Wtfl\ W{:Q’ﬁf s South Pacific Programming Contest 1995

Circuit Tracing Problem A

The simplest non-trivial junction of wires is one which connects three wires at one point. Quite
complex circuits can be created from these three-wire junctions. Below we show a fairly simple
example, together with a description of it made by alphabetically listing, for each junction, the
other junctions it is connected to.

B
C A: B C D D: A E F
. B: A C E E: B D F
C: A B F F: C D E
- E

There is a much more compact way of writing these descriptions using the facts that every junction
has precisely three neighbours (so the rows need not be labelled), and if A is connected to B, then
B is connected to A (so B’s list need not contain A, and so on). Also, since the letters A, B,...are
arbitrary, every circuit can be lettered so that A is connected to B, C, and D—hence the first row
is not needed at all. All that is really needed is:

C EF ETFTF

From this we can regenerate the original table (here the omitted entries which have been regenerated
are shown underlined):

A: B C D D A E F
B: A C E EE B D F
C: A B F E C DE

Write a program which reads circuit descriptions in the compact form and outputs the full table
for each circuit.

Input is from a file named PROBLEMA .DAT and contains several circuit descriptions in compact form.
Each description consists of a sequence of capital letters separated by spaces and/or newlines. The
descriptions are not explicitly separated because the process of expansion determines the end of
each description. The file is terminated by the character #.

Output for the nth circuit consists of a line reading “Circuit #n:” followed by one line for
each junction, in alphabetical order. FEach line should be of the form “w: z y z", where the
neighbours z, y, z are in alphabetical order and each preceded by a single space. There should be
no blank lines anywhere in the output.

Sample input Sample output
CbDC Circuit #1:
EFEF A: BCD
F # B: ACD
C: ABD
D: ABC
Circuit #2:
A: BCD
B: ACE
C: ABF
D: AEF
E: BDF
F: CDE

South Pacific Programming Contest 1995

Tele-Typos | Problem B

In the Good Old Days, when computers were rooms and required air conditioning, teletypes really
were typewriters at a distance from the main computer. Since characters really were typed onto
paper as the keys on such a teletype were pressed, there was no way to erase the display in the
event of typing mistakes. One popular way of showing that the delete key had been pressed was
to reprint the character that was thus deleted. For example, “LISRRT” appearing on the printout
would probably have arisen from the keystrokes L, I, §, R, delete, T and have been sent to the

computer as “LIST”,

Write a program which, given a dictionary of correctly spelled words and command lines from such
a printout, deletes all double letters that are due to typos and outputs the command lines in the
form in which they are sent to the main computer.

“Input is from a file named PROBLEMB.DAT, and consists of two types of lines, terminated by a line
containing only #. Both types of line are at most 80 characters in length. Lines starting with <
and ending with > are command lines to be corrected. Any other lines contain space-separated
words to be added to the dictionary, A dictionary word can be up to 20 letters in length, and the
dictionary can contain up to 500 words. No word appears more than once in these dictionary lines.

Apart from the <, >, and # characters mentioned, the only characters that appear in the input are
spaces and uppercase letters,

For each command line input, your program should output a line in exactly the same format as
the input line, with each misspelled word replaced by a word in the dictionary. The dictionary
consists of those words which have been added by dictionary lines before the command line being
processed.

It is possible that several different dictionary words may be viable corrections for a word in an
input command line. (For example, consider a dictionary containing the words BE and BELL with
the input BELEEL.) Your program should choose the word which requires the minimum number
of corrections. (Here BELL requires only 1, compared to BE’s 2.) However, occasionally several
dictionary words may all be formed with the same minimal number of corrections. In this case,
your program should choose the first word in alphabetical order.

It is also possible that, for some input word, no combination of typo removals can find a corre-
sponding dictionary word. This may indicate a deficiency in the dictionary or that what appear
to be spaces delimiting the input word may in fact be typos. In this case, your program should
instead output a line containing the message “Not in dictionary or spaces in error”.

