1996 South Pacific Programming Competition

PROBLEM A Wily Hacker's Problem

You have been assigned the job of checking the country's security by trying to break the DES-like
encryption scheme which is used for secret messages. There is a bonus of $100,000 if you do manage to
crack it. Even though you have some keys and some samples of encrypted messages, the job looks
impossible because you don't have the algorithm. Then you have a stroke of luck; working late one
night, you see on the chief's desk a diagram of the encryption scheme used, and after a moment's thought
you see that there is a fatal flaw, and the scheme is easy to crack. Here is the diagram:

Ml M2 M3 M4
<K1 @ <K4

Cl C2 C3 Cd

You know that the standard used is to encrypt a 64-bit message M (divided into four 16-bit parts M1, M2,
M3, M4 in order from left to right) into a 64-bit cryptogram C (divided into four 16-bit parts C1, C2, C3,
C4) under the control of a 64-bit key K (divided into four 16-bit parts K1, K2, K3, K4), and that the
encryption function uses 3 types of operations:

s exclusive-or, marked with the symbol #;

« addition modulo 2716 (ie ignoring overflow), marked with the symbol +;

« circular left shift marked with the symbol <K, where K is the number of bits moved (eg the 16-bit word
1010010001000010 under the operation <5 becomes 1000100001010100).

All these functions operate on 16-bit operands.

The plaintext and encryptions which you know are given in the examples below.

The input is from the file PROBLEMA.DAT and consists of several pairs of cryptograms and keys. Each
line consists of a cryptogram, composed of 16 hexadecimal digits (64 bits) and, after one or more blank
characters, the 16 hexadecimal digits (64 bits) of the encryption key used to produce that cryptogram.
The message is terminated by a line consisting of a single # character.

For each line of the input file, your program must write the ASCII characters (note that each ASCII
character represents two hexadecimal characters) of the messages (plaintext), representing the result of
decrypting the cryptogram on the corresponding line of the input file. You may assume the decryption
will always result in a set of printable ASCII characters.

EXAMPLE

Sample Input

6742a447d483868e 1111222233334444

4ced98bf8eb91895 feedfldOfacef00d

1

Output for this Input

STUDENTS

TEACHERS

1996 South Pacific Programming Competition

PROBLEM B Mastermind

Suppose we have a board with 5 holes in which to place coloured pegs chosen from 8 colours. Some of
the pegs may be the same colour.

One player (secretly) chooses the colours of the pegs to be placed in the 5 holes, The other player has to
guess the colours of the pegs. For each guess, the second player is told the number of pegs whose colour
and hole is guessed correctly, and the number of pegs whose colour is guessed correctly, but the hole is
wrong. For example if the board has colours 26 56 4 and the guess is 1 1 2 3 4, then the reply will be
that there is | peg in the right place, and 1 of the right colour.

Intelligent programs can be written to determine the solution in 6 queries or less. Your job is not writing
such a program (I'm sure you could do it we'll leave it for another year) but to provide a program for
checking if solution programs really work. You will be given a set of guesses and the responses, and you
must find if some layout of the colours is compatible with the guesses and responses, and whether this

solution, if it exists, is unique.

Input will be from a file PROBLEMB.DAT and will consist of sets of data. Each line of data contains 7
integers separated by one or more spaces; the first 5 give a "guess” of the & colours for the 5 pegs and are
integers from 1 to 8 inclusive, and the last two give the response; the first number counts the number of
completely correct guesses and the next number counts the pegs whose colours have been guessed
correctly, but not their positions - these last two numbers will be from 0 to 5 inclusive. Each data set is
terminated by a line consisting of seven 0's; there will be no more than 10 lines in a dataset, The file will

be terminated by an empty data set (ie a second line of 7 0's).

Output will be one line for each data set, which will either be 5 digits separated by single blanks, giving
the 5 colours of the problem solved by the data set, or the words "No selution” or "Non-unique solution",
if no solution, or a non-unique solution, can be found.

