South Pacific Regional Programming Competition 3/12/94

Problem A Solving puzzles

A friend of yours has just purchased a set of puzzles, and is having difficulty solving
them by hand. Solving a puzzle involves taking one or more pieces, and arranging
them into a specified shape. A piece is composed of "basic squares"; all basic squares
are the same size. If a piece consists of more than one basic square, then each basic
square is joined along at least one edge to one of the other basic squares in the piece.
Pieces cannol contain holes. The same rules apply to shapes.

A solution for a puzzle is some arrangement of pieces that produces the desired shape.
Pieces can be rotated as desired, but cannot be placed upside down. For example, the
three puzzle pieces shown on the left below can be placed together to form the shape on
the right. The individual basic squares in the puzzle pieces are not shown, just the
- outline of the whole piece; the number of basic squares in each piece is 3, 3 and 5
respectively from left to right, and the shape has 11 basic squares (3x5 - 4).

For this problem, pieces and target shapes are described by "maps". A map starts with
a line containing two integers (ROWS and COLS) that specify the dimensions of the
‘minimum rectangle which encloses the whole shape/piece. This is followed by ROWS
lines giving the basic squares present in the shape/piece. Each row contains COLS
digits, each a O or 1. A O indicates that there is no basic square in that position of the
shape/piece, a 1 indicates that there is a basic square in that position. For example, the
three pieces and the shape above are described by the maps:

22 22 33 35

i1 11 010 00111

10 10 111 1111
010 11100

Input will be from the file named PROBLEMA.DA'T and will consist of a number of
puzzles. Each puzzle starts with a line containing an integer giving the number of
pieces in the puzzle (N). This is followed by N maps describing the pieces, followed by
a map describing the target shape. You are guaranteed that:

» for each puzzle, the number of 1s in the shape map is equal to the sum of the number
of s in all the pieces of that puzzle.

* in every map, there will be at least one I in the top row, the bottom row, the left |
column, and the right column. %
» there will be at most 8 pieces in every puzzle set. - : :

* the number of rows in a map is in the range 1 to 8, and the number of columns is in
the same range., '

* the number of rows in a piece is no more than the number of rows in the shape. This
also applies to columns.

The input is terminated by a line having the valtue 0 for N.

For every puzzle in the input your program must print details of a solution, or the
message "No solution”. If a solution is found, it should be printed in exactly the same
form as the map for the target shape, except that all Os are replaced by '-', and the s are
replaced by a digit giving the number of the piece that occupies that position, The first
piece that appears in the input for a puzzle is number 0, the second number 1, and so
on. Where there are several solutions, the one printed should be the smallest, where
solutions are compared as if they were strings, with all the rows concatenated together.
A bifmk line must appear between the output for each puzzle, but not after the last
puzzle,

b

South Pacific Regional Programming Competition 3/12/94

EXAMPLE I SR R VO O o
_INPUT A
) [3 i T fnny

x

(O

o

O W T e
O W N

g

12
oAl
2 3,
010 | ~
111
ro |

-

OUTPUT ' o - P .
~-200 - . N
12220 “. \ | | -
112--~ 4 ‘
No solution R
N giAdL y Ao o é | \i i Doy A
J W ! i L 14
2 A . B \ " /’l) ’
) A \ .- A A
S
A
i /'\
N
A \
- : W
i A o | : N]
; \ ,‘. / |

South Pacific Regional Programming Competition 3/12/94

Problem B Erdos numbers

Paul Erdos (pronounced "Erdish") is a Hungarian mathematician renowned for his

prolific output of scientific papers in probability theory and combinatorics. Such a

large proportion of these papers has been written in collaboration with other
mathematicians that it is said that mathematicians may be divided into two groups, -
those who have co-authored a paper with Erdds, and those who have not. The second [, v
group may be further broken down using the concept of Erdés numbers, given by the

following inductive definition:

(i) Paul Erdos has an Erdds number of zero.
(i) A person's Erdos number is one more than the smallest Erdés number of the co- <
authors of all of the papers that person has ever written. S v
(iif) A person does not have an Erdds number if all of that person's co-authors also do T
not have Erdés numbers, s
Using this definition, Einstein wrote a paper with Straus, who wrote a paper with Erdés.
However, Einstein was never a co-author with Erdos. Therefore Einstein's Erdos

number is two.

