preliminaries

All of our discussion concerns �nite simple graphs. A graph H is a minor of a graph
G if a graph isomorphic to H can be obtained from G by a sequence of operations
chosen from (i) delete a vertex, (ii) delete an edge, (iii) contract an edge, removing
any multiple edges or loops that form. We write G¿m H to denote the minor order.
The topological order is de�ned G¿top H if and only if G contains a subgraph

H ′ that is isomorphic to a subdivision of H , where a subdivision of a graph H is
any graph that can be obtained from H by replacing edges by vertex disjoint paths.
The topological order can be equivalently de�ned by using the de�nition of the minor
order, only restricting operation (iii) to edges where at least one vertex has degree 2.
We may use the notation 6 for simplicity where it is clear which order is under

discussion. An ideal J in a partial order (U;¿) is a subset of U such that if X ∈J
and X¿Y then Y ∈J. The obstruction set for J is the set of minimal elements of
U−J.
If ∼ and ≈ are equivalence relations on a set U, we say that ∼ re�nes ≈ if

∀x; y∈U : x∼y⇒ x≈y

We say that ∼ has �nite index on U if there are a �nite number of equivalence
classes. The equivalence class of x with respect to ∼ is denoted [x]∼, or perhaps just
[x] where the equivalence relation is clear.
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De�nition. A tree-decomposition of a graph G=(V; E) is a tree T together with a
collection of subsets Tx of V indexed by the vertices x of T that satis�es:
1. (Covering) For every edge uv of G there is some x such that {u; v}⊆Tx.
2. (Interpolation) If y is a vertex on the unique path in T from x to z then

Tx ∩Tz ⊆Ty.

The width of a tree decomposition is the maximum of |Tx|−1 taken over the vertices
x of the tree T of the decomposition. A graph G has treewidth at most k if there is a
tree decomposition of G of width at most k. Path-decompositions and pathwidth are
de�ned by restricting the tree T to be simply a path. The pathwidth of a graph G will
be denoted pw(G).
There are several universes of boundaried graphs that we work with in this theory.

The large universe has been de�ned in Section 1.

De�nition. The small treewidth universe Ut
tree is the set of all t-boundaried graphs

having a tree-decomposition of width t − 1 for which the set of boundary vertices is
the set of vertices indexed by the root of the tree. The small pathwidth universe Ut

path
is the set of all t-boundaried graphs having a path-decomposition of width t − 1 for
which the set of boundary vertices is the last set of the decomposition.

We will write Ut
small if it is a matter of indi�erence whether we mean Ut

tree or U
t
path.

The following easy lemma is left to the reader.

Lemma 2.1. If A and B are t-boundaried graphs in Ut
small then A⊕B has width less

than or equal to t.

We extend the minor and topological orders to t-boundaried graphs by requiring that
the boundary be held �xed in the operations de�ning the orders, and use the notation
6m and 6top to denote the boundaried orders (the context will make clear whether
the graphs have boundaries or not). If A∈Ut

large, int(A) denotes the subgraph of A
induced by the non-boundary vertices of A.

De�nition. The small canonical congruence for F is de�ned for t-boundaried graphs
X; Y ∈Ut

small by X ∼FY if and only if

∀Z ∈Ut
small : (X ⊕Z ∈F)⇔ (Y ⊕Z ∈F):

(Note that there are two avors, one for pathwidth and one for treewidth.)

Note that both ≈F and ∼F are de�ned on Ut
small. Trivially, ≈F re�nes ∼F on the

small universe, but the two equivalence relations might not coincide. Courcelle and
Lagergren have shown that on Ut

tree the large canonical congruence has �nite index if
and only if the small canonical congruence has �nite index [9].
We will make essential use of yet another kind of �niteness property that is exhibited

by graph ideals. To put this notion in a familiar context, suppose that L⊆�∗ is a formal
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language. Then the canonical (Myhill-Nerode) congruence for L is de�ned: x≈L y if
and only if ∀z ∈�∗ : [(xz ∈L)⇔ (yz ∈L)]. A test set for L is a set of words T ⊂�∗
such that if we de�ne x∼T y if and only if ∀t ∈T : [(xt ∈L)⇔ (yt ∈L)] then we get
x∼T y if and only if x≈L y. A language is regular if and only if it has a �nite test
set.
Now suppose F is an arbitrary family of graphs. A t-concrete test set for F is a

set Tt ⊆Ut
large such that ∀X; Y ∈Ut

large we have X ≈F Y if and only if

∀T ∈Tt : [(X ⊕T ∈F)⇔ (Y ⊕T ∈F)]:
Note that each concrete test graph T is used to de�ne a predicate.
A t-abstract test set for F is a set of predicates Pt such that the equivalence

relation de�ned on Ut
large by

X ∼Y if and only if ∀P ∈Pt P(X )↔P(Y )
is a re�nement of the canonical second-order congruence.