EXAMPLE
Sample Input
1123411

SOOI = O L
SON—ChWWR — O R WWN
COM O ~-IR AoV
SO DMNOON00 LA -] W OO0 Lh -]
CORLNOCRPRANOLRL,OL LD
SCOWRORNMOD—=OSRAN—O
COoONCOCOOONW—OOoOODNNW

Output for this Input
26564
Non-unique solution
No solution

1996 South Pacific Programming Competition

PROBLEM C Coins

In a certain country, it has been decided to do away with banknotes as much as possible. The basic coin
isa $1 coin. The coins increase in value, and each coin has 10% larger radius than the next largest coin
(they all have the same thickness and are made of the same material). It is desired to make sure that as
many values as possible can be made by presenting coins, up to a weight of N single dollar coins. For
example, if N = 4.5 and there are two coin denominations, $1 and $4, then any amount up (o $10 can be
made from coins weighing, in total, less than 4.5 dollar coins, but $11 can't be so made, so the smallest

banknote must be $11,

The maximum weight N has not been decided (but it is definitely no more than 8), nor has the number of
different coin denominations (but it is definitely no more than 4). Your job is to write a program so that
various values can be worked out. Input will be from the file PROBLEMC.DAT and will contain lines
describing several different scenarios. Each line contains two numbers, separated by one or more spaces.
The first number gives N, the maximum weight of coins allowed (in terms of the $1 coin), which could
have a fractional part (no more than one decimal place). The second number is an integer giving the
number of different coins. The list of scenarios is terminated by a line containing two zeroes.

For each input line you must output a line describing the solution which leads to the largest possible
value for the smallest banknote, If more than one solution produces the same value for the smallest
banknote, you must output the solution which leads to the smallest value for the coin of greatest value; if
there is still a non-unique solution, the one which gives the smallest value for the next largest coin, ctc.
Your solution must list the value of the smallest banknote, then the values of the coins in decreasing

order (ending with 1 for the $1 coin).

EXAMPLE
Sample Input
52

453

54

0

o o=

utput for this Input
1131

19851
81251851

1996 South Pacific Programming Competition

PROBILEM D Contour Painting

A shape is represented by drawing its outline contour in a two dimensional grid, as illustrated in the
figure below. The points of the contour are specified by the same character which can be any printable
character except a space. In the figure below this character is X, All the other points inside and outside
the shape are represented by spaces. The contour is connected, ie any two points on the contour can be
reached from one another by travelling vertically, horizontally and diagonally. There will always be some
empty spaces inside the contour. The aim of this problem is to "paint" either the outside of the contour or

its inside.

:4.9:9:9.9.9.9.9.9 4
XXXX XX
X X
X X XXXXXXX
XXXXXXXX XX
X X XXXXXXX
X X
XXXX XX
):$.9.0.9.9.9.9.9.9.¢

The contour can always be broken into regions which are straight, a concave cornet, or a COnvex corner,
and in the figures below these are "painted" with the character *. Note that the "paint” is added on one
side of the contour in such a way that every horizontal or vertical neighbour of each contour point is
either another contour point or a *, and the least possible number of *'s is used.

* %k k
* kK Kok k ok XXX *
XXX XXXX X*
straight concave corner convex corner

A contour can be painted either from inside or from outside. The painting side is specified by the
presence of the character, which is different from space and from the character used for the contour,
inside or outside the contour as shown in the figures below. This character is used for the painting, and it
is removed from the grid once the painting is done (or becomes part of the painting).

XXXXXXXXXX XXXXXXXXXX interior
XXXX XX) 9.0 0. CEEREEID V¢ painting
X % X Kk k& * * %Y
X X XXKXXXXX X*dkxxd &k Xk *AXKXKXXXX
XXXXXXXX XX XXXXXXXK* LD O ¢
X X XXXXXXX Xtdhhhayx *XAXXXXX
X X Xk * * * kY
XXXX XX KXXX**kkkkx XY

XEXXXEXXXX XXXXXXXXXX
before painting after painting

khkkkkkkkkxk exterior

XAXXXXXXXX * FAAXXXXXXEKXK** painting
XXXX XX *XXXX XX*
X % *Y Kkkkh kK
X X XXXEXXX *X X XXXXXXX**
XXXXXXXX XX 1.9:9.4.9.0.9.9.4 XX*
X X XXXXXXX *X X XXXXKXEX**
X X ®Y Nk ko ok Kk
XXXX XX *XXXX XX*