You have to write a program to process a list of co-authors of scientific papers and print :)
the Erdds number of selected authors. No more than 250 authors and 250 papers are ' -
involved, and there are no more than 7 joint authors for any paper. ' J

Input will be from a file PROBLEMB.DAT and will consist of two sections. The first
section is a list of the co-authors of the papers selected for this study. Each paper has
all its authors listed on one line (each line is less than 80 characters), with the names
separated by commas, and each author's name is in the form: Lastname<at least I
blank>Initials. Every author has at least one initial, and there are no spaces between the
initials if there are more than one. The total number of letters in a name is at most 30,
There are an arbitrary number of blanks separating the words and commas, and
__capitalisation is not consistent. This section is terminated by a line consisting of a .
single #, and is followed by a [ist of the authors whose Erdés numbers are to be
calculated. Each line contains a single name and is less than 80 characters in length.
There will be no more than 150 names in this list; the names may again have arbitrary
numbers of blanks and arbitrary capitalisation. This section is terminated by a line
consisting of a single #. Due to the limitations of the ASCII character set, all authors'
names in the input and output are written without accents; in particular, Erdés will
appear as Erdos, both in the input and the output.

Output will be one line for each name in the second section. The line must be of the

form "<Name> has an Erdos number of <number>" or of the form "<Name> does not .
have an Erdos number" where <Name> must be exactly the same as the line in the s <Ev‘|:i
second section, in terms of blanks and capitalisation, and is separated from the word . &7
"has" or “does” by one blank, and <number> has no leading zeros or blanks.

EXAMPLE : Coo
INPUT CeAnn
Slepian D , Kac m // \“\\ Gt
Erdos p,Kac M Y /‘..\ Q;Alﬁqlfﬁ55¢d
kac m , Wolf JK_ oo ¢
Wolf JjK , Riding-Hood RED ;o (
Erdos P, Riding-Hood red / e
AR wal oote
Wolf Jk o o
Wolf TheBigRad
. !
OUTPUT e
Wolf Jk has an Erdos number of 2
Wolf TheBigBad does not have an Erdos number

South Pacific Regional Programming Competition 3/12/94

Problem C Bacterial Identification

A local firm manufactures devices for identifying the species of bacteria which are
present in various nasty specimens provided by patients. : These identifying devices are
trays holding "wells" of chemicals which change colour if a bacterium grows in them.
There are normally 10 different chemicals per tray, and each species has a certain
probability of growing in each chemical. For example, Yersinia Pestis and A
Enterobacter Cloacae (we will skip the description of what these do to you) have the
following “profiles"; the probabilities given are the probability of the bacterium
growing in the chemical and making it change colour: ‘

Chemical No: 1 2 3 4 .5 6 7 &8 9 10

Y. Pestis Prob.: ~ 0.00 0.01 0.00 ;0.70 1.00 0.00 0.50 0.00 :0.97 0.00

E. Cloacae Prob.: 0.75 0.92 (.25 10.75 1.00 0.15 0.95 0.97 1.00.0.97
Thus if one of these identification trays has parts of a specimen grown in each of its
wells, and chemicals 4, 5, 7 and 9 are observed to have changed colour (this is denoted
by ---++-+-+-), then there seems to be a good chance that Yersinia Pestis is present; but
note that even if Yersinia Pestis actually is present, the probability of this result
happening is only 0.336105 (.99x.7x.5x.97)! This{s€f 6f reactidnsicould also mean that
Enterobacter Cloacae is present, although in this ¢ase the probability of this particular
pattern being observed is .25x.08x.75x.75x.85x.95x.03x.03 ie 0.00000818.

If a particular pattern is observed, it would be nice to be able to ignore all bacteria for *
which the reaction probability is less than P for some P (called the "minimum
Aacceptable probability”). However, while some bacterium have a few, highly likely,
characteristic reactions, others have a large number of roughly equally likely reactions,

all of low probability. As an extreme case, a bacterium with a 0.5 probability of a
positive reaction for every chemical has 1024 equally likely patterns, each with
probability 0.000977. If P is set to this value, then rare patterns such as ~+--+---+- 7,1
become "acceptable” for Yersinia Pestis. The solution is to have a different P for-each—";"
bacterium, For each bacterium, the probability of every possible'‘reaction !
(most will be 0 for Yersinia Pestis), put into descending order afid then added. When
the total reaches or passes 0.95, the last probability added is the minimum acceptable
probability, For Yersinia Pestis, it's easy to calculate that this is 0.144045. e

Input will be from a file called PROBLEMC.DAT and will consist of information for a~
series of bacteria. There will be two lines for each bacterium; the first will give the
name of the bacterium (two or more words, total length less than 60 characters), and the
second will give the 10 positive reaction probabilities, as in the examples above. Each
probability will be 1.00 or 0.ab, where a, b are digits. The probabilities will be
separated by spaces. The file will be terminated by a line consisting of a single #

Output will be one line for each bacterium, giving the name of the bacterium (exactly as
it appears in the input file) and its minimum acceptable probability as a decimal
number, rounded to 10 decimal places, and separated from the name by a single blank.