De�nition. The canonical second order congruence for an ideal F (for convenience
also denoted ≈F) is de�ned on �nite sets of t-boundaried graphs in Ut

large by: if
S1; S2⊆Ut

large then S1≈F S2 if and only if

∀Z ∈Ut
large : (∃X1 ∈ S1 :X1⊕Z 6∈F)⇔ (∃X2 ∈ S2 :X2⊕Z 6∈F):

De�nition. A (non-canonical) second-order congruence for F is an equivalence rela-
tion ∼ de�ned on �nite subsets of Ut

large for which S1∼ S2 implies S1≈F S2.
Let A∈Ut

large. We will use the notation S(A) to denote all the t-boundaried graphs
properly below A in the boundaried minor order.

De�nition. A second-order congruence ∼ for an ideal F is called terminating if it
satis�es the condition: ∃t0 such that ∀t¿t0, if A∈Ut

path such that: (1) pw(A)¿t0, and
(2) |int(A)|¿t0, then {A}∼ S(A).

In Section 5 we will show that the canonical second-order congruence for a lower
ideal F is terminating.

3. The basic computational engine

In this section we prove the basic positive result on obstruction set computation for a
�xed bound on the width of the search space. The proof was sketched in the extended
abstract [14].

Theorem A. Suppose that F is an ideal in the minor order of �nite graphs and that
we have the following three pieces of information about F:
(1) An algorithm to decide membership in F (of any time complexity).
(2) A bound B on the maximum treewidth of the obstructions for F.
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(3) For t=1; : : : ; B+ 1 a decision algorithm for a �nite index right congruence ∼
on t-boundaried graphs that re�ne the small canonical congruence for F. Then we
can e�ectively compute the obstruction set O for F.

Proof. The algorithm is outlined as follows. For t=1; : : : ; B + 1 we generate in a
systematic way the t-boundaried graphs of Ut

tree until a certain stop signal is detected.
At this point, for a given t, we will have generated a �nite set of graphs Gt . Of
particular interest among these are the graphs Mt ⊆Gt that are minimal with respect to
a certain partial order 6 on t-boundaried graphs. We will prove that O is a subset of

M=
B+1⋃

t=1
Mt

considering the graphs of M with the boundaries forgotten.
There are three things to be clari�ed:
(1) how the graphs of the small universe are generated,
(2) the search ordering 6, and
(3) the nature of the stop signal for width t.
(1) The order of generation of Ut

tree.
Suppose X is a t-boundaried graph, X ∈Ut

tree. By the size of X we refer to the
number of nodes in a smallest possible indexing tree for a tree decomposition of X .
For a given t, we generate the t-boundaried graphs of Ut

tree in order of increasing size.
By the jth generation we refer to all of those graphs of size j in this process.
(2) The search ordering 6.
To de�ne 6, we �rst extend the minor ordering of ordinary graphs to t-boundaried

graphs in the natural way by holding the boundary �xed. In other words, the boundaried
minor order is de�ned by the same local operations as the minor order, except that we
are not allowed to delete boundary vertices or to contract edges between two boundary
vertices. This can be easily shown to be a wqo on Ut

large by using the Graph Minor
Theorem for edge-colored graphs. Let 6m denote the minor order on ordinary graphs
and let 6@m denote the boundaried minor order.
For X; Y ∈Ut

tree de�ne X6Y if and only if X6@m Y and X ∼Y . This is a wqo since
there are only �nitely many equivalence classes of ∼ on Ut

tree.
(3) The stop signal.
The graphs of Ut

tree are generated by size, one generation at a time (where the jth
generation consists of all those of size j). We say that there is nothing new at time j
if none of the t-boundaried graphs of the jth generation are minimal with respect to
the search order 6.
A stop signal is detected at time 2j if there is nothing new at time i for i=j; : : : ;

2j − 1.
We have now completely described the algorithm. For t=1; : : : ; B + 1 we generate

the t-boundaried graphs in the manner described until a stop signal is detected. We
form the set M and output the list of elements of M (with boundaries forgotten) that
are obstructions for F. Note that having a decision algorithm for F is su�cient to
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determine if any particular graph H is an obstruction, just by checking that H 6∈F
while each minor of H is in F. This same procedure and the decision algorithm for
∼ allow us to compute whether it is time to stop.
The correctness of the algorithm is established by the following claims.