XXX XXXKXXXX L3:0.9:9.6.9.9.9.¢.9. &84

khkkhkhkkkkk

before painting after painting

1996 South Pacific Programming Competition

Your program must read contours from a file named PROBLEMD.DAT. Each contour will be
constructed from a single symbol and the contours will be separated from each other by two lines which
are either blank (no characters or with just space characters) or have a painting symbol for the
upper/lower contour. The lefimost character of each line will never be a contour symbol. Each contour
will contain a single painting symbol. There are at most 30 lines (including the starting and ending lines
with no contour symbol) and at most 80 characters in a line for each contour. The file will be terminated
by an empty contour - this will be two adjacent blank lines after a line which is blank or has a single
painting symbol..

Your program must paint each contour with the painting symbol, interior or exterior according to the
position of the painting symbol, and output the painted grid. Your output must be exactly the same as the
input except that some of the space characters have been replaced by the appropriate painting symbol and
the painting symbols have been removed (if necessary).

EXAMPLE
Sample Input

XEXXXXX
X * X
XXXXXXX

0 X
QQ
QOO0

Output for this Input

XXXXXXX
Wkrkk*X

XXXXXXX

X
X0X
X0 OX
ZQ0000X
XX XXX

1996 South Pacific Programming Competition

PROBLEM E Trains

Two towns T1 and T2 are connected by a double railroad. The distance between T1 and T2 is d meters.
From T1 to T2 trains leave every tl seconds. From T2 to T1 trains leave every t2 seconds. The trains
from T1 to T2 have a speed of vi m/s. The trains from T2 to T1 have a speed of v2 m/s.

Your task is to write a program that computes the number of train "rendezvous” on the railroad which
links T1 and T2, and which occur during the time interval [0, tf] seconds. A train "rendezvous” occurs if
two trains pass each other while heading in opposite directions, or one arrives at a station at the exact
instant that another train leaves that station.

We consider that:
a) at time 0 two trains are leaving (from T1 to T2, and from T2 to T1);

b) the input and output data are integers.

Input will be from a file PROBLEME.DAT and consists of lines, each of which contains a single data set
in the format: d vl v2 tl t2 tf. There could be any number of blanks between the numbers on each line
The file will be terminated by a line containing a single number 0. You may assume tf, t1 and t2 are
chosen so there are no more than 100,000 train departures (note that there are 86,400 seconds in a day).
You may also assume "natural" limits on d, v1 and v2; d < circumference of Earth, vl and v2 < speed of

sound.

Output will be one lefi-justified number for each line of input, giving the number of train "rendezvous"
for that data set.

EXAMPLE

Sample Input

1055112

11324313

10000000 157 83 43 41 2000000
0

Output for this Input
6

9

201493194

1996 South Pacific Programming Competition

PROBLEM I Numbers

You have been contacted by a numerologist who needs your help to solve a basic problem of
numerology. Everyone knows that the true meaning of a word can be found by adding up the value of
each of its letters. This method will unlock the secrets of the Universe, if only people could work out
what language to use, and how to work out the value of each letter. The numerologist has solved the

second problem, and needs your help to solve the first.

His idea is to find the value of the letters by working on the words for numbers. The "true meaning" of
the name of a rumber must be the value of the number. For example, in English, the true meaning of the
word "STX" must be the number 6, ie

S+I+X=6,
where S, I and X are the values of the Jetters "S", "I" and "X". By finding values for letters so that we
have:
O+N+E= 1,T+W+O=2,,,,,N+I+N+E+T+Y+N+I+N+E=99,
the secrets of the Universe will be unlocked (he doesn't think we need to go past 99)! Unfortunately,
after many years of work, he has been unable to find letter values (with every letter having a different
value) which will work for numbers 1 to 13, and he suspects it is impossible to find any such values.
What he has reluctantly concluded from this is that English is not the correct language. He has just heard
of computers, and wants you to write a program which will find letter values which satisfy a set of
number words written in some language. If he can find a language in which there are letter values which
work for every number from 1 to 99, he will be famous (and live for ever - he is already rich from his

consultancy work for governments).

