
1 New Zealand Programming Competition 25/7/1998

ACM PROGRAMMING CONTEST
SOUTH PACIFIC REGION

1998
GUI Problem ProblemSolving

Note: this problem will not count as a "solved problem" for thepurposes of your total score. Instead, it
will be scored as follows:
• You can make as many submissions as you want until youget it correct.
• At that point, you will be told that it is correct and you mustmake no more submissions.
• The judges will assess your program's user interface,either at the time of accepting it or some time later,
and will assign ascore from 0 to 10 depending on its quality.
• Your final score for the program will be -(30 + 3*(quality score))minutes; that is, between 30 and 60
minutes will be taken off the totaltime for your other problems.

Suppose you work for a firm which has a lot of customers, andoccasionally some of these customers have
problems. Your firm has decidedto deal with these problems in a standardised way: in fact, they
havedetermined thatthe customer must be told one of the following five responses:

• The firm will investigate the problem further.
• He or she is imagining things - there is nothing wrong, as far asthe firm can see.
• It is the fault of the electricity supplier, Mercury Energy.
• The customer is not in the database so the firm has no record ofany transaction.
• The firm will give the customer their money back.

Your previous attempt at computerising this approach, anartificial intelligence program, has been a
complete failure as it alwaysgave the customer their money back. The current plan is to have anoperator
sit in front of a screen and be presented with a description of the problem. The operator mustthen decide
which of the five responses to give. For example, with atext-based system, they could type "D" for
"investigate further", "F" for "nothing wrong", "B" for "Mercury Energy", etc. Your system, however,
mustuse a well-designed Graphical User Interface that anyone can use with notraining.

Input will be from a file called GUI.dat and will cosist of anumber of customer problems. Each customer
problem will be given by one ormore sentences of text - from 20 to 500 characters - terminated by
astandard end-of-line sequence. Thetext for each problem must be displayed on the screen in such a way
thatthe operator can read it (several times if necessary), and then take someaction which will determine
the solution (eg select something on the screen). For each of the five possible solutions it must be
immediately obvious which action to take. When an action is taken, the problem must be cleared offthe
screen and the next one displayed. The end of the placement problemswill be indicated by aproblem
statement consisting of a single #. Your program must terminatewhen it reads this end statement.

There is no output. Only the user interface is required, so theresponse is "thrown away" after being
entered.

2 New Zealand Programming Competition 25/7/1998

Problem A Findingwords

A common problem when processing incoming text is to isolate thewords in the text. This is made more
difficult by the punctuation; wordshave commas, "quote marks", (even brackets) next to them, or hy-
phens in the middle of theword. This punctuation doesn't count as letters when the words have to
belooked up in a dictionary by the program.

For this problem, you must separate out "clean" words from text, that is,words with no attached or
embedded non-letters. A "word" is any continuousstring of non-whitespace characters, with whitespace
characters on eachside of it. For this problem, a "whitespace" character is a space character or an end-of-
line character, orthe start or end of the file (so that, for example, if the file is "A B",where there is a space
character between the A and B but no other, thenthere are two words, "A" and "B").

Input will be from standard input (ie the keyboard or a redirected file)and will consist of lines with no
more than 60 characters in each line.Every line will be terminated by a character which isn't whitespace
(whichwill be followed immediately by anend-of-line character). The input will be terminated by a line
consistingof a single #.

Output, which must be written to standard output (the screen), must be thelines of the incoming text, with
the punctuation stripped away from eachword. "Punctuation" is any character which is not a letter (a - z
and A -Z) or a whitespace character - your program must not change the letters and space characters
(although spacecharacters at the ends of lines will be ignored by the judges). Whenpunctuation occurs in
the middle of a word (ie there is no whitespacecharacternext to it), it must be simply removed - see what
happens to the word"doesn't" in the example. A word which consists entirely of punctuationwill therefore
be removed entirely. There is a special rule for a hyphen("-") which is the very last characterin a line -
the word part before the hyphen, and the first word part on thenext line, form a single word, and this must
be written on a line by itself(so that no line is ever lengthened). There will always be a space beforethe
word part on the first line, and a space after the word part on the second line.