Claim 1. For each value of t a stop signal is eventually detected.

This follows immediately from the fact that 6 is a wqo on Ut
tree and therefore there

are only a �nite number of minimal elements.

Claim 2. Suppose that for a given t a stop signal is detected at time 2j. Then no
obstruction for F that can be parsed with the t-boundaried set of operators has size
greater than 2j.

If T is rooted tree, then by a rooted subtree T ′ of T we mean a subtree that is
generated by some vertex r of T (the root of T ′), together with all of the vertices
descended from r in T . For t-boundaried graphs X and Y , we say that X is a pre�x
of Y if, in a parse tree T for Y; X is parsed by a rooted subtree T ′ of T . To denote
that X is a pre�x of Y we write X≺Y .
Now suppose that T is a parse tree of minimum size for a counterexample H to

Claim 2. Since all of the operators in the standard set are either binary or unary, there
must be a pre�x H ′ of H of size at least j. Since there is nothing new during the
times when H ′ would have been generated, Claim 2 follows from:

Claim 3. A pre�x of a graph that is minimal with respect to 6 must also be minimal.

If X is a pre�x of Y and X is not minimal then X ¿@m X ′ with X 6=X ′ and X ∼X ′.
Since ∼ is a right congruence Y ∼Y ′ where Y ′ is obtained from Y by substituting a
parse tree for X ′ for the subtree that parses X in a parse tree for Y . Since X ′ is a
proper boundaried minor of X; Y ′ is a proper boundaried minor of Y . This implies
that Y is not minimal with respect to 6.

Claim 4. If X ∈O then for some t6B+ 1; X ∈Mt .

Since the treewidth of X is at most B, X ∈Ut
tree for some t6B + 1. It remains to

argue that X is 6 minimal. But this is obvious, since any proper minor is in F and
since ∼ re�nes the canonical F-congruence.

A pathwidth version of Theorem A can be proved in essentially the same way.
Jens Lagergren has shown that the use of the GMT in proving that the algorithm of

Theorem A terminates can be replaced by an explicit calculation of a “stopping time”
computable from the index of the congruence ∼ [18].
Perhaps surprisingly, Theorem A can be implemented and a number of previously

unknown obstruction sets have been mechanically computed [5, 6]. A landmark goal
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for such e�orts might be a computation of the obstruction set for torus embedding,
which probably contains about 2000 graphs.
Theorem A can also be adapted to other partial orders, including those such as the

topological order, that are not a wqo. It can be shown in this case that the (adapted)
algorithm will correctly terminate if and only if the ideal F has a �nite obstruction
set – thus providing a potentially interesting way to mechanically prove the existence
of a �nite basis for particular ideals in non-wqos.

4. Computational engines that stop on width

In this section, we extend the basic ideas of Theorem A in a couple of di�erent
ways.
Let Ot denote the F obstructions of pathwidth at most t.

De�nition. An alarm for a lower ideal F is a pair of computable functions:
(1) f� :N→N , and
(2) � :N→{0; 1}, satisfying:
(a) (reliability) �(t)= 1 if there is an obstruction H ∈O − Ot of pathwidth more

than f�(t)
(b) (eventual quiescence) ∃t0 such that ∀t¿t0, �(t)= 0.

Theorem B. Suppose the following are known for a minor order lower ideal F:
(1) A decision algorithm for membership in F.
(2) A decision algorithm for a �nite-index congruence for F. (The congruence can

be either large or small.)
(3) Algorithms for computing � and f� for an alarm for F.
Then the obstruction set O for F can be computed.

Proof. For any �xed t, Ot can be computed using subroutines (1) and (2) by the
methods of Theorem A adapted to pathwidth computations.
De�ne the t-Stop Signal to be that:

Oi=Ot for i= t; : : : ; f�(t)

and

�(t)= 0:

This forms the basis of the procedure that establishes the theorem.

Obstruction Set Computation
(1) t← 0
(2) Repeat until a t-Stop Signal is detected:
t← t + 1
Compute Ot and �(t).
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Check for Stop Signals based on everything computed so far.
(3) Output O=Ot .