Input will be from the file PROBLEME.DAT and will consist of several number - word sets for different
languages. Each set will start with a line containing a number, giving N, the number of numbers for this
attempt, followed by one or more spaces then the name of the language for this set. After this there will
be N lines, each line having a number on it (less than 100) followed (after 1 or more blanks) by the name
of that number in the language for this set (less than 60 characters - only the letters A to Z will be used).
The file will be terminated by a line with an N which is 0.

For cach number - word set, you must output the name of the language on one line, then either
"Impossible" on the next line, or lines giving a set of values for the letters which will make the sum of the
letters for each number word equal the number it represents. The letters used in the number words must
be listed (one per line, in alphabetic order), then a space, then the value left-justified, as an integer if it is
integral, otherwise rounded to two decimal places. Any solution will do, if more than one is possible. A
solution is impossible if there is no set of values for the letters, such that each letter has a different value,
which gives the number words the correct values.

EXAMPLE over the page

1996 South Pacific Programming Competition

Sample Input
3 Testl

1 AB

2 BC

3 BACB

3 Test2

1 AB

2 BC

4 BACB

3 Test3

1 AB

2 BC

4 BACC

3 Test4

I AB

2 BC

6 BACC

12 English1-12
1 ONE

2 TWO

3 THREE

4 FOUR

5 FIVE

6 SIX

7 SEVEN

8 EIGHT

9 NINE

10 TEN

11 ELEVEN
12 TWELVE
0

Output for this Input
Testl

Al

B0

C2

Test2
Impossible
Test3
Impossible
Test4

A 1.50

C2.50
Englishl-12
E3

—~na=
__Ll(-ho-hb—-c\o

HEg<CHnEOZT
SRERELA

1996 South Pacific Programming Competition

PROBLEM G Phone Words

Inspired by recent advertising, you have decided to write a program to interpret phone numbers as words
so they can be remembered easily (for example "NUMBERS" for 6862377). Even better, you have
realised that some money could be made this way - for a small fee, you will give people a "word" version

(a mnemonic) of any phone number they give you.

To prevent competition and further increase your revenue, you have had the truly brilliant idea of making
customised number-letter conversions. As a special bonus, you will give your customers a special mask,
made just for them, printed with the letters you have chosen to associate with each digit. They can lay
this mask on top of their push-button phone (there are holes for the buttons to come through) so that the
letters for cach digit are clear. Then, for each phone number they commonly dial, they can buy a
mnemonic based on your letters. Since the masks are different for each customer, they will all have a
different set of mnemonics for the same phone numbers (for example, 3257226 could be RAWMEAT for
one customer and POISOND for another) and they won't be able to cheat by using mnemonics they
haven't paid for (a mnemonic will always be written in upper-case letters with no spaces between the

separate words).

For the customer with the RAWMEAT mnemonic, the mask could be:
0=B,K.L,P 1=EGQ 2=AFE 3=DRZ 4=HSX
5=]W 6=IN,T 7=CM)V 8=UY 9=0

and for the customer with the POISOND mnemonic, the mask could be:
0=K,W 1=C,LU 2=N,0T 3=AEPX 4=Fl10Q,7Z
5=RB,LR 6=D,GM 7=HS 8 = (no letters) 0=V,Y

Input will be from the file PROBLEMG.DAT and will be in two parts, The first part will be a dictionary
of the valid words for this problem - there could be up to 1000 words in this dictionary; all words will be
written in 7 or fewer upper-case characters, one word per line, The words will be in alphabetic order.
This part of the input will be terminated by a line consisting of a single #. Afier this will be sets of Phone
Mask-phone number combinations, Each combination will start with 10 lines, each line containing from
0 to 5 upper-case letters separated by [or more blanks, which represents the phone mask. The first line
gives the letters (if any) corresponding to 0, the next the letters corresponding to 1, etc. Bvery letter will
appear once and only once in these 10 lines; the letters will be in alphabetic order on each line. After this
Mask description will be a set of 7-digit phone numbers, one per line. This list of phone numbers will be
terminated by a line consisting of the number 0. Then there will be another Phone Mask-phone number
set, and so on. The Phone Mask-phone number sets will be terminated by a line consisting of a single #

(instead of a line giving letters for 0).

