South Pacific Contest, 1993 1

Problem A: Code Breaking

Periodic permutation is a simple encryption technique which involves choosing
a period, k, and a permutation of the first k& numbers. To encrypt a message,
split the message into groups of k characters (padding if necessary) and apply
the given permutation. Decryption involves taking groups of k characters and
performing the inverse permutation. Thus for £ = 4, a permutation could
be 2431. This would encrypt ‘Mary’ to ‘yMra’ and ‘Maryan’ to ‘yMra?a?n’.
Once one knows the permutation, one can apply its inverse to other encrypted
messages (cyphertext) to recover the original text (plaintext).

Write a program that will read (plaintext, cyphertextl, cyphertext2) triples,
and for each (plaintext, cyphertextl) pair determine whether or not a periodic
permutation encryption method has been used. If it has, determine the value of
k and the permutation function and apply the reverse permutation to cypher-
text2 to recover the corresponding plaintext.

Input will consist of a series of (plaintext, cyphertextl, cyphertext2) triples.
Lines will be no more than 80 characters long. The first two strings (of length
n) represent the first n characters of the plaintext and cyphertext. There is
no implication that n is a multiple of k. The file will be terminated by a line
consisting of a single #.

Output will consist of a series of lines, one for each triple in the input. If
a permutation cycle has been found, apply the inverse permutation to cypher-
text2, padding it if necessary with ‘?’. If no periodic permutation can be found
(with period less than or equal to the length of the plain and cyphertextl
strings) that transforms the plaintext into the cyphertext, then print cypher-
text2 unchanged. If more than one periodic permutation could have mapped the
plain text to the cyphertextl, then apply the periodic permutation that has the
smallest value for k. There will never be more than one shortest permutation
function that matches the data.

Sample input

Mary had a little lamb!!
aMyrh daa 1 tilt ealbm!!
hTsii s aetts

Foobar

blargg

No cycle

abc

bca

abcd

#

Sample output

This is a test
No cycle

South Pacific Contest, 1993 2

Problem B: Eeny Meeny

In darkest <name of continent/island deleted to prevent offence> lived a tribe
called the “Eeny Meenys”. They got this name from their way of choosing a chief
for a year. It appears that a newspaper reporter visited the tribe and managed
to get across a few ideas of civilisation, but apparently came to an unfortunate
end before finishing the job. Thus the tribe no longer had a permanent chief;
the chief’s term was exactly one year. At the end of that time, they ate the
current chief, and chose another chief. Their method of choosing a chief was
the “Eeny meeny miny mo” method. All eligible tribal members (women were
also eligible—one of the blessings of civilisation the tribe had adopted) stood
in a circle, a starting place was chosen, and the chief medicine man (who was
ineligible for chieftainship) went around counting out ‘E’, ‘¢’, ‘n’, ‘y’, ‘M’, ‘e’
‘e’, ‘n’, y?, ‘M, ‘nd, ty?, MY, ‘ol ‘B, ‘e, md, fyY, MY, ‘el e, ‘nd,), MY, D
‘n’) v’ ‘M) ‘ol ... At every ‘o, the person indicated was pushed out of the
circle which then closed up and the count restarted with his neighbour (the one
who would have been ‘E’ anyway). This process continued until only one was
left—the new chief.

While the chance of glory for a year makes the job of chief highly attrac-
tive to tribal members, you (possessing a computer decades before they were
invented) find the brevity of the glory unappealing. You have managed to find
out that the count this year will start with Mxgobgwq (a very large person),
so you would like to know where not to stand. You don’t know the direction,
nor how many eligible people there are, but you can estimate the number (it is
certainly less than 500).

Write a program that will determine the ‘first’ (i.e. closest to Mxgobgwq)
safe position to stand, regardless of the actual number of people and the direc-
tion of count (clockwise or anti-clockwise).