EXAMPLE

INPUT

Yersinia Pestis

0.00 0.01 0.00 0.70 1.00 0.00 0.50 0.00 0.97 0.00
Enterobacter Cloacae

.75 0.92 0.25 0.75 1.00 0.15 0.95 0.97 1.00 0.97 -
Yersinia Fredericksenii N
1.00 0.00 0.00 0.95 0.00 0.70 0.00 0.00 1.00 0.15 -
#

ouTrPuT

Yersinia Pestis 0.1440450000
Enterobacter Cloacae 0.0028491628
Yersinia Fredericksenii 0.0427500000

fis worked out 7 . .

South Pacific Regional Programming Competition 3/12/94

Problem D Plumbing Costs

In a multi-level building, pumps are used to pump water from a lower level to a higher
level, and reservoirs are used to store water to be used in a gravity feed arrangement to
lower levels. The cost of the pumps and reservoirs depends on how high they have to be
placed in the building, and over how many floors they have to pump or distribute water.

The cost of a pump (in thousands of dollars) is: 80 + 2 * LEVEL + 4 * LEVELS-TO-
NEAREST-RESERVOIR-BELOW + 8 * LEVELS-TO-NEAREST-RESERVOIR-
ABOVE,

The cost of a reservoir (in thousands of dollars) is: 12 + LEVEL + 3 # LEVELS-TO-
NEAREST-PUMP-BELOW + 4 * LEVELS-TO-NEAREST-PUMP-ABOVE.

Your task is to write a program to input a series of building pump and reservoir layouts
and to determine the cost of implementing each layout.

Input will be from a file PROBLEMD.DAT and consists of two lines per bmldmg The
first line contains the number of pumps followed by the floor number of each pump, not
in any particular order. The second line contains the number of reservoirs followed by
the floor number of each reservoir. The floor numbers range between 1 and 100, and
there will be no more than 20 pumps and 20 reservoirs. There will be at least one blank
between each pair of nutiibers. No pumps or reservoirs are placed on the ground floor
(floor 0), and there may be multiple pumps and reservoirs on the same floor. The
definitions of NEAREST-ABOVE and NEAREST-BELOW do not include the pumps
or reservoirs on the same floor. If there is no pump or reservoir above or below, then
that part of the calculation is to be discounted. The input file is terminated by a smgle
line with a zero, dcnotmg no pumps.

There will be one output line for each building described in the input. Each output line
is to contain a single number (right justified in a field of width 6) which is the cost (m

thousands of dollars) for the corresponding building in the input. L) PR e A

OUTPUT
387
252
104 b, e

v

South Pacific Regional Programming Competition 3/12/94

Problem E Recurrences

Many sequences (such as the Fibonacci sequence) are defined by recurrence relations,
in which each number is defined as a linear combination of its predecessors:
a(i) = cja(i-1) + cpa(i-2) + + ca(i-n)

where cy, ¢2, ..., ¢ are fixed constants and a(i) is the i'th term in the sequence The
numbers in these sequences often have surprising relationships to each other, and it is
useful to be able to generate any particular number in the sequence. Of course, if the
sequence is defined by an n-term recurrence relation as above, then the first n terms
a(l), a(2), ..., a(n) must be given independently.

For this problem, you will be given a recurrence relation, and you must generate a term
whose number is given. No relation will have more than 3 coefficients, and you will
not be asked for more than the 1000th term in any series, The size of the coefficients
and the initial numbers are all less than 100 (this still allows for quite large numbers,

however.,..),

Input will be from a file PROBLEME.DAT and will consist of a series of descriptions
of recurrence relations, and the number of the term to find in the sequence generated by
the relation, Each relation will be described by 4 lines. The first line will give the
number of terms, n in the formula above. The second line will contain n integers
between 0 and 99, which are the coefficients ¢y, ¢, ..., ¢, of the recurrence relation, in
that order, The third line contains n integers between 0 and 99, which are the first n
terms in the series, in the order: first term, second term, ..., nth term. The fourth line
has a single number (1000 or less) which is the number of the term you must find.
Where there is more than one number on a line, the numbers will be separated by one or
more blanks. Each line is less than 80 characters in length. The file will be terminated
by a line consisting of a single 0 (ie an n value of 0).