For each phone number in a Phone Mask-phone number set your program either give the word
"Impossible” if no mnemonic can be designed for this number, or the mnemonics which can be
constructed for the number from the words in the dictionary, listed in alphabetic order with a single space
between each mnemonic. There must be no duplicates in the list. You may assume the words in the
dictionary resemble a random selection of normal English words and abbreviations (the only single letters
in the dictionary will be A, D, T and 8). There will never be more than 10 mnemonics for a single

number,

EXAMPLE over the page

Sample Input
A

ABLE
D
DON
MEAT

VY
3257226
3257228
3622530
0

#

Output for this Input
RAWMEAT REDMEAT

POISOND
Impossible

ABLERAW ADONRAW

1996 South Pacific Programming Competition

1996 South Pacific Programming Competition

PROBLEM H Hands together

A jeweller friend of yours has designed a truly beautiful clock with hands shaped like Mickey Mouse (for
the minute hand) and Minney Mouse (for the hour hand). When the two hands cross each other (as they
do once each hour, roughly), Mickey and Minney appear to kiss (isn't that sweet!). The mechanism 18
cleverly designed so that this action does not slow the clock down, but there is a certain amount of wear
on the hands and the lifetime of the clock may be limited. She wants you to work out the number of
times the hands will cross over a given time period {always less than a century).

Remember that there are 24 hours in a day and this is a normal 12-hour clock. There are 365 days ina
year except for leap years (all years divisible by 4), when there are 366. The number of days in each
month in a normal year is 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31; in a leap year, the extra day is
29th February. Daylight Saving is in operation in this state (sorry, Brisbane) and you may assume that it
always starts on the 4th Sunday in October (10th month - 2 am on this day becomes 3 am; the hands will
cross once as the clock is turned forward, assume they are turned forward exactly at 2 am) and comes off
on the 2nd Sunday in April (4th month - 2 am on this day becomes 1 am; again the hands cross as they
are wound back and assume this happens exactly at 2 am). Tomorrow is Sunday 15th October 1996 and

Sundays occur every seven days exactly.

Input will be from a file PROBLEMH.DAT and will consist of lines each containing a starting time and
date and an ending time and date. The starting date will always be in the future from today and the
ending date will always be before 2100. The format of each time and date will be:

TH:MM DD/MM/YYYY where HH = hour (00 to 23; 0 = midnight, 1 = 1 am, ..., 12 = noon, 13=1 pm,
.., 23 = 11 pm), MM = minute (00 to 59), DD = day of month (01 to 31), MM = month number (-01 to
12), YYYY = year (1996 to 2099). A midnight (00:00) time is assumed to be the start of a day - ie the
minute after 23:59 31/12/1999 is 00:00 01/01/2000. Every number will be two digits (leading zeros if
necessary), except for the 4-digit year. There could be any number of blanks on either side of the
numbers and separating symbols (: and /). The two times and dates on each line will be separated by any
number of blanks. An"impossible" time (between 2am and 3am on a day Daylight Saving starts) will
never be given; if an ambiguous time (between lam and 2am on a day Daylight Saving stops) is given,
treat is as the first occurrence of this time it the time is a start time, and the second occurrence if the time
is an end time. The end time/date will never represent a time instant preceding the start time/date. The
list of times and dates will be terminated by a line consisting of the number 99.

Output will be one line for each line of input, and will be a single number (left justified) giving the
number of times the hands cross between the starting time and date, and the ending time and date, taking
note of the facts above. If the hands are together at the starting time or ending time, count that as a

crossing.

EXAMPLE

Sample Input

00:00 15/09/1996 23:59 31/12/1996
02:00 15/09/1996 02:00 15/09/2000
01:00 13/04/1997 01:59 12/04/1998
02:01 09/04/2000 02:01 09/04/2084
99

Output for this Input
2376

32150

8013

675150

0