Input will consist of a series of lines, each line containing the upper and
lower estimates of the number of eligible people (both numbers inclusive). The
file will be terminated by a line containing two zeroes (0 0).

Output will consist of a series of lines, one for each line of the input. Each
line will consist of a single number giving the number of the position closest to
Mxgobgwq that will not be chosen as chief for any number in the given range
and for either direction of elimination. If no position is safe then print "Better
estimate needed".

Sample input

80 150
40 150
00

Sample output

1
Better estimate needed

South Pacific Contest, 1993 3

Problem C: Hearts

There are 52 playing cards in a pack, divided into suits, and, within suits, into
denominations. The suits are (in order, lowest to highest) Clubs, Diamonds,
Hearts and Spades, abbreviated C, D, H and S. The 13 denominations (or face
values) are (from lowest to highest): 2, 3,4, 5, 6,7, 8,9, 10 (T), Jack (J), Queen
(Q), King (K) and Ace(A). A higher card will beat a lower card in the same
suit, but will not usually beat any other card in a different suit. An exception to
this is the ‘trump’ suit—if a suit is designated to be a trump suit (by whatever
means the rules of the game allow), then any card of that suit will beat any
card of any other suit.

A simplified version of an old card game called Hearts is played as follows.
The dealer deals cards clockwise, one by one, face downward, to four other
players and himself, starting with the player on his left, who thus gets the first
card, followed by the sixth, and so on, while the dealer gets the fifth card,
followed by the tenth, and so on. When each player has 10 cards there will
be two left—these are exposed and the suit of the one of higher denomination
determines the trump suit. If there is a tie, then the highest ranking suit
becomes the trump suit.

A ‘game’ consists of 10 ‘tricks’, each containing 5 cards, one from each
player. For each trick, one player ‘leads’, i.e. plays a card face up on the table,
the rest of the players then ‘follow’, in clockwise order. The player to the
dealer’s left leads to the first trick, thereafter the winner of each trick leads to
the next trick. A player must follow suit if possible, i.e. play a card of the same
suit as the one lead. If he cannot, then he must trump it (play a card of the
designated trump suit). If he cannot trump it (because he has no cards in the
trump suit), he discards a card. If a trick is trumped, then the person playing
the highest trump wins the trick, otherwise the person playing the highest card
of the correct suit wins it.

Strategies are as follows:

1. Leader: The leader always plays the highest card in his hand. If there
is a tie and one of the cards is a trump card, then he leads the trump,
otherwise he plays the highest ranking suit.

2. Follower: If possible he must play the highest card in his hand of the
correct suit. If he has no cards in that suit then he plays the highest
trump he has. If he cannot trump it he plays the highest card in his
hand, breaking ties as previously specified.

When all the tricks have been played, each player examines the tricks he
has taken and scores the face value of any Heart he has (Jack counts 11, Queen
counts 12, King counts 13 and Ace counts 14). This score is recorded.

Write a program to simulate the playing of this game.

Input will consist of a series of decks of cards, each deck spread over four
lines as shown below. The file will be terminated by a line consisting of a single

y

South Pacific Contest, 1993 4

Output will consist of a series of lines, one for each deck in the input. Each
line will consist of 5 numbers reflecting the scores of the individual players,
starting with the dealer and proceeding clockwise through the rest of the players.
Fach score will consist of a number right justified in a field of width 3.

Sample input

TS QC 85 8D QH 2D 3H KH 9H 2H TH KS KC
9D JH 7H JD 2S QS TD 2C 4H 5H AD 4D 5D
6D 4S 95 55 7S JS 8H 3D 8C 38 4C 6S 9C
AS 7C AH 6H KD JC 7D AC 5C TC QD 6C 3C
#

Sample output
22 068 0 14

South Pacific Contest, 1993 5

Problem D: Bonus Bonds

The government of Impecunia does not levy any taxes, instead it raises money
by the (sometimes forced) sale of Bonus Bonds. Originally the Bonds were
numbered using a 7 digit number prefixed by a one digit code in the range 1 to
9 representing the region of Impecunia in which the bond was sold. However the
scheme has proved so popular that the numbering scheme has been extended
by a further two digits. To retain compatibility with the previous scheme, the
8th digit from the right (the third from the left) still designates the region of
sale. At the same time, a ‘central’ region was created and has been given the
designation 0. For security reasons no bond may be numbered with a number
consisting entirely of zeroes, thus, although the original bonds all started from
zero (since the region code was non-zero), the bonds from the central region
start from 0000000001.