Output will be one number for each recurrence relation description. The number must
be printed 60 digits per line, except possibly for the last line which can have less than
60 digits. The numbers must be separated by single blank lines; there must not be a
blank line at the end of the output.

EXAMPLE
INPUT L U {
3 L B .
1 00 e TR Ve e o G ol g
97 98 99 ‘ '
1000

o - [
e
O o

OUTPUT
98

803469022129495137770981046170581301261101496891396417650688

434665576869374564356885276750406258025646605173717804024817
290895365554179490518904038798400792551692959225930803226347
752096896232398733224711616429964409065331879382989696499285
16003704476137795166849228875

South Pacific Regional Programming Competition 3/12/94

Problem F Traffic Lights t

Some years ago, New Zealand adopted a "Give Way when turning left" rule at
intersections, where cars turning left into a side road have to wait for cars from the
opposite direction which are turning right into that road. You have been asked to write
a program to simulate traffic flow at an intersection controlled by a set of traffic lights,
where this rule applies, to see if it actually does work in a situation where drivers do
observe road rules. Your program need deal only with intersections at which two roads
cross at right angles, as shown in the diagram below.

N

i

—P B .
W ¥ — 1

7 S

As can be seen from the diagram, vehicles drive on the left hand side of the road.
Vehicles enter the intersection from one of four directions, which we shall call north
(N), east (E), south(S) and west (W). When a vehicle reaches the intersection, it will
either go left (1), straight ahead (S), or right (R). There are three separate Ianes on each
entrance to the intersection to allow these groups of vehicles to form separate queues.

Traffic lights regulate the flow of traffic into the intersection. The basic operation of the
traffic lights is as follows. The traffic lights for one of the roads (say NS) are green,
allowing vehicles from N and § roads to enter the intersection (subject to the give way
rules given below). During this period the traffic lights for the other road (EW) are red,
preventing any traffic from entering. After some time, the lights on the NS road change
to amber (causing NS traffic to stop), then to red. At the instant that the NS lights
become red, the EW lights become green allowing traffic flow.in that direction. After a
period, those lights turn amber, then red, and so the cycle continues. Durations of the
phases of the traffic lights are a number of units (fixed in each simulation), where a
unit is the time it takes a vehicle to go through the intersection. A vehicle can go

through the intersection during any unit in which the appropriate light is green, or in the
g g any pprop g g h ¢

first unit of an amber phase, subject to the give way rules as follows:

= r

* From any given direction, at most one car can go straight ahead, at most one car can
turn left, and at most one car can turn right in any time unit.

* A car at the head of the straight ahead queue can always enter the intersection.

* A car at the head of the turning right queue can enter the intersection as long as a car
from the opposite direction is not travelling straight through the intersection.

* A car at the head of the turning left queue can enter the intersection as long as a car
turning right from the opposite direction is not travelling through the intersection.

LT

il

South Pacific Regional Programming Competition 3/12/94

You must write a program to simulate this situation and work out the total length of
times vehicles must wait in a queue. Your program must perform a number of
simulations; for each simulation, the times of the light phases will be given, and vehicle
arrival times will be provided. Each vehicle will wish to enter the intersection in the
unit after it arrives; if it cannot, it must wait in a queue until the lights change or the
intersection is clear (or both). Each simulation starts with no cars waiting at the
intersection. The first time unit (number 1) is the first unit of a green phase for the NS
road. Your program must run each simulation until all the cars whose arrival times are
given have passed through the intersection.

Input will be from the file named PROBLEME.DAT, giving the data for a number of
simulations. Each simulation begins with a line that gives the duration of the phases of
the lights. containing four integers separated by one or more blanks., The first is the
duration of the green phase for the NS road, the second the duration of the amber phase
for the same road, and the third and the fourth the durations of the green and amber

phases for the EW road.

Following these parameters are lines that specify details of vehicles arrtving at the
intersection, Each line contains a time, one or more blanks, an approach (N/E/S/W),
one or more blanks and a specification of how the vehicle goes through the intersection
(S/L/R). Times are >= 1 and <= 86400. The time in one line is not less than the time in
the previous. The end of the vehicle arrivals is signified by "a’line with a time of -1,
The end of the file is signified by a line consisting of 0 valies for the four simulation

paramelers,

Output consists of one line for each simulation in the input, and that line consists of a
single integer that is the sum of all the queuing times experienced by the vehicles
whose arrivals are specified in the input, right justified in a field of width 6. The.
queuing time for each vehicle is the difference between its arrival time, and the time it
passes through the intersection -1, so that a vehicle which passes through the
intersection in the time unit after its arrival incurs a quening time of 0 units.