To see that this works correctly, it su�ces to argue: (1) if O 6=Ot then there will
be no t-Stop Signal, and (2) eventually there will be a Stop Signal. If O 6=Ot then
we consider two cases: (i) There is an obstruction H ∈O−Ot with pw(H)6f�(t). In
this case, the �rst condition for a t-Stop Signal will fail. (ii) There is an obstruction
H ∈O − Ot with pw(H)¿f�(t). In this case, the reliability of the alarm implies that
�(t)= 1 and so the second condition for a t-Stop Signal fails.
If t1 is the maximum pathwidth of an F obstruction, then for all t¿t1, we have

O=Ot =Ot1 . Thus the �rst condition for a t-Stop Signal will be satis�ed for all t¿t1.
Let t2 =max{t0; t1}. The eventual quiescence of the alarm insures that the second
condition for a t2-Stop Signal will be met.

We next prove an obstruction set computation algorithm that employs a terminating
second-order congruence as the alarm.
Let Bh denote the complete binary tree of height h. Thus B1 consists of a root and

two children. Bh has 2h − 1 vertices, each vertex that is not a leaf has two children
and each leaf is at distance h from the root. Let h(t) be the least value of h such that
Bh(t) has pathwidth more than t, and let f(t) be the number of vertices of Bh(t). It can
be shown that f(t)=O(22t). We will use the notation f−1(y) to denote the largest
positive integer x such that f(x)6y. The following structural lemma is crucial to the
approach. The proof has appeared in [7].

Lemma 4.1 (Wide Factor Lemma). Let H be an arbitrary undirected graph; and let
t be a positive integer. One of the following two statements must hold:
(a) The pathwidth of H is at most f(t)− 1.
(b) H can be factored: H =A⊕B; where A; B are boundaried graphs with boundary

size f(t); the pathwidth of A is greater than t; and A∈Uf(t)
path .

Furthermore; if f(t + 1)¿t′¿f(t); then one of the following must hold:
(c) The pathwidth of H is at most t′ − 1.
(d) H =A⊕B; A∈Ut′

path ; B∈Ut′
large; and pw(A)¿t.

Proof (sketch). We suppose that we have a set of 2h(t) − 1 tokens corresponding to
the vertices of Bh(t). By a procedure for pebbling the graph with these tokens, we can
either: (1) completely pebble the graph, in which case the sets of vertices occupied by
pebbles at times t=0; 1; 2; : : : yields a path-decomposition of width at most 2h(t)−2, or
(2) we get stuck (by running out of pebbles). In this case, at the stuck point, all of the
pebbles are on the graph, and are linked in such a way that they provide a proof that
the graph contains Bh(t) topologically. We remark that the proof of this Lemma (which
we use here only structurally) is signi�cant for providing the �rst simple linear-time
algorithm for obtaining an approximate path-decomposition of a graph.
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We remark that the Wide Factor Lemma appears to be a bit “thin” in the sense
that a “best possible” lower bound on the pathwidth of the t-factor should probably be
closer to t=4 than log t. No analog for treewidth is currently known.
The Wide Factor Lemma is part of our method of recursively detecting large coun-

terexamples to the hypothesis: O=Ot . The form proved above is the most natural, in
some sense, since it is allied with an e�cient approximate path decomposition algo-
rithm. The factor A that it produces has the weakness, however, that all of the vertices
of A may be boundary vertices. We next prove a form that is probably better suited to
establishing termination properties of second-order congruences. We give this variation
a similar name.

Lemma 4.2 (Fat Factor Lemma). There is a (known) recursive function f(t)=O(22t)
such that if H is an arbitrary undirected graph then one of the following three
statements must hold:
(1) The pathwidth of H is at most f(t)− 1.
(2) H can be factored: H =A⊕B; where A and B are f(t)-boundaried graphs; the

pathwidth of A is greater than t; A has at least t internal vertices; and A∈Uf(t)
path .

(3) H topologically contains the complete graph on t vertices.

Proof. We make use of a theorem of Mader [20] that constructively identi�es a func-
tion g(t)=O(2t) such that any graph with minimum degree g(t) contains topologically
the complete graph on t vertices. We use the same proof technique as for the Wide
Factor Lemma, except that we preface the pebbling procedure of that proof with an
attempt at the following pebbling moves that require at most t · g(t) + 1 additional
pebbles:

Repeat t times:
If there is a vertex v of H of degree at most g(t) (possibly pebbled) then:
Pebble N [v].
Remove the pebble from v.

If we are unable to complete this preface, then H has a subgraph of minimum degree
g(t), and therefore H topologically contains the complete graph Kt . If we complete the
preface, then the argument for the Wide Factor Lemma shows that one of the other
two alternatives must hold.

Theorem C. Suppose the following are known for a minor order lower ideal F:
(1) A decision algorithm for membership in F.
(2) A decision algorithm for a terminating second-order congruence ≈ for F.

Then the obstruction set O for F can be computed by an algorithm that uses (1)
and (2) as subroutines.

