
 

 
 
 
 
 

The 2007 problem set has benefited from contributions by many 
volunteers across Australia and New Zealand.  I would like to thank Alex 
Flint, Alexandre Mah, Bernie Pope, Bradley Alexander, Clarence Dang, 
Eric McCreath, Michael J. Dinneen, Jimmy Foulds, Mark Tsui, and Paul 
Calder, Phil Robbins, Shawn Haggett, and Takeshi Matsumoto for ideas 
and solutions.  I would also like to thank Chris Handley, Mike Cameron-
Jones, and Robyn Gibson for careful reading of and suggesting 
improvements for the problem statements. 

 
 
The 2007 problems are not meant to be in increasing 

order of difficulty (after all, difficulty is relative).  
However, I believe that the set includes three easy 
problems.  One of these is “problem A”.  For the rest, 
happy hunting. 

 
 

 
I hope that you enjoy the challenges this problem set will present you. 

 
 
 
 
 
 
 
 
 

ACM-SPPC-CoverPage  15/09/2007  



 

 
 
 

Problem A 
Text Formatting 

 
 
Your chief judge is getting long in the tooth and it is getting increasingly 
difficult for him to read through the densely-written messages of complaints 
about the problems and scores.  The chief judge prefers to have more and 
uniform spacing between the words, and you have been drafted to write a 
program to format lines of text accordingly. 
 
 
Your task is to write a program to read a number of lines of text and format 
each line independently such that: 

1. successive words on a formatted line are separated by exactly two 
blank spaces, and 

2. words are NOT split between lines, and 
3. width of the formatted text does not exceed a specified value. 

Leading and trailing blank spaces on each given line should be ignored.   
 
 
As an example: 
 
 
    Your chief judge is geting long in the tooth. 
 Have a nice day. 
Your  chief  judge 
is  geting  long  in 
the  tooth. 
Have  a  nice  day. 
01234567890123456789 

 
 
The first input line is formatted into three (3) lines of width bounded by 
20 places, and words separated by two blank spaces in each line.  The 
second input line is formatted independently on the fourth output line. 
 
 

ACM-SPPC-ProblemA  15/09/2007 1



 

 

 
 
INPUT: 

Input to this problem starts with an integer K, K > 0, that represents 
the number of messages. The number K is given on a separate line 
followed by a description of the K messages.  The description of each 
message starts with a line that contains two integers. The first integer W, 
W > 20, represents the desired width of the formatted text, and the second 
integer N, N > 0, represents the number of lines in the message. A single 
blank space separates the two integers. The message, which consists of N 
lines, follows with each line consisting of a sequence of one or more 
words separated by blank spaces. The length of each word is less than or 
equal to W.  That is, a word like “supercalifragilistic-expialidocious” is 
only to be expected as part of the input if W > 35. 
 
OUTPUT: 

For each message the output consists of one line.  The line starts with 
the message number (the first message being “Message 1”), followed by a 
“: ” (colon followed by space), as shown in the EXAMPLE OUTPUT 
below. This is followed by the number of lines that the formatted text 
would occupy. 
 
   
EXAMPLE INPUT: 
2 
20 1 
Your chief judge is geting long in the tooth. 
30 2 
For each message the output consists of one line.   
The chief judge now prefers to have more and uniform spacing 
 
 
 
EXAMPLE OUTPUT: 
Message 1: 3 
Message 2: 6 
 

  
 

ACM-SPPC-ProblemA  15/09/2007 2



 

 
 
 

Problem B 
Rating Points Exchange 

 
Executive of the ACM (Australian Crikey Masters) club has recently 

decided to switch into a new rating system in their tournaments. The new 
rating system is based on a combination of match result, the players’ rating, 
the pieces that remain on the board at the end of the game, as well as a 
handicap for the white player’s advantage for playing first1.  But it is 
complex and requires a lot of time to calculate in a tournament with a large 
number of participants.  A task that must be completed between matches as 
the result of each match changes the players’ ratings. The executive wants to 
speed-up the process of updating the players’ ratings between matches 
through automation and you have been asked to implement this new rating 
system.    