Sample input Sample output

THE BAN LIST ' <BAN>

<BABBLLOON> <BABBOON LIST >

BALLOON BABBOON SIC Not in dictionary or spaces in error
<BABBELLOON LISRRT > < BAN THE LIST >

<BAL LOON>

< BAMMN THE LISRSSRT >
#

South Pacific Programming Contest 1995
Radio Broadcasting Systems Problem C

You run a small telecommurications company specialising in setting up private radio broadcasting
systems. These systems have one transmitter and many receivers. To keep the system as cheap as
possible, the transmitter must be centrally located and use the lowest possible power. Since the
transmitter radiates power uniformly, the optimum system design is to place the transmitter at the
centre of the smallest circle that encompasses all of the receivers. Also, because of the accuracy of
the measurements used, all coordinates, inclnding those of the transmitter, are integers.

The input comes from a file named PROBLEMC.DAT, and describes a number of broadcasting system
layouts. Fach begins with a single line containing the number of receivers, which may range from
one to fifty. Following this is one line for each receiver giving that receiver’s (z,y) coordinates,
where z and y are integers between 0 and 5000. The end of the input is denoted by a system layout
_ containing 0 receivers.

For each system layout print, on a single line separated by single spaces, the (z,y) coordinates of
the centre of the smallest circle enclosing all of the receivers, and the radius of that circle. The
centre’s coordinates must, of course, be integral, and the radius must be given rounded to two
decimal places. If the smallest circle can be placed in a number of possible positions, choose the
position with the smallest z coordinate. If there is still a-number of possibilities choose the position
with the smallest 4 coordinate. Mot FR4 gy ?

Sample input

2

10 11
i1 20
3

20 100
b0 50
160 100
0

Sample output

10 16 5.¢00
60 80 41.23

South Pacific Programming Contest 1995

Depot Placement Problem D

Your company runs a food delivery service in a large state. Your customers own shops in towns
all over the state. You are planning to build a large central depot from which to supply all of your
customers, and this will also need to be built in one of the towns. You need to place the depot
such that the total delivery time to all towns is minimised. Your delivery trucks take cne full load
of food to a shop and then return to the depot. The delivery time is the time taken to get from the
depot to the town and back again assuming that the driver takes the fastest possible route, and
takes precisely 30 minutes to unload the truck at the destination. The roads connecting the towns
are quite different in quality, and for some roads it takes longer to travel in one direction than the
other. There are even a number of one-way roads. To simplify all of this, you have estzblished for
each town a list of all the roads that lead out to other towns, and how long it takes to get to each

of these other towns.

Input comes from a file named PROBLEMD . DAT, and contains data for a number of states. Each state
description starts with a single line containing the number of towns in the state. Following this is
one line per town. Each of these lines contains the number of roads leaving the town, followed by
pairs of numbers containing the number of the town that the road ends at, and how long it takes
to get there (in minutes). The towns are numbered from 1 up to the total number of towns {which
is between 2 and 50).

. The maximum number of minutes for any road segment is 120 and the minimum is 10; the minimum
number of roads leaving any town is 1 and the maximum number is one less than the number of
towns in the state. There will be no more than one road directly connecting any two towns., The
input file will be terminated by a state description containing { towns.

For each state you must output a single line giving the number of the town from which the total
delivery time is minimum, and what that total delivery time is. If there are multiple towns with
the minimum, you must outpur the town numbers in ascending order with the total delivery time
at the end. All numbers output are to be separated by single spaces.

Sample input

70 4 b5

70 3 30 5 65
30 5 40 4 35
55 3 35 5 50
656 3 40 4 50

[T T .

N

36
i 256

O = N WwwwN o

Sample output

3 540
12120

South Pacific Programming Contest 1995

Isotope Ratios Problem E

The nuclens of an atom consists of protons and neutrons. The number of protons is called the
atomic number and determines the chemical properties of the atom., An element is a substance
composed of atoms which all have the same number of protons. Each of the 100 odd elements is
given an identifying symbol like O for oxygen, H for hydrogen and Cl for Chlorine.

The atoms which compose an element do not all have the same number of neutrons, but the number
of neutrons in each atom of an element does not vary by much {10 or less) because atoms with too
many or too few neutrons are unstable {(radicactive). The isotopes of an element are the different
types of atom which can occur—all the types have the same number of protons but different numbers
of neutrons. The atomic weight of an atom is the sum of the number of protons and neutrons; so
isotopes are characterised by their atomic weights. Usually one isotope is very much more common
‘than all others (some elements, e.g., Fluorine, in fact have only one stable isotope) but some have
a more even distribution: for example, Chlorine has about 76% of the naturally occurring element
with atomic weight 35 and the remaining 24% with atomic weight 37.