Proof. We may assume that F is nontrivial (i.e., has at least one obstruction) because
this can be easily determined using the subroutine for (2) with t=2. (Note that the
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algorithm (2) allows us to decide a large (�rst-order) congruence for F for elements
of Ut

large by considering singleton sets, and that this congruence necessarily re�nes the
canonical �rst-order congruence for F.) Let Ot denote the F obstructions of pathwidth
at most t. Let Mt denote the minimal elements of Ut

path in the partial order that is the
intersection of the large (�rst-order) congruence available from (2) and the boundaried
minor order. Since the congruence has �nite index, Mt is �nite by the GMT. For any
�xed t, the sets Ot and Mt can be computed using subroutines (1) and (2) by the
methods of Theorem A adapted to pathwidth computations.
Let m(t) denote the maximum order of an obstruction of pathwidth at most t. Let

f be the function in the Fat Factor Lemma. Let t′¿f(m(t)). We say that the t-Stop
Signal is witnessed at t′ if: (1) Oi=Ot for i= t; : : : ; t′, and
(2) ∀A∈Mt′ with pw(A)¿f−1(t′)¿m(t) and |int(A)|¿f−1(t′)¿m(t): {A}≈ S(A).

A t-Stop Signal occurs if there is a t′¿t as above at which it is witnessed.

Obstruction Set Computation
(1) t← 0
(2) Repeat until a t-Stop Signal occurs:
t← t + 1
Compute Ot and Mt .
Check for Stop Signals based on everything computed so far.
(3) Output O=Ot .

We argue that if O 6=Ot then there will be no t-Stop Signal. Let H ∈O − Ot , and
suppose that the t-Stop Signal is witnessed at t′. If pw(H)6t′ then clearly there will
be no Stop Signal. So suppose pw(H)¿t′ where t′¿f(m(t)). By Lemma 4.2, one of
two cases must hold:
Case 1: There is a factorization H =A⊕B where A∈Ut′

path, B∈Ut′
large, pw(A)¿m(t)

and |int(A)|¿m(t). Since A is a factor of an obstruction, we have that for every A′
properly below A in the boundaried minor order, A′⊕B∈F and therefore A 6≈F A

′.
Consequently for each such A′ we have A 6≈A′ and thus A∈Mt′. We also have that
{A} 6≈F S(A) and therefore {A} 6≈ S(A), a contradiction.
Case 2: A topologically contains the complete graph on m(t) vertices. But in this

case A topologically contains any obstruction in Ot , which contradicts that it is a factor
of an obstruction in O− Ot .
If O=Ot (this must eventually hold, since O is �nite), then a t-Stop Signal will be

witnessed at t′= max{f(t0); f(m(t))}, where t0 is the termination constant.

4.1. Some remarks on implementations

A proof that an obstruction set can be computed that uses Theorem C (or
Theorem B) leaves us in an interesting situation. For a concrete example, suppose
we believe (and are correct) that all of the obstructions have been found for t=4. We
know by Theorem B that if we are wrong, either we will �nd a new obstruction at
t′=5, or a factor of a large obstruction will cause the second part of the t=4 Stop
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Signal not to occur at t′=5. However, there is no converse implication for the second
part of the Stop Signal; it may fail at t′=5 even if O=O4. All that we are guaranteed
is that there exists a t′ at which the t=4 Stop Signal will be witnessed. Whether
in practice much “waiting” is required for a particular obstruction set computation
is an interesting question (which of course will depend on the particular congruence
employed).
Furthermore, suppose that the procedure of Theorem C is applied using a second-

order congruence for F that is not known to be terminating. If a t-Stop Signal is
observed at some t′ then the proof of the theorem shows that O=Ot . For implementa-
tions, this is likely to be a valuable su�cient condition for obstruction set identi�cation.
We conjecture that many “natural” second-order congruences terminate rapidly, while
our ability to prove termination appears to be much weaker. A natural second-order
congruence for the union of ideals is described in Section 6.
The implementation of an obstruction set computation engine at the University of

Victoria and Los Alamos National Laboratories (described in [5, 6]) is based, for
a �xed pathwidth bound t, on the exploration of a tree whose root is the empty
t-boundaried graph, and whose nodes correspond to the elements of Mt , the minimal
elements with respect to a known (�rst-order) congruence ∼ for F. An element of
Mt is characterized by the property: ∀A′ ∈ S(A) :A 6∼A′. In the proof of Theorem C
we use the stronger property satis�ed by a factor A of an obstruction relative to a
second-order congruence ≈ for F :A 6≈ S(A). This can provide the basis for an im-
proved search strategy that explores only the subtree generated by that subset of Mt

that satis�es this more stringent minimality criterion. Based on some computational
experiments with the implementation package described in [5, 6], it appears that (for a
�xed width) the search trees that result from this approach can be very much smaller
than the search trees based on �rst-order congruences.