 
I shall now explain the updating process along with an example of a 

game between Alice and Bob, whose current club ratings happen to be 76.91 
and 76.36 respectively in the following steps: 

 
1. Alice, who is scheduled to play white, will be treated as though she is 

three (3) points stronger than her current rating. This gives Alice a 
rating of 79.91 against Bob’s rating of 76.36, and thus a rating gap of 
3.55 in favor of Alice. The rating gap is defined as the higher-rated 
player’s rating minus the lower-rated player’s rating. 

 
2. Calculate core exchange CE as “rating gap / 10” (rounded to 2 

decimals), which is 0.355 (rounded to 0.36) in Alice vs Bob game. In 
case you have forgotten, the digits 5 to 9 are rounded up and the 
digits 1 to 4 are rounded down.  

 
3. Calculate the rating points exchange (RPE) based on the match result 

as follows: 
a. If the player with the higher rating (in this case, Alice) wins, then 

the RPE is calculated as “1 – CE”. The winner’s rating will go up 
by the RPE (in this case 0.64) and loser’s rating down by the RPE.  

                                                           
1 Just in case you are curious about the game of Crikey.  It is a two player board game that uses black 
and white pieces.  The list of rules is lengthy and sometimes vague.  One day I shall list them.  

ACM-SPPC-ProblemB  15/09/2007 1



 

 
 
b. If the player with the lower rating (in this case, Bob) wins, then 

the RPE is calculated as “1 + CE”. The loser’s rating will go down 
by the RPE (in this case 1.36) and the winner’s rating will go up 
by the RPE.  

c. If the game is drawn, then the RPE is calculated as “CE”.  The 
higher-rated player’s rating (in this case Alice’s rating) will go 
down by the RPE (in this case 0.36) and the lower-rated player’s 
rating will go up by the RPE.  If both players have the same rating 
(after applying the handicap rule), then their ratings will not 
change. 
 

4. However if the winning side is left with crikey pieces of total value 
less than those of the losing side, then the RPE calculated above is 
then doubled; that is multiplied by 2.  In our example, the RPE will 
be calculated as 2.72 (1.36 * 2) in the case of Bob winning the game 
with the value of his remaining pieces less than those of Alice. If the 
game is drawn, then this rule does not apply. 

 
INPUT: 

The first line of the input contains a single integer between 1 and 
1000, inclusive, which is the number of tournaments that follow.  The 
description of each tournament consists of “n+m+1” lines: 

 
1. The 1st line consists of two integers n and m that identify the 

number of players and the number of games.  The value of n is 
between 2 and 500, inclusive and the value of m is between 1 and 
500, inclusive. The integers are separated by a single space. 

 
2. Each of the following n lines consists of a string (with no blank 

spaces) that represents the player’s name followed by a floating 
point number with 2 digits after the decimal point that represents 
the player’s rating.  The name of a player is a string of less than or 
equal to ten (10) lower-case letters. 

 
3. Each of the next m lines contains a description of a single game in 

the form of three (3) strings followed by two (2) integers that are 
separated by single spaces. The first string is the name of the player 
playing white, the third string is the white player’s result (lost,  

ACM-SPPC-ProblemB  15/09/2007 2



 

 
 

drew, or won), and the first integer is the total value of the white 
player’s pieces at the end of the game. The second string is the 
name of the player playing black, and the second integer is the total 
value of the black player’s pieces at the end of the game. 

 
OUTPUT: 

For each tournament the output starts with a line that contains the 
tournament number (the first being “Ratings after Tournament 1”), 
followed by a “:”, as shown in the EXAMPLE OUTPUT below, and then 
followed by a sequence of players’ names and their ratings sorted in 
decreasing order of their final ratings.  Players with the same rating must 
be sorted in decreasing alphabetic order.  
 