The situation becomes more complicated when we consider molecules, which are combinations of
atoms; for example, a molecule of water contains two hydrogen atoms and one oxygen atom {H,O).
The molecular weight of a molecule is the sum of the atomic weights of the component atoms.
Since each element present may have a range of atomic weights, the range of molecular weights for
different molecules of the same compound may be large. Consider the following:

The elements Chromium (symbol Cr) and Chlorine (Cl) have the following sets of isotopes:

Atomic weight | Abundance Atomic weight { Abundance
50 4.35% 35 75.77%
52 83.79% 37 24.23%
53 9.50%
54 2.36%

Thus the molecular weight of a molecule of Chromium Chloride (CrCly) can range from 120 (50 +
354 35) to 128 (54 + 37 4 37). In fact the possible molecular weights and their relative abundances
work out to:

120 | 2.50% 124 32.38% 127 { 0.56%
122 | 49.70% 125 | 3.49% 128 | 0.14%
123 | 5.45% 126 | 5.79%

It is easy to compute that the mean molecular weight is 123.02, while the median molecular weight
is 124.5, You are to write a program that will read in a chemical formula and determine the
mean molecular weight and the median molecular weight. If there are an odd number of possible
molecular weights, the median molecular weight is simply the middle one; if there are an even
number, as above, the median is halfway between the middle two.

Input is from a file called PROBLEME . DAT and consists of two parts. The first part consists of a series
of lines, one for each element being considered. Each of these lines consists of the symbol for an
element (a one or two letter string with the first (or only) letter in uppercase), followed by a list
of atomic weights (integers in the range 1 to 300) and percentage abundances (real numbers with
two digits after the decimal place). Each line is terminated by a single 0. The abundances always
sum to 100.00. This part of the file is terminated by a line consisting of a single #.

E: Isotope Ratios South Pacific Programming Contest 1995

The second part of the file consists of a series of molecular formulae for which the mean and
median molecular weights are desired. These are written in conventional notation which attempts
to convey something of the structure of the molecule as well as its composition. Thus a molecule of
aspirin is normally written as CH3COOCsH4CO,H. In the file such a molecule would be written as
CH3CO0CBH4CO2H, In addition, certain subgroups can appear more than once in a molecule in which
case they are bracketed: for instance Ammonium Sulphide (conventionally written as (NHy),S)
would appear as (NH4)2S in the file. This part of the file will also be terminated by a line consisting
of a single #. All substances given as molecular formulae have fewer than 7 different elements and
no more than 50 atoms in each molecule.

Output will consist of a line for each molecular formula in the input file, giving the average molecular
weight correct to two decimal places, and the mean molecular weight as an integer or an integer
followed by .5. The two numbers are separated by a single space, and there are no spaces in fronf
of the first number.

Sample input

Cr 50 4.35 52 83.79 53 9.50 54 2.36 0
Cl 35 75,77 37 24.23 0

F 19 100.00 0

C 12 98.89 13 1.11 ¢

H1868.99 20.010

0 16 99.76 17 0.04 18 0.20 0
N 14 99.64 15 0.36 0 g
S 32 95.02 33 0.75 (43 4.22 36 0.01 0 o
%

CxC12 |

CH3COOCEH4CO2H

(NH4) 25

F20

#

Sample output

123.02 124.5 .
180.12 192.5
68.48 (18.5)- 75
380.00 380

South Pacific Programming Contest 1995

Uniform Marks Problem F

The Not-So-Advanced School of Statistics has decided that it wishes all of its exam results to have
a uniform distribution. They also want to round people’s marks to multiples of ten from 10 to 100.
You are to write a computer program to do this for them, This means that the number of students
who end up getting a mark of 10 should be the same as the number who get 20, or 30, and so on. If
it is not possible to distribute the students evenly, then give them higher rather than lower marks.
The difference between the numbers of students in any two grade ranges should never be more
than 1. The final marks should clearly order the students in the same way as their pre-normalised
marks. If two students have the same original mark, then they are to be sorted by student number,
with lower student numbers being rated more highly.

Input comes from a file named PROBLEMF . DAT, and contains results for a number of different exams.
For each exam there is a line containing the number of students. Following this is one line for each
student containing their student number followed by their mark. The student numbers are in the
range 95000 to 95999, and the marks are in the range 0 to 100. There are from 1 to 100 students
in each exam. The input file is terminated by an exam containing 0 students.