5. The canonical second-order congruence

In this section, we show that Theorem C is natural, by establishing that the canonical
second-order congruence for an ideal necessarily terminates.

Lemma 5.1. Let G=(V; E) be an ordinary graph. If pw(G)=w then any subdivision
of G has pathwidth at most w + 2.

Proof. Let H = be a subdivision of G. Thus for each edge uv of G we have a (possibly
empty) set of vertices of H that subdivide uv. Let Suv denote this set of vertices and
suppose that the vertices of Suv are indexed in the order in which they occur between
u and v, starting from either end (this is not important)

Suv= {s[u; v; i] : 16i6muv}:
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Let (P1; : : : ; Pm) be a path decomposition for G of width w. Thus each set of vertices
Pi has at most w − 1 members. For each edge uv of G choose a set Piuv of the
decomposition such that {u; v}⊆Piuv . We may assume that the choices are all distinct,
just by assuming that any set of the decomposition of G is repeated su�ciently many
times. We can obtain a path decomposition of H of the width required by replacing
each set Piuv in the decomposition of G by the sequence of sets:

(Piuv ; Piuv ∪{s[u; v; 1]}; Piuv ∪{s[u; v; 1]; s[u; v; 2]}; Piuv ∪{s[u; v; 2]; s[u; v; 3]}; : : :
Piuv ∪{s[u; v; muv − 1]; s[u; v; muv]}; Piuv ∪{s[u; v; muv]}; Piuv):

That this satis�es the de�nition of a path decomposition for H is easily checked.

De�nition. A t-boundaried graph A∈Ut
large is a minimal topological factor of an or-

dinary graph H with respect to a �xed t-boundaried graph B∈Ut
large if

(1) A⊕B¿top H , and
(2) For every A′ properly below A in the boundaried topological order, A⊕B is not

above H in the topological order.

Lemma 5.2. Suppose A; B and B are t-boundaried graphs with A a minimal topo-
logical factor of H with respect to B and B a minimal topological factor of H
with respect to A. Then A⊕B is a subdivision of H where the only subdivisions are
boundary vertices.

De�nition. Given an ordinary graph H , de�ne partst(H) to be the set of all t-boundaried
graphs A∈Ut

large for which there is a t-boundaried graph B∈Ut
large such that A is a

minimal topological factor of H with respect to B.

Lemma 5.3. partst(H) is computable from H .

Proof. Let H (t) denote the graph obtained from H by subdividing each edge t times,
or equivalently, replacing each edge with a path having t internal vertices. Let P(H)
denote the set of t-boundaried graphs obtained from H (t) by the following procedure:
(1) In all possible ways: specify a boundary set V ′ of size t.
(2) In all possible ways: partition the edge components of H −V ′ into two sets and

thus obtain two factors A and B of H (t).
(3) For each such factorization A⊕B=H (t) compute the minimal factors of H with

respect to B that are below A in the boundaried topological order.
(4) Let P(H) be the union of the sets computed in Step (3).
Clearly P(H)⊆ partst(H) by de�nition. To prove the inclusion in the other direction,

suppose A is a minimal topological factor of H with respect to B, where A; B∈Ut
large.

Let B′ be a minimal topological factor of H with respect to A. From the de�nition, A
is also a minimal topological factor of H with respect to B′. By Lemma 5.3, A⊕B′ is
a subdivision of H in which the only subdividing vertices are boundary vertices. The
lemma follows.
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The next lemma follows easily from the de�nitions.

Lemma 5.4. Let X and Y be t-boundaried graphs. Then X ⊕Y¿top H if and only
if there are X ′; Y ′ ∈ partst(H) for which: X¿top X ′; Y¿top Y ′; X ⊕Y ′¿top H; X ′⊕Y
¿top H; and X ′⊕Y ′¿top H .

Theorem D. The canonical second-order congruence ≈F for a lower ideal F termi-
nates.