 
EXAMPLE INPUT: 
 
4 
2 1 
alice 76.91 
bob 76.36 
alice bob lost 20 15 
2 2 
alice 55.55 
bob 55.55 
alice bob drew 10 30 
bob alice drew 20 20 
2 1 
alice 94.26 
bob 96.00 
alice bob won 10 10 
3 2 
alice 52.55 
bob 55.55 
fred 80.00 
alice bob drew 10 30 
fred fred lost 27 50 
 

EXAMPLE OUTPUT: 
 
Ratings after Tournament 1: 
bob 79.08 
alice 74.19 
Ratings after Tournament 2: 
alice 55.61 
bob 55.49 
Ratings after Tournament 3: 
bob 95.13 
alice 95.13 
Ratings after Tournament 4: 
fred 80.00 
bob 55.55 
alice 52.55 
 
 
 
 
 
 
 
 

  

ACM-SPPC-ProblemB  15/09/2007 3



 

 
 

Problem C 
Self-divisible Numbers 

 
An integer number is said to be self-divisible if each digit divides the 
number formed by all digits up to and including that digit evenly.   If you 
find yourself puzzled by the previous sentence, you should not worry. You 
are not alone. I needed to scribble few examples to understand it myself.  
Here are few of them: 

1) 213 is a self-divisible number because 
2 divides 2, 1 divides 21, and 3 divides 213. 

2) 201 is not a self-divisible number because 
2 divides 2, but 0 does not divide any number. 

3) 2534 is not a self-divisible number because 
2 divides 2, 5 divides 25, but 3 does not divide 253. 

 
 
Your task is to write a program to count the number of self-divisible 
numbers in a selected range.  As an example, for the range of integers 
between 7 and 15, where 

• 7, 8, 9, 11, 12, and 15 are self-divisible 
• 10 is not self-divisible because it contains a zero, which cannot divide 

any number, and 
• 13 and 14 are not self-divisible because the 2nd digit in each number 

does not divide it. 
your program must calculate a count of 6. 
 
INPUT: 

Input to this problem starts with an integer N that represents the number 
of cases, N > 0, on a separate line followed by a description of the N cases.  
Each case is described on a separate line by two positive integers S and F, 
where S is less than or equal to F, that represent the start and finish values of 
a range of integers. The two numbers are separated by a single blank space 
as shown in the EXAMPLE INPUT below. Each of the integers S and F 
consists of K digits, 0 < K < 400, and the number of self-divisible numbers 
in the range between each pair is less than 1000000. 

 
 

 

ACM-SPPC-ProblemC  15/09/2007 1



 

 
 
OUTPUT: 

For each case, the output consists of one line.  The line starts with the 
case number starting with the value of one (1), followed by a “: ”, as 
shown in the EXAMPLE OUTPUT below, and then followed by the 
number of self-divisible numbers in the range. 
 
 
 
EXAMPLE INPUT: 
5 
3 5 
7 15 
2222222222222222222222 2222222222222222222224 
222222222222222222222 222222222222222222224 
222222 2222222 
 
 
 
EXAMPLE OUTPUT: 
Case 1: 3 
Case 2: 6 
Case 3: 3 
Case 4: 2 
Case 5: 34865 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

ACM-SPPC-ProblemC  15/09/2007 2



 

 

 
 

Problem D 
 Challenging “Butts” 

 
Darts1 is a very popular game in which darts are thrown at a circular 

target (dart board) hung on a wall. Dart boards are usually made of sisal 
fibers or boar bristles, low quality boards are sometimes made of paper. A 
regulation board is 45.72 cm in diameter, and is divided into sectors. Each 
sector is lined with metal wire. The numbers indicating the various scores of 
sectors on the dart board are normally made of wire, especially on 
tournament-quality boards, but may be printed on the board instead.  In the 
standard game, the dart board is hung so that the bulls-eye is 1.73 m from the 
floor, eye-level for a six foot person. The oche, the line behind which the 
player must stand, is 2.37 m from the face of the board.  When playing darts 
players often aim at the high scoring sectors, but for ordinary players it is 
hard to land a dart on the desired sector.  The risk of aiming at a sector can 
thus be measured by the difference between the scores of adjacent sectors, 
where two sectors are said to be adjacent if they share an edge or an arc.  A 
large such difference increases the risk and makes the game more 
challenging. The total risk of a dart board is the sum over the risks between 
all adjacent sectors.  We have been asked by the sponsor of a programming 
competition to design a new, and challenging, dart board to occupy the 
touchy coaches during the contest. 