Each month, the winning numbers are drawn for each region independently.
The equipment generates a stream of single digits and it would appear to be
simple enough to collect these together in groups of ten and compare the results
with the list of Bond-holders. However, the equipment is a little antiquated and
is liable to various breakdowns, thus it is desirable to only generate numbers
that lie within the allocated range and with the same distributions of digits
at each position as would be found by examining all the bonds sold for that
region. Thus if we wish to draw N numbers for a given region, the equipment is
set to generate 10 streams of N digits, one for each position. The first winning
number is then made up by taking the first digit from each stream, the second
winning number is composed of the second digit in each stream, and so on.
For each stream, the equipment is adjusted so that the distribution of digits it
generates closely matches the actual distributions of digits in that position on
the allocated Bonds. The state auditors generate a table of these distributions
so that the two may be compared.

Write a program that will generate the table for the state auditors for any
given draw. For each region, the program will read the serial number of the next
bond to be sold in that region so that it can calculate the distributions.
Since the output is voluminous, your program will only need to print the digit
distribution for a particular digit position.

Input will consist of a series of lines, each line consisting of a ten digit
number representing the next bond number to be sold in a particular region
and an integer in the range 1 to 10 representing the desired character position.
It is possible that some regions will appear more than once in the input stream,
and that others will not appear at all. The file will be terminated by a line
consisting of 0000000000 0.

Output will consist of a series of tables, one for each line of the input. Each
table will consist of ten rows, one for each digit in the range 0 to 9. Each row
will consist of a single number giving the numbers of times that digit appears
in the sequence numbers at the desired position. Each number will be right
justified in a field of width 11. Separate tables by one blank line.

South Pacific Contest, 1993

Sample input

4810000000 1
0000000000 O

Sample output

100000000
100000000
100000000
100000000

80000000

O O O O O

South Pacific Contest, 1993 7

Problem E: Bit Maps

The bitmap is a data structure that arises in many areas of computing. In the
area of graphics, for example, a bitmap can represent an image by having a 1
represent a black pixel and a 0 represent a white pixel.

Consider the following two ways of representing a rectangular bit map. In
the first, it is simply represented as a two dimensional array of 1s and 0s. The
second is based on a decomposition technique. First, the entire bit map is
considered. If all bits within it are 1, a 1 is output. If all bits within it are 0, a
0 is output. Otherwise, a D is output, the bit map is divided into quarters (as
described below), and each of those is processed in the same way as the original
bit map. The quarters are processed in top left, top right, bottom left, bottom
right order. Where a bit map being divided has an even number of rows and
an even number of columns, all quarters have the same dimensions. Where the
number of columns is odd, the left quarters have one more column than the
right. Where the number of rows is odd the top quarters have one more row
than the bottom. Note that if a region having only one row or one column is
divided then two halves result, with the top half processed before the bottom
where a single column is divided, and the left half before the right if a single
row is divided.

Write a program that will read in bitmaps of either form and transform
them to the other form.

Input will consist of a series of bit maps. Each bit map begins with a line
giving its format (“B” or “D”) and its dimensions (rows and columns). Neither
dimension will be greater than 200. There will be at least one space between
each of the items of information. Following this line will be one or more lines
containing the sequence of “17, “0” and “D” characters that represent the bit
map, with no intervening spaces. Each line (except the last, which may be
shorter) will contain 50 characters. A “B” type bitmap will be written left to
right, top to bottom. The file will be terminated by a line consisting of a single
#.