L

BB B b e 2 b s

EXAMPLE ey
INPUT [
232 ——
N S ' ' < L
N L _ . A
S R <A
E S .
E S P
N IL
-1 N S - 3
0000 . /
OUTPUT PR .
N, 16 < e)
’ Gy
RSO
. 1,
b (_i\i-‘ v
‘ l___"- oot

Insufficient data

South Pacific Regional Programming Competition 3/12/94

Problem G = Unrandomising Numbers

The common random number generator used on a computer is the Congruential
Random Nimber Generator (CRNG). It has three integer parameters, which we will
fabel a, b and ¢, and depends on the fact that if these are chosen correctly then the

number x, and the number

(ax + b) mod c,
have no apparent correlation. So if an initial seed is picked and fed into the formula,
and then the output is used as the new "x", and so on, a series of apparently
uncorrelated numbers will be produced.

In practice, if a, b and ¢ are chosen carefully (eg a, b and ¢ have no common factor, a
about the same size as ¢, efc) then the numbers produced do satisfy randomness tests.
They are not.random, however, and sometimes this can cause problems. For example,
if points in the plane are produced by taking as x and y coordinates successive
"random" numbers, then all these points will lie on parallel straight lines. This could
clearly have an effect on a simulation based on random points in the plane, although in
practice problems may not occur unless only a few of the lines have points on them
(which will happen if a, b and c are chosen "badly"). :

For this problem, you must "unravel" the parameters of CRNGs by examining their
successive output. You will be given sets of 15 successive numbers produced by a
CRNG - from these, you can use the definition and ‘the “parallel line" property to
possibly discover a, b and ¢, The a, b and c used to generafe these sets all satisfy the
following rules :

c is a prime less than 10000
O<a<c,0<b<e

a, b and ¢ have no common factor

Input will be from a file PROBLEMG.DAT and will consist of lines of successive
output from CRNGs - each line from a different generator. There are 15 numbers on
each line, separated by at least one space. The file will be terminated by a line

containing 15 Os.

Output will be one line for each line of input. If all the points defined by successive
pairs of numbers lie on different lines in the set of parallel lines defined by the CRNG
which generated the numbers, you must pnnf the words "Tnsufficient data”.” If there is a
CRNG which generates the numbers and for which at least two points lie on the same
line in the set of parallel lines, you must print the a, b and c values for that CRNG, each
right justified in a field of width 5. Where there is a choice of CRNG's, you must pick
the smallest values, in the order; smallest ¢ possible (remember ¢ must be prime), for
this value the smallest b which wiil work, for this value the smallest a which will work.

EXAMPLE

INPUT

123456789 10 11 12 13 14 15

401 357 151 163 389 131 409 352 446 37 351 38 292 250 393
1 0517 31 35 15 4 22 6 12 19 21 11 24

0 0000000000000 O

OUTPUT
1 1 17
408 199 467

South Pacific Regional Programming Competition 3/12/94

Problem H Bad Luck

Friday 13th is normally regarded as a bad day, in Western cultures. Other days are bad
for other cultures - for example, 24 sounds like "easy to die" in Cantonese, so Sunday
24th is the day (o avoid in Hong Kong. An astrologer will be able to work out (for a
small fee), for each person, what are their bad days. The object of this problem is to
automate the finding of bad days in advance, so that holidays will not be marred by an
unexpected bad day. '

Input will be from a file PROBLEMH.DAT and will consist of years, and "bad day"
descriptions; for example, 1994 Friday 13 or 2000 Sunday 24. The year will always be
1994 or greater, but not more than a billion (10%) years in the future. The day will be
one of Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and the
date will be a number between 1 and 31. Each component will be separated from the
others by at least one blank. The file will be terminated by a line containing a single #.

Output will be one line for each line of input, giving the numbers of the months within
that year which contain the "bad day" described. If there is more than one month, the
numbers must be in increasing order separated by commas. There must be no blanks in
the output lines, and the numbers must have no leading zeros. If there are no months
with the bad day given, the output must be the word None.

Remember that the days in each month follow the pattern:

Month number 1 2 3 4 5 6 7 8 g 10 i1 12
Nbrofdays 31 * 31 30 31 30 31 31 30 31 30 31
* = if (year mod 4 <> 0) or ({year mod 100 = 0) and (year mod 400 <> 0)) then 28 else
29 ' ‘

EXAMPLE

INPUT

1994 Friday 13

1995 Saturday 31
2000 Sunday 24
;000001994 Monday 1

OUTPUT
5

None
9,12

8