 

 
                                                           
1   Some historical records suggest that the first standard dartboards were the bottoms of wine casks, 

hence the game's original name of "butts". 

ACM-SPPC-ProblemD  15/09/2007 1



 

 

 

 

 
 

The new dart board design consists of a circle that is divided into N 
sectors, N > 3, by lines running from the centre of the circle to its perimeter 
and a smaller concentric circle that subdivides each sector into two areas:  as 
shown in the sketch for N equal to three (3). 

Your task is to write a program to read “2N” positive integer values and 
assign them to the “2N” areas of the new dart board design such that the 
total risk is maximized.  An example of such an assignment is: 

 

 
 

The total risk of this dart board design with “6” areas is 59. 

ACM-SPPC-ProblemD  15/09/2007 2



 

 
 
INPUT: 

The first line of the input contains a single integer between 1 and 
1000, inclusive, which is the number of dart boards that follow.  The 
description of each dart board consists of two lines: 

1. The 1st line consists of an integer N, 300 > N > 3, which identifies 
the number of sectors on the board.   

2. The 2nd line consists of “2N” positive integers, separated by 
single spaces, which represent the scores.  Each integer is less 
than or equal to 10000. 

 
 
OUTPUT: 

For each dart board the output is an integer, on a separate line, which 
represents the maximum risk of the board. 

 
 
 

EXAMPLE INPUT 
 
4 
3 
2 3 5 7 11 13 
4 
2 3 5 7 17 19 23 29 
8 
2 6 7 3 2 4 99 30 28 56 74 1 35 10 10 48 
7 
2 6 7 3 2 4 99 30 28 74 35 10 10 48 

EXAMPLE OUTPUT 
 
59 
213 
1035 
870 

 

ACM-SPPC-ProblemD  15/09/2007 3



 

 
 

Problem E 
A Fitting Advertisement!  

 
 

A skyline is the outline formed by a group of buildings against the 
sky. The ACM city in Second Life, which has been built with a beautiful 
skyline that's visible to anyone that approaches it, sold the rights to place 
advertisement at the approaches to the city to a company as long as it 
does so while preserving the shape of the city’s skyline.  The company 
wants to accept all requests for advertising that are of rectangular shape 
and can be fully placed, with sides parallel to edges of the skyline as 
shown shaded in the example below, within the interior of the skyline. 
 

Each skyline of the ACM city is formed by N buildings, all with a 
width of one (1) but with different heights.  The height of each building 
is between 0 and 1000, inclusive and the number of buildings N is 
between 1 and 400, inclusive. The example below shows a skyline with 
six (6) buildings, and an advertisement of size 3 by 5 (shown in gray) 
placed parallel to the sides of the skyline.  Note that an advertisement 
may be rotated by 90o so that it can fit into the skyline. That is, 
advertisement of size 5 by 3 can be placed within the skyline by rotating 
it first. It is “Second Life” after all. 

 
 

 
 
 
Your task is to write a program to read the descriptions of a number of 
skylines and advertising requests, and decide for each request whether it 
should be accepted or rejected.  Each request is to be checked 
independently as only one advertisement will be displayed at any time. 
 

ACM-SPPC-ProblemE  15/09/2007 1



 

 
 
 
INPUT: 

The first line of the input contains a single integer C between 1 and 
1000, inclusive, which is the number of cases that follow.  Each case 
starts with a description of the skyline of the city from one approach that 
consists of two lines: 

 
1. The 1st line contains an integer N, 1 < N < 400, that is the number 

of buildings in the skyline 
2. The 2nd line contains the heights of the buildings 
 

followed by a sequence of advertising requests.  Each request consists of 
two integers on a single line, separated by a single space, which describe 
the length of the two sides of the rectangle that contains the 
advertisement.  Both lengths are between 1 and 1000, inclusive.  A 
request of two zeros separated by a single space (0 0) terminates the case. 
 