EXAMPLE
Input
A common problem when processing incoming text is to isolate
the words in the text. This is made more difficult by the
punctuation; words have commas, "quote marks",
(even brackets) next to them, or hy-
phens in the middle of the word. This punctuation doesn't
count as letters when the words have to be looked up in a
dictionary by the 12345 "**&! program.
#

Output
A common problem when processing incoming text is to isolate
the words in the text This is made more difficult by the
punctuation words have commas quote marks
even brackets next to them or
hyphens
 in the middle of the word This punctuation doesnt
count as letters when the words have to be looked up in a
 dictionary by the program

3 New Zealand Programming Competition 25/7/1998

Problem B Y3KProblem

We have heard a lot recently about the Y2K problem. According tothe doom sayers, planes will fall out
of the skies, businesses will crashand the world will enter a major depression as the bugs in software
andhardware bite hard. While this panic is a very satisfactory state of affairs for thecomputing
profession, since it is leading to lots of lucrative jobs, itwill have a tendency to bring the profession into
disrepute when almost noproblems occur on 1/1/00. To helpavoid this unseemly behaviour on any future
occasion, you must write aprogram which will give the correct date for (almost) any number offuture
days - in particular, it must correctly predict the date N daysahead of any given date, where N is a number
less than 1,000,000,000 andthe given date is any date before the year 3000.

Remember that, in the standard Gregorian calendar we use, there are 365 days in a year except for leap
years, when there are 366.Leap years are all years divisible by 4 and not 100, except that thosedivisible
by 400 are leap years - thus 1900 was not a leap year, 1904, 1908... 1996 were leap years, 2000 will be a
leap year, 2100 will not be a leap year, etc. The number of days ineach month in a normal year is 31, 28,
31, 30, 31, 30, 31, 31, 30, 31, 30,31; in a leap year, the second month has 29 days.

Input will be from standard input (ie the keyboard or aredirected file) and will consist of lines containing
four numbers,separated by one or more spaces. The first number on each line will be thenumber of days
you have to predict (between0 and 999999999), followed by the date in the format DD MM YYYY
where DD isthe day of the month (1 to 31), MM is the month (1 to 12), and YYYY is theyear (1998 to
2999). The input will be terminated by a line containingfour 0's.

Output, which must be written to standard output (the screen),must be one line for each line of input,
giving the date which is therequired number of days ahead of the date in the input line, in the sameformat
as the dates for the input.

EXAMPLE
Input
1 31 12 2999
40 1 2 2004
60 31 12 1999
60 31 12 2999
146097 31 12 1999
999999 1 1 2000
0 0 0 0

Output
1 1 3000
12 3 2004
29 2 2000
1 3 3000
31 12 2399
27 11 4737
0

4 New Zealand Programming Competition 25/7/1998

Problem C World CupSuccess

A certain country, dissatisfied with their team's performance inthe Soccer World Cup, has decided to
ensure success next time by automatingtheir goalkeeper's performance. The plan is to have a computer
track the position of the ball at all times, and if the trajectory of the ball issuch that it will enter the goal
mouth, then the movement the goalkeeperneeds to make will be computed, and a signal sent to the
goalkeeper, who will be secretly wired so that theincoming signal will trigger a voltage pulse to his leg
muscles and thespasm will cause him to move in the right direction with the rightacceleration. Your job
is to compute the necessary movement to block the goal, in termsof direction and acceleration.

For this initial trial, only balls at ground level will beconsidered, and the goalkeeper's movement will be
considered to be auniform acceleration from a standing position. The goalkeeper will berepresented by a
line, one endof which must be at the exact spot the ball would cross the goal mouth, atthe exact time this
would happen. The trajectory of the ball is found bymeasuring its position at two points - the straight line
through these points then defines the path of theball. For the purposes of computation, a coordinate
system is used asshown, with the (0,0) point being the centre of the goalkeeper's initialposition. The
goalkeeper is 40 units wide.