Proof. By the GMT, F has a �nite set of obstructions in the minor order, and there-
fore also a �nite set of obstructions O= {H1; : : : ; Hs} in the topological order. Let m
be the maximum pathwidth of the Hi. Take t0 =m + 3. Suppose A∈Ut

small for t¿t0,
and suppose pw(A)¿t0. If {A} 6≈F S(A) then there is a t-boundaried graph B∈Ut

large
such that A⊕B 6∈F but for every A′ ∈ S(A) we have A′⊕B∈F. Thus A⊕B¿top Hi
for some i, 16i6m. Suppose that B is a minimal element in the t-boundaried topo-
logical order on Ut

large for which this is so. By Lemma 5.4, it must be the case that
A∈ partst(Hi). By Lemma 5.2, A⊕B is a subdivision of Hi. By Lemma 5.1, we have
pw(A⊕B)6m+ 2. But this contradicts that pw(A)¿m+ 3.

Note that the property of termination for a second-order congruence is a �niteness
property, and thus is amenable to powerful tools such as the GMT. The GMT is used
implicitly in the above proof of termination.

6. A second-order congruence for the union problem

The obstructions for a union F=F1 ∪F2 of lower ideals is computable from O1
and O2 if O1 and O2 each contain a planar graph, by a variety of di�erent approaches,
which it is instructive to review. Note that in this case, using the results of [26] we
can calculate a bound � on the treewidth of the graphs in F, which implies a bound
of �+1 on the maximum treewidth of an F-obstruction. We can then proceed in one
of the following ways:
(1) Our knowledge of O1 and O2 allows us to compute a re�nement of the canonical

recognizability congruence for F (see Lemma 6.1 below) and with this we can use
Theorem A to calculate the F-obstructions.
(2) Using the results of Lagergren and Arnborg [19], we have enough information

to compute a bound on the maximum number of vertices in an F-obstruction, and can
then compute O by exhaustive search.
(3) We can progressively enumerate all �nite sets S of graphs, and for each of

these sets produce a �nite automaton AS to recognize the graphs of treewidth at most
� + 1 that exclude the graphs of S as a minor (using the results of [8]), and then
determine whether this automaton is equivalent to the automaton AF that recognizes
the graphs of F among those of treewidth at most � + 1. These are equivalent when
S is the set of F-obstructions.
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(4) If we are only interested in planar graphs, then a bound on the maximum size
of an obstruction can be computed by the results of Gupta and Impagliazzo [15], and
the F-obstructions can then be identi�ed by exhasutive search.
In this section, we show how to use Theorem C to compute the obstruction set for

a union F=F1 ∪F2 of ideals with known obstruction sets O1 and O2, in the case
where one of these contains a tree.
Clearly, knowing O1 and O2 allows us to decide membership in F, and thus we have

the �rst ingredient for applying Theorem C. We next describe a decision algorithm for
a second order congruence for F based on a set of abstract tests.
For each positive integer t, the set of predicates (abstract tests) is indexed and de�ned

as follows, where X is the t-boundaried graph to which the predicate is applied:

Index: (B1; B2) where B1 ∈ partst(H1), B2 ∈ partst(H2), H1 ∈O1 and H2 ∈O2.
Question: Is there a choice of i∈{1; 2} such that X ⊕Bi ∈F?
We say that X fails the test �=(B1; B2) if the answer to the question is “no”.

De�nition. If T= {Tt} is a collection of sets of tests on t-boundaried graphs, we
de�ne the second-order congruence induced by T by S1≈ S2 if and only if
∀�∈Tt : (∃A1 ∈ S1: A1 fails �) ⇔ (∃A2 ∈ S2: A2 fails �)

Note that if the sets of tests are �nite, then the induced congruence has �nite index
on subsets of Ut

large.

Lemma 6.1. The second-order congruence ≈ induced by the set of tests described
above is a re�nement of the canonical second-order congruence for F=F1 ∪F2.

Proof. Suppose S1 and S2 are sets of t-boundaried graphs with S1 6≈F S2. Then (w.l.o.g.)
∃Z ∈Ut

large and ∃X ∈ S1 with X ⊕Z 6∈F but ∀Y ∈ S2, Y ⊕Z ∈F.
So we have X ⊕Z 6∈F1 and X ⊕Z 6∈F2. Let Z¿top Z1 where Z1 is minimal in the

boundaried topological order, such that X ⊕Z1 6∈F1 and similarly, suppose X ⊕Z2 6∈F2

where Z¿top Z2 and Z2 is minimal. Then for some H1 ∈O1 and for some H2 ∈O2, we
have Zi ∈ partst(Hi) for i=1; 2. So �=(Z1; Z2) is a test failed by X .
For all Y ∈ S2, either Y ⊕Z ∈F1 or Y ⊕Z ∈F2, and therefore, either Y ⊕Z1 ∈F1

or Y ⊕Z2 ∈F2, so Y passes �. Thus S1 6≈ S2.
We conjecture that the above congruence always terminates, but for now we have

only the following weaker result.