OUTPUT: 

For each skyline the output starts with a line that contains the case 
number starting with the value of one (1), followed by a “:”, as shown in 
the EXAMPLE OUTPUT below, and then followed by a sequence of 
decisions of “Accept” or “Reject”, on a separate line, for each request. 
 
 
EXAMPLE INPUT: 
 
2 
6 
3 6 5 6 2 4 
3 5 
2 6 
8 1 
0 0 
7 
5 0 8 0 3 6 4 
3 4 
4 2 
0 0 

EXAMPLE OUTPUT: 
 
Case 1: 
Accept 
Accept 
Reject 
Case 2: 
Reject 
Accept 
 

 

ACM-SPPC-ProblemE  15/09/2007 2



 

 
 

 Problem F 
The Zits Code 

 

 Jeremy is not known for his organizational skills, but he is now 
determined to change.    Jeremy’s plan is to place notes around the house to 
remind him of tasks to be done and of the proper ways to do them. Jeremy’s 
plan also includes encrypting the messages so that his parents (who don’t 
understand anything!) do not nag him, but in a simple way so that he can 
recover the original message easily. 
 
Jeremy’s encryption scheme consists of two steps: 

1. Enter the message, of M characters, which includes the spaces 
between words, into a spiral that curls inwards in a clockwise 
direction, starting at the top-left corner of a square. The width and 
height of the square enclosing the spiral are chosen to be equal to the 
square root of P, where P is the smallest perfect square larger than or 
equal to M.  If M is strictly less than P, then the remaining locations in 
the square are filled with the character ‘$’. 

2.  Write the encrypted note by writing the characters one row at a time 
starting with the top row.  

 
As an example, for the following message of 33 characters 

abcd fgh jklmn pqrstu wxyz1 34567 
Jeremy writes the following note:  

abcd ftu wxgs67$yhr5$$z q43 1jp nmlk 
based on entering his original message in a square of 6 rows and 6 
columns as follows: 
 

a b c d  f 
t u  w x g 
s 6 7 $ y h 
r 5 $ $ z  
q 4 3  1 j 
p  n m l k 

 
 

ACM-SPPC-ProblemF  15/09/2007 1



 

 
 
 
Your task is to write a program to encrypt Jeremy’s messages with the hope 
that he will acquire some organizational skills, in peace.  In case you have 
forgotten, let me remind you that a number X is a perfect square if there 
exists a positive integer K, such that K2 equals X.  For example, 16 is a 
perfect square but 18 is not a perfect square.   
 
INPUT: 

Input to this problem starts with an integer N that represents the number 
of messages, N > 0, on a separate line followed by a sequence of N 
messages.  Each message consists of M characters, 1000 > M > 0, on a 
single line with no blank spaces at the end. 
 
OUTPUT: 

For each message, the output consists of one line that contains the note 
with an encrypted message.  
 
 
EXAMPLE INPUT: 
5 
Fold the clean laundry pile 
make a decision about the may-be laundry pile 
Make the dirty laundry pile invisible 
012345678901234567890123456789012345 
01234567890123456  890123456      012345 
The last line has one blank space between 6&8 and three between 6 & 0 
 
EXAMPLE OUTPUT: 
Fold tdry phn$$$ieu$$$l a$$$ecl nael 
make a he maydty pi-e r$$lbctd$$eeiunual soba noi 
Make thpile ie $$$$n y$$$$vdr$$$$iidelbisrnual yt 
012345901236812347705458698769543210 
012345901236812347  054586      69543210 
The last line has one blank space between 7&0 and three between 6 & 6 
 

 
 
 

ACM-SPPC-ProblemF  15/09/2007 2



 

 
 
 

Problem G 
DNA Chopper 

 
As the sole employee in a pharmaceutical company with programming 

exposure, you have been asked to oversee the process of cutting DNA 
strands into smaller pieces, which has been outsourced to a company by the 
name of Chopper!, and check for any attempt of over charging.   