Output will consist of a series of bitmaps, one for each bit map of the input.
Output of each bit map begins on a new line and will be in the same format
as the input. The width and height are to be output right justified in fields of
width four.

Sample input Sample output

B3 4

001000011011 p 3 4

D 2 3 DOD1001D101
B 2 3

DD10111 101111

#

South Pacific Contest, 1993 8

Problem F': Laser Lines

A computer chip manufacturer has discovered a new way to combine opto-
electronics and ordinary electronics by forming light-emitting and receiving
nodes on the surface of the chip. These can be used to send messages to each
other in a direct line-of-sight manner, thereby speeding up operation consider-
ably by allowing a much greater density of information transfer. One difficulty
is that the nodes must all be able to send messages to each other; no node
should block the line-of-sight between two other nodes. The manufacturing
method ensures that the nodes will be positioned exactly on the points of a
lattice covering the chip, so their coordinates are given by integers between 0
and 9999 (inclusive) except that for technical reasons no node can appear at
point (0, 0).

Write a program that will read in sets of coordinates of these nodes and
determine whether any of them lie on lines containing three or more nodes.
Because of the layout method used, it is envisaged that there may well be
several lines containing three nodes, but that ‘longer’ lines will be increasingly
rare. However, no line will contain more than 10 points.

Input will consist of a series of data sets, each set containing the coordinates
of between 3 and 300 points (both inclusive). Each set will start on a new line.
The coordinates will be pairs of integers in the range 0 to 9999 and each set will
be terminated by a pair of zeroes (0 0). Successive numbers will be separated by
one or more spaces; in addition a data set may be split into several lines, such
splits will only occur between coordinate pairs and never between the elements
of a coordinate pair. The entire file will also be terminated by a pair of zeroes
(0 0). Note that there will be several test cases, but only one will contain more
than 100 points.

Output, for each set, is either the message "No lines were found", or the
message "The following lines were found:", followed by the sets of points
lying on straight lines, each set ordered first by x, and if the x’s are equal, then
by y. All coordinates are in a field of width 4, and are separated by a comma;
the points are delimited by brackets, with no spaces between successive points.
The lines themselves are ordered in a similar manner to the points on each line;
i.e. by considering the first point on each line, and if more than one line starts
at that point, by considering the second point on the line.

Sample input

5587141148 20 15
126 18210 O
5588141300
55 25 17 20 23 10 11 20 14 15 11 0 O
00

Sample output

The following lines were found:
¢ 4, 8&C 8, ™nC 12, 6)
(5, 5BCC 8, ™7TC 14, 11H(C 20, 15)

South Pacific Contest, 1993

(12, 6 14, 11)(C 18, 21)
No lines were found

The following lines were found:

¢ 5, 5)C 10, 11)(C 20, 23)
¢ 5, 5)(C 15, 11)(C 20, 14)(

25,

17)

South Pacific Contest, 1993 10

Problem G: Roman Numerals

The original system of writing numbers used by the early Romans was simple
but cumbersome. Various letters were used to represent important numbers,
and these were then strung together to represent other numbers with the values
decreasing monotonically from left to right. The letters they used and the
numbers that were represented are given in the following table.

I 1V)
X 10 L 50
C 100 D 500
M 1000

Thus 1993 was written as MDCCCCLXXXXIII. This system was then su-
perseded by a partially place-oriented system, whereby if the above rule of
decreasing values was broken, it meant that the immediately preceding (lower)
value was deemed to be negative and was subtracted from the higher (out of
place) value. In this system 1993 was usually written as MCMXCIII. There is
still some controversy as to which letters could precede which other letters, but
for the purposes of this problem we will assume the following restrictions:

1. A letter from the left column can never appear more than three times in
a row, and there can never be more than one other occurrence of that
letter.