For each exam, you are to output the number of students in that exam on a single line followed by
one line for each student, ordered as described above. These lines should be formatted as follows:
the student number right justified in a field of 5 digits, a single space, and then the mark right
justified in a field of 3 digits.

Sample input Sample output
6 6

95001 32 95005 50
95002 45 95001 60
95003 55 95002 70
95004 99 95003 80
95005 O 95004 90
95006 100 96006 100
12 12

95100 32) 95112 10+
95101 38/° 95100 20
95102 68~ 95103 30
95103 35}, 95108 40
95104 68w< : 95140 50
95110 774 9518% 60
95111 99ve 95104 70
95112 Oa 95101 80
95120 35)s 95110 90
95121 68w 95122 90
95122 99/, 95111 100
95123 100§ 95123 100

0

South Pacific Programming Contest 1995

The Primes of Phibes Problem G

Dr Phibes of Hyperbolic Fabrications Ltd is studying the following function F;
F(a,n) = the remainder when a™~! is divided by n = ¢! mod n

He knows that if he can find a number 1 < a < n such that F(a,n) # 1 then n cannot be prime.
For example, F'(2,9) = 2 mod 9 =4 # 1, and 9 is indeed not prime.

He is convinced that he can prove Fermat’s Theorem (and thus gain worldwide adulation) by
studying the pattern of values of a for various ranges of non-prime n.

Unfortunately, a list of prime numbers has become mixed up with his collection of interesting
(a,n) pairs, and the e values have been lost altogether. Luckily, he is so familiar with his n values
.that he has been able to separate the mess of numbers into groups of five, each of which he is sure
contains exactly one prime number,

Write a program that will take each group of five numbers in turn, identify the prime, and produce
an a value for each of the other four numbers. Dr Phibes has given you one additional piece of
information that he thinks will be very valuable:

(z - y) mod n = (2 mod n) - (¥ mod n) mod n

Input is from a file named PROBLEMG.DAT and consists of a series of lines, each line containing five
positive integers all less than 230, separated by spaces. This file is terminated by a line containing

five zeroes.

For each non-zero line in the input, output a line containing one item for each number, separating
these items with a single space. For the single prime on each line, this item should be the word
“PRIME”. For the other four numbers, =, the item is the smallest @ > 1 such that F (a,n) # 1.

Sample input
i4 15 16 17 18

341 277 1387 29341 1105
CocCcooO

Sample output

2 2 2 PRIME 2
3 PRIME 3 13 5

South Pacific Programming Contest 1995

Database Fields Problem H

Common databases store numbers as strings of digits. If a database field is described as “Number,
width n, decimal places d”, then n character positions are allocated for it by the database, one
of which is used for the decimal point. For example, if n = 6, d = 2, then the maximum number
which can be stored is 999.99. Typically the maximum value of n is 20 and the maximum value of
d is n — 2, to allow for an initial “0.” (son > 2 always).

You work for a firm which is designing a database system which will only store positive numbers
(your boss doesn’t believe in negatives). You can see that there is a much more efficient way of
storing numbers: since d, the number of decimal positions, is stored in the database header, the
decimal point can be omitted from each number, and the number then stored as a binary integer.
For example, in the n = 6, d = 2 case, integers up to 99999 need to be stored, which can be done

in 17 bits, i.e., three bytes instead of six.

To convince your boss that using your system will not adversely affect database calculations, you
need to compute the maximum number (rounded uﬁ?which can be stored in a field under the old
system. Your boss will be most amenable if you write this number in words, using the old English

notation:
one million = 108 one billion == 1012 one trillion = 108

Input comes from a file named PROBLEMH.DAT, and consists of lines each containing two integers,
which are values for n and d respectively. Input is terminated by a line containing two zeros.

For each non-zero line in the input, output one line containing n, d, the size in bytes of a field stored
in the old system, the size in bytes of a field stored in your system, and the old English language
form of the maximum number (rounded) in the old system. Numbers should be right justified in
a column of width 2, with a single space placed between items, so that the output is tabulated as
shown.

O ¢ e xt Vg egf PO vt 0

Sample input

20
6 2
18 3
00

Sample cutput

2 0 2 1 ten
6 2 6 3 one thousand
18 3 18 8 one hundred billion