Goal

Path of ball

Measured positions
X

X

Goalkeeper
(Initially)

Goalkeeper's movement

x-axis

y-axis

(100,0) (-100,0)

Input will be from standard input (ie the keyboard or aredirected file) and will consist of lines each
describing an attempt atgoal. There will be six integers on the line; the first two give the (x,y)
coordinates of the first point on the path of the ball, thesecond two give the (x,y) coordinates of the
second point on the path ofthe ball, the fifth number gives the number of millisecond between thefirst
point observation and the second point observation, and the sixth number gives the number
ofmilliseconds from the first point observation until the goalkeeper startsto move. The fifth and sixth
numbers will always be positive with thesixth number greater than the 5th number. The path of the ball
will always be such that the ball will enter thegoal unless stopped by the goalkeeper (ie the y-coordinate
of the secondpoint will always be less than the y-coordinate of the first point, and thex-coordinate of
thepoint where the line crosses the x-axis will be between -100 and 100). Theinput will be terminated by
a line consisting of six 0's.

You must work out the constant acceleration the goalkeeper mustmake in order for his closest edge to be
at the exact point the ball's pathcrosses the x-axis, at the exact time the ball reaches that point.The
acceleration must be positive if the goalkeeper must move to his right,and negative if he must move to his
left (actually this isn't correctmathematically - the acceleration will always be positive - but it is usedto
indicate direction).Note that if the ball's path intersects the original position of thegoalkeeper then the
acceleration must be 0. The following three formulae(for uniformly accelerated objects which are
initially stationary) may beof assistance to those who have forgotten their elementary Physics:

speed = acceleration x time
distance = 0.5 x acceleration x time2

speed2 = 2 x acceleration x distance

Output, which must be written to standard output (the screen),must be one line for each line of input,
giving the constant accelerationneeded to two decimal places. There will always be a finite answer, that
is, the time the goalkeeper starts to move will be at least 1ms before the ball arrives at the x-axis.

5 New Zealand Programming Competition 25/7/1998

EXAMPLE
Input Output
-10 100 -20 80 2 4 -2.22
0 150 6 100 1 2 0.00
0 0 0 0 0 0

6 New Zealand Programming Competition 25/7/1998

Problem D WordProblem

In a popular puzzle, often found in newspapers, a set of letters isprovided, and the challenge is to find
how many different words can be madefrom these letters. This problem is designed to take all the fun out
of itby automating the process.

Input will be from standard input (ie the keyboard or aredirected file) and will be in two parts. The first
part will be thedictionary which is to be used for the problem. It will have less than1000 lines, and each
line will contain one word of up to 10 characters in lowercase.The words will be in alphabetic order. The
end of the dictionary will beindicated by a line consisting of a single # character. After thedictionary there
will bedata for several puzzles, each on a separate line. Each puzzle data linewill have from one to 7
lowercase letters, separated by one or more spaces.The list of puzzles will be terminated by a line
consisting of a single#.

Output, which must be written to standard output (the screen),must be one line for each puzzle data line
in the input, giving the numberof different words in the dictionary which can be formed by arranging
someletters selected from the letters in the puzzle line.