2. A letter from the right column can never appear more than once.

3. Once a letter has been used in a ‘negative’ position, all subsequent charac-
ters (apart from the one immediately following) may not be greater than
that character.

Thus we could write MXMIII for 1993 or CCXCIV for 294, however we
could not write ILV for 54, nor could we write LIL for 99. Note that 299 could
be written as CCXCIX or CCIC

Given a Roman sum, we can either interpret it as such or as an encoding of
an Arabic sum. Thus V4V=X could be interpreted as an ambiguous encoding
of an Arabic sum with V € {1, 2, 3, 4} and X = 2 * V. Similarly, X4+X=XX
could be interpreted as a correct Roman sum but an impossible Arabic encoding
(apart from the trivial encoding X = 0) and XX+XX=MXC as an incorrect
Roman sum, but a valid encoding with M = 1, X = 9, and C = 8.

Write a program that will read in sums in Roman numerals and determine
whether or not they are correct as Roman sums and also whether they are
impossible, ambiguous or valid as Arabic encodings. Assume that zero will
never appear on its own or as a leading digit, and that no two Roman numerals
map onto the same Arabic digit.

Input will consist of a series of lines, each line consisting of an apparent
Roman sum, i.e. a valid Roman number, a plus sign (+), another valid Roman
number, an equal sign (=) and another valid Roman number. No Roman

South Pacific Contest, 1993 11

number will contain more than 9 letters. The file will be terminated by a line
consisting of a single #.

Output will consist of a series of lines, one for each line of the input, and
each containing two words. The first word will be one of (Correct, Incorrect)
depending on whether the Roman sum is or is not correct. The second word
will be separated from the first by exactly one space and will be one of the set
(impossible, ambiguous, valid) depending on the Arabic sum.

Sample input

V+V=X
X+X=XX
XX+XX=MXC
#

Sample output

Correct ambiguous
Correct impossible
Incorrect valid

South Pacific Regional Final 1993 (11 Nov 1993)
Problem H Arithmoglyphics

The firm for which you work prides itself on producing calculators to satisfy every conceivable
desire. Their greatest triumph to date has been an electronic abacus, which shows beads mov-
ing at lightning speed on the screen. Your boss has just heard about ancient Egyptian mathem-
atics and has told you to write a program for a feasibility study . At first you think this will be
an easy modification of the popular Roman Numerals calculator, but then you discover how the
Egyptians handled fractions. They had not invented zero, or negative or irrational numbers and
were ambivalent about division. This led them to reject fractions such as 3/7, but since they
couldn’t deny that things can be divided into 7 equal parts, they were happy enough about 1/7.
They also accepted 2/3, which they thought of as 1-1/3. To avoid getting ridiculous numbers
such as 1/7+1/7+1/7 when three 'seventh-parts’ were added together (this is just a disguised
form of the rejected 3/7), whenever fractional numbers were combined the result was written as
a sum of fractions of the form 1/x (possibly including 2/3), with all values of x different .
Thus 1/7 + 1/7 + 1/7 was written as 1/4 + 1/6 + 1/84. It is easy to see that every fraction can
always be written in this way, and in general there are many possibilities; for example, we have
the equalities: 1/12 + 1/15 = 1/10 + 1/20 = 1/8 + 1/60 + 1/120 = 1/7 + 1/140.,

From now on we will use the notation (a1,a2,a3,...) to mean 1/a1 + 1/a2 + 1/a3 +.... =X 1/al.
The ai will al be different and in increasing order. We will use the number 1 to represent 2/3
(since 1/1 is not a fraction) — thus (1,6,13) means 2/3 + 1/6 + 1/13,

Three rules were observed when the result of a computation (sum, difference or product) on

fractions was rewritten as a single fraction:

(a) The fewest possible numbers were used in the sum (thus (8) + (60) + (120) would be
written as (12,15) or (10,20) rather than (8,60,120))

(b) Among the possible shortest representations the one coming first in dictionary order would
be used. Thus