 
DNA (Deoxyribonucleic acid) strand is a long polymer of simple units 

called nucleotides, with a backbone made of sugars and phosphate atoms 
joined by ester bonds. Attached to each sugar is one of four types of 
molecules called bases. It is the sequence of these four bases along the 
backbone that encodes information needed to construct other components 
such as proteins and RNA molecules. The cost of cutting a DNA strand, with 
today’s technology, is equal to the length of the strand, where a “cut” refers 
to splitting a strand into two pieces. The cost of a single cut does not depend 
on the location where the cut is made. Chopper! claims to have developed 
the world-best-practice in sequencing the cuts of a DNA strand and to 
deliver the most savings to its customers. 
 

Your task is to write a program to process the next batch of DNA strands 
and calculate the best price for slicing each of them into smaller strands of 
integer lengths. For each DNA strand you are given its length as an integer 
N, N < 10000, and a list of M, 2 < M < 15, strands’ lengths to be produced.  
The sum of the M integers equals the original strand length N.   

 
The total cost of slicing a given strand depends on the choice of locations 

and the order of the M-1 required cuts. As an example, for a given list of M 
(=4) lengths 2, 2, 5 and 5 and a DNA strand of length 14, we can:  

• first cut the strand in half then twice split a 2 and 5 from the 
remaining 7s for a cost  of 28 (=14 + 7 + 7), or  

• first cut off a 5 from the end of the strand, then another 5, then split 
the remaining 4 in half for a cost  of 27 (= 14 + 9 + 4). 

 
 
 

ACM-SPPC-ProblemG  15/09/2007 1



 

 
 
 
INPUT: 

The input contains information about a number of DNA strands to be 
processed. The information for each strand consists of two lines: 

1. The 1st line consists of the two integers M and N (2 < M < 15 and 
0 < N < 10000) that identify the number of required smaller 
strands and the length of DNA strand, respectively. 

2. The 2nd consists of M positive integers (separated by blank 
spaces) that sum to N. 

The input is terminated by a line of two zeros (0 0) for which no output is 
to be produced. 
 
OUTPUT: 

For each input DNA strand the output is an integer, on a separate line, 
which represents the minimum cost for slicing the strand into the given list. 
 
 
 
EXAMPLE INPUT: 
4 14 
2 5 2 5 
5 32 
3 3 5 5 16 
0 0 
 
 
EXAMPLE OUTPUT: 
27 
64 
 
 
 
 
 
 
 

ACM-SPPC-ProblemG  15/09/2007 2



 

 
 

Problem H 
Automatic Marking 

 
You must be familiar with binary trees and all their operations, but this 

problem deals with a less popular structure, which I shall call myTree.  There 
are three possible organizations of a myTree: 

1. an empty tree.  That is, a tree with no nodes. 
2. a tree whose root node has a single data item, say K, and two children. 

Each of its two children is a myTree. Any values in the left subtree are 
less than or equal to K, and any values in the right subtree are larger 
than K. 

3. a tree whose root node has two data items, say K1 and K2 , and three 
children. K1 < K2 . Each of its three children is a myTree. Any values 
in the left subtree are less than or equal to K1, any values in the middle 
subtree are larger than K1 and smaller than or equal to K2 , and any 
values in the right subtree are larger than K2. 

All internal (non-terminal) nodes have two or three children, although some 
may be empty. One way to represent such a tree is to use level-order 
traversal, starting at the root node, with the content of each node enclosed in 
parentheses.  An empty tree is represented by a pair of parentheses that 
encloses nothing. The following figure demonstrates an example of such a 
tree, along with its representation, with values in the nodes being uppercase 
characters chosen in the range of “A” to “Z”, inclusive.  
 

 
 

(M R)  (C)  (N P)  (T X) (A) () () () () (T) (U) () () () () () () () 
 
A lecturer of “Data Structures 101” likes to test her students 

understanding of the myTree structure by asking them to identify all possible 
ways to assign a missing value in a given myTree.   

ACM-SPPC-ProblemH  15/09/2007 1



 

 
 
Examples of such a question would be: 

1. a tree “(M R)  (C)  (N P)  (? U) () () () () () () () ()”, for which the 
answer should be the letters “S” and “T”. 

2. a tree “(M R)  (X)  (N O)  (? U) () () () () () () () ()”, for which the 
answer should be “This is not a myTree”.  The reason is that X > M.  

3. a tree “(M R)  (N O)  (? U)”, for which the answer should be “This is 
not a myTree”.  The reason is that nodes with two values should have 
three children in a myTree structure, which is violated in this question. 

Your task is to write a program to answer such a question. 
 
INPUT: 

The input contains descriptions of a number of myTree structures to 
be processed. The information for each tree is given in a single line as a 
series of properly matched parentheses. Each pair of matched parentheses 
encloses zero, one, or two characters selected from uppercase letters in 
the range of “A” to “Z” and “?”. Each line contains exactly one “?”.  The 
selected characters and parentheses are separated by single spaces.  

The input is terminated by a line of a set of matched parentheses, 
which encloses a zero, for which no output is to be produced. 
 
OUTPUT: 

For each input tree the output is a single line with: 
1. a listing of possible uppercase letters sorted in increasing order that 

can replace the “?” in the given tree, or 
2. the string “This is not a myTree”, if the given data does not conform 

to the given specifications. 
 
EXAMPLE INPUT: 
( M R )  ( C )  ( N P )  ( ? U ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( M R )  ( X )  ( N P )  ( ? U ) 
( M R )  ( C )  ( ? U ) 
( M R )  ( C )  ( N P )  ( ? X ) ( A ) ( ) ( ) ( ) ( ) ( S ) ( U ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  
( 0 ) 
 
EXAMPLE OUTPUT: 
S T 
This is not a myTree  
This is not a myTree 
S T 

ACM-SPPC-ProblemH  15/09/2007 2



 

 

 
 

Problem I 
Mr. Thompson’s Problem 

 
 Mr. Thompson keeps the pupils in his class well behaved by dishing out 

a challenging class-quiz when they get rowdy.  The quizzes are usually 
created as a variation of a familiar problem, cunning eh! He has recently 
used a typical 1st grade exercise in which pupils are given a sheet of paper 
with numbers scattered on it and a special number inside a box, as shown, 

 
and are asked to connect pairs whose sum is equal to the number in the box 
with each number outside the box to be used at most once. A possible 
perfect answer is shown in colors.  Mr. Thompson’s quiz looks similar 
except that a pair of numbers can be connected if their sum equals any of the 
numbers in the box, 
 

 
 
and the challenge is to find the largest number of possible connections.  A 
pupil who rushes to connect “1 to 5” will miss the chance to obtain two (2) 
pairs by connecting “5 to 5” and “1 to 2”, which is the largest possible. 

ACM-SPPC-ProblemI  15/09/2007 1



 

 
 

 
Mr. Thompson wants to have a large number of these quizzes, but he 

does not have the time to find the right answer for each one.  Your task, as 
an admirer of your primary school teacher, is to help by writing a program to 
calculate the largest number of possible connections for him.  The input to 
your program consists of a collection C of n integers, and a set S of m 
integers.  A connection between elements in C is valid if the sum of the 
corresponding integers is an element in S with the constraint that each 
element in C may be used at most once.  A value in S may be used more 
than once. 

 
 
INPUT: 

The first line of the input contains a single integer between 1 and 100, 
inclusive, which is the number of problems that follows.  Each problem 
description consists of three lines:  The 1st line contains two integers, n 
and m that represent the sizes of the list C and the set S, respectively. The 
2nd line contains the n integers of C, and the 3rd line contains the m 
integers of S.  The values in each line are separated by single spaces. 2 < 
n < 200,  and 1 < m < 100. 
 
OUTPUT: 
 For each problem, the output is a single line consisting of an 
integer that is the maximum number of possible pairings. 

 
 
 

EXAMPLE INPUT 
2 
6 4  
1 2 3 4 4 5 
6 9 3 5 
5 4  
1 2 3 4 5 
6 9 3 5 

EXAMPLE OUTPUT 
3 
2 
 

 

 
 

ACM-SPPC-ProblemI  15/09/2007 2


	coverpage
	problemA
	problemB
	problemC
	your program must calculate a count of 6.

	problemD
	problemE
	problemF
	problemG
	problemH
	problemI