Theorem E. Suppose that F is a union of ideals in the minor order

F=F1 ∪F2

where the obstruction sets O1 and O2 for F1 and F2 are known and suppose that
O1 contains at least one tree T . Then the obstruction set O for F can be e�ectively
computed.
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Proof. Let O′
i be the set of topological obstructions for Fi, i=1; 2. These are easily

computed from the sets Oi. Choose t0 to be larger than the maximum number of vertices
of any graph in O1 ∪O2, and large enough so that any graph of pathwidth greater than
or equal to t0 contains topologically a complete binary tree T1 of su�cient size so that
any forest T ′

1 obtained from T1 by contracting or deleting a single edge still has the
obstruction tree T as a minor.
Now suppose t¿t0 and A∈Ut

path such that:
(1) pw(A)¿t0, and
(2) |int(A)|¿t0

and suppose that A fails the test �=(B1; B2). Thus A⊕B1 6∈F1 and A⊕B2 6∈F2.
Choose H ∈O′

2 so that A⊕B2¿topH , and �x attention on:
• A subgraph S1 of A that is a subdivision of T1.
• A subgraph S2 of A⊕B2 that is a subdivision of H .
The vertices of S2 are of two di�erent kinds: (i) those that correspond to vertices of

H , and (ii) those that correspond to subdivisions of edges of H . Let u∈ int(A) be a
vertex in the interior of A that is not of the kind (i). If u has degree 0, then A′=A−u
fails � and we are done. Otherwise, there is an edge uv in A. Let A′ be obtained from
A by contracting uv. We have A′¿mT , so A′⊕B1 6∈F1, and we have A′⊕B2¿top H ,
so A′⊕B2 6∈F2. Thus A′ ∈ S(A) fails �, which shows that ≈ terminates.

As intertwine of two graphs G and H is a graph that contains both G and H
topologically, and that is minimal for this in the topological ordering. As a corollary
of Theorem E, we have the following concerning the computation of the (necessarily
�nite, by the GMT) set of intertwines of two graphs.

Corollary. The set of intertwines of an arbitrary graph G and a tree T can be
e�ectively computed.

Proof. Let O1 be the set of graphs that are minimal in the minor order (equivalently,
the topological order) on the universe U of graphs of maximum degree, among those
graphs that have G as a minor. Let O2 similarly be the set of graphs that are minimal
in the minor order (equivalently, the topological order) on U , among those graphs (i.e.,
trees) that have T as a minor. These sets can be computed by considering all possible
ways of splitting vertices of degree greater than 3.
The procedures of Theorems A–C can be restricted to recursive subsets of the set

of all graphs (in the manner of Consequence 2 of [12]). Using Theorem C restricted
in this way to U , compute the U -intertwines of each pair of graphs (H1; H2) with
H1 ∈O1 and H2 ∈O2, and let O denote the union of all of these sets of U -intertwines.
It is easy to show that if H is an intertwine of G and T , then H is a minor of some
H ′ ∈O. The set of intertwines of G and T can therefore be computed by searching
exhaustively among the minors of the graphs in O.
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7. Summary and open problems

To what extent can the Graph Minor Theorem be made e�ective? It seems to us
that much further progress on this general question should be possible, in part because
powerful results (such as the GMT itself), can be brought to bear on such questions. It
is sometimes assumed that anything having to do with well-quasiordering is hopelessly
impractical, but the successful implementation of obstruction set theorem-provers be-
lie this and must be regarded as a notable development, given the important role of
forbidden substructure theorems in graph theory.
The main contribution of this paper has been to establish methods for computing

obstruction sets that do not require a prior bound on maximum obstruction width. The
notion of a second-order congruence is also of practical signi�cance for implementations
of obstruction set theorem-provers. The following three basic questions stand out for
attention.
(1) Is it possible to compute the obstruction set for a minor ideal F from an oracle

for F membership and an oracle for the canonical recognizability congruence for F?
(2) Is it possible to compute the obstruction set for a minor ideal F from a MSO

description of F?
(3) Is it possible to compute the obstructions for a union of ideals F=F1 ∪F2

from the obstruction sets for F1 and F2?
By standard arguments, it is not hard to show that an answer of “yes” to question

(i) implies “yes” to question (i + 1) for i=1; 2. Our limited positive result on (3)
could be extended to the case where one of the ideals excludes a planar graph if there
is a positive resolution of the following question.
(4) Is there a treewidth analog of the Fat Factor Lemma?
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