EXAMPLE
Input
ant
bee
cat
dog
ewe
fly
gnu
#
b e w
b b e e w w
t a n c u g d
#

Output
0
2
3

7 New Zealand Programming Competition 25/7/1998

Problem E BoardGame

A surprisingly complex game can be played between two players ona simple one-dimensional board with
up to 60 holes; each player hascounters of one colour (indicatedhere by letters like W or R) which go into
the holes. Players can move anyone counter any number of holes, up to the next counter on the board
(counters may not bejumped, only empty holes). The object of the game is to block the otherplayer so he
or she has no allowable moves. With one counter each, thefirst player can force a win on the first move
by moving their counter next to the other counter.Whenever the second player tries to move away, the
first player moves next to them. Eventually the second player will have no moves left. Ifthe first player
does not take this first move, then the second player canforce a win. Convince yourself that these
statements are true in thisexample:

W R

With two counters each, the game is more complex. For example,in the following situation, if W moves
first they can force a win by movingthe leftmost counter one square to the right, or the rightmost counter
onesquare to the left. Any other move (for example, moving one of the W counters next to an Rcounter)
will mean than R can force a win. Try it and convince yourselfthis is true.

W R W R

Even more complex situations arise with more counters; forexample, draws can occur (ie neither player
can force a win) as in thefollowing case:

W R W RW R

It is embarrassing that it is difficult to see how to win such asimple game. Please write a program so that
I can play this safely byalways knowing the winning move, or, when there is no winning move,
whetherthe game is lost or can bedrawn. Assume each player always makes the best move.

Input will be from standard input (ie the keyboard or aredirected file) and will consist of lines each
containing a gamedescription, which will be a string of up to 60 digits. Each digit will be 0, for an empty
hole, or1, for a counter belonging to the first player to move, or 2, for a counterbelonging to the second
player to move. Both players will have the samenumber of counters, and the total number will always be
at least two less than the totalnumber of holes in the board. The input will be terminated by a
lineconsisting of a single zero.

Output, which must be written to standard output (the screen),must be one line for each line of input.
This line must either be 0, ifthe game cannot be won but can be drawn, or 2, if the first player willlose
whatever move is made, or a 1, followed by a description of the winning move. The move description
mustbe given by two numbers, the first giving the hole number the piece to movestarts in, and the second
giving the hole number it is to be moved to,where the holes are assumed to be numbered from left to right
with the leftmost being number 1. If thereis more than one winning move, give the one which involves a
move from thesmallest numbered hole; if there is still more than one move possible, give the one which
involves a move to the smallest numbered hole.

EXAMPLE
Input
000200100000
000100200102
000010201002
000010200102
001020020001100002000
0

8 New Zealand Programming Competition 25/7/1998

Output
1 7 5
1 4 5
1 5 4
2
1 13 15

9 New Zealand Programming Competition 25/7/1998

Problem F Anagrammatic Primes

A number is "prime" if it has no divisors other than itself and1. For example, 23 is prime and 35 is not
prime because 35 = 7 x 5. Ifthe digits of a number are rearranged, then usually its primeness changes -
for example, 32 is not prime but 53 is. For thisproblem, you have to find numbers which are prime no
matter how yourearrange their digits. For example, all of the numbers 113, 131 and 311are prime, so we
say that 113 is an "anagrammatic prime" (also 131 and 311 are anagrammatic primes).

Input will be from standard input (ie the keyboard or aredirected file) and will consist of lines with a
single positive number,n, less than 10,000,000, on each line. You must find the firstanagrammatic prime
which is bigger than n and less than the next power of 10 above n. The input will be terminatedby a line
consisting of a single 0.

Output, which must be written to standard output (the screen),must be one number for each number in the
input. The number must either bethe next anagrammatic prime, as described above, or 0 if there is
noanagrammatic prime in the range defined.

EXAMPLE
Input
10
16
900
113
8000000
0

Output
11
17
919
131
0

10 New Zealand Programming Competition 25/7/1998

Problem G Hole Cutter 150 points

A factory which specialises in making cuts in the interior offlat sheets has just acquired a new cutter
which can make cuts much morefreely than any of their previous machines, and they want you to write
aprogram tocalculate exactly what has happened when a complex series of cuts are made.In particular,
they need to know the number of holes which are formed inthe sheet by the cuts. Here are some
examples of situations that can ariseafter cutting:

Two holes Two holes One hole One hole

Input will be from standard input (ie the keyboard or aredirected file) and will consist of several cutting
operationdescriptions. Each description starts with a number, N, giving the numberof cuts in the
operation, followed by N lines giving the actual cuts. The number N will always beless than 100 and
greater than 1. Each cut will be given by four wholenumbers separated by one or more spaces, the first
two giving the (x,y)coordinates of the start of the cut line and the second two defining the end of the cut
line; thecoordinate values will always be whole numbers less than 10000. You shouldassume the points
are always internal to the sheet, never on the boundary.Each cut willbe parallel to the x or y axis of the
table. The input will be terminatedby a line consisting of a single 0, ie a cutting operation description
withN = 0. The first example given below describes the lefthand pictureabove.

Output, which must be written to standard output (the screen),must be one number for each cutting
operation description in the input,giving the number of distinct holes in the sheet after the cuts. Note
thatthe minimum area of any hole is 1square unit.

EXAMPLE
Input
6
1 0 1 1
2 0 2 2
3 1 3 2
1 0 2 0
1 1 3 1
2 2 3 2
2
0 1 2 1
1 2 1 0
0

Output
2
0

11 New Zealand Programming Competition 25/7/1998

Problem H Colour Circles
A very colourful one-person game can be played as follows.First a set of colours is selected then a set of
circles is drawn usingsome or all of the colours, with duplicates possible - there are at leastas many
circles as colours. These circles are then connected together in any way by coloured arrows- any number
of arrows, with any colours, may be used to connect any pairof circles. For example, if we use the four
colours R, G, B, and Z andfour circles then we could have the following situation:

R

G

B

Z

RZ G

B

R

ZB

Three different circles are then picked from the set; two ofthem have a counter placed inside, while the
third is the "target" circle.A counter may be moved from one circle to another along an arrow (in
thecorrect direction), only if the other counter is not in the circle being moved to, and the colour of
thearrow is the same as the colour of the circle the other counter is in. Acounter may be moved several
times in succession - they don't have to bemoved alternately. The aim is to get one of the counters in the
target circle, in the least number ofmoves; if the target circle can't be reached, the game is"impossible".

For example, in the picture above, if one counter is in theB circle, the other counter is in the Z circle, and
the target is the Gcircle, then the game can only be won by moving the Z counter to the Rcircle (since a B
arrow runs in that direction), which makes it possible to move the B counter to the Zcircle along the R
arrow, and the R counter can now be moved to the Gcircle along the Z arrow, for a total of three moves.

Input will be from standard input (ie the keyboard or a redirected file)and will consist of descriptions of
several games, using numbers instead ofcolours. The first line of each game description contains five
numbers, N,R, S, T, M where N is the number of circles in the game (they will be numbered 1 toN, with
N <= 100), R and S are the numbers of the circles the two countersstart in, T is the number of the target
circle, and M is the total numberof arrowsconnecting the circles (M <= 5,000). After this are several lines
(maximumlength 60 characters) containing N numbers giving the colours of thecircles in order (1 to N),
with up to 20 numbers per line, separated by oneor more spaces. The colours are denoted by numbers
from 1 to N - some of these numbersmay be unused. Then come M lines which define the arrows, in no
particularorder. Each contains three numbers; the first is the number of thestarting circle, the second the
number of the ending circle, and the third is the colour of the line. The inputwill be terminated by a line
consisting of a five zeroes. The firstexample below describes the picture above.

Output, which must be written to standard output (thescreen), must be one number for each game
description giving the minimumnumber of moves to complete the game, or 0 if the game is impossible.

EXAMPLE
Input Input Continued
4 2 3 4 7 4 1 5
1 2 3 4 4 5 3
1 4 3 5 1 4
1 4 4 3 2 1
2 3 1 3 2 2
3 1 2 5 3 3

12 New Zealand Programming Competition 25/7/1998

4 2 3 3 5 1
4 3 2 0 0 0 0 0
4 3 1
5 3 4 1 8 Output
2 3 2 1 4 3
2 1 2 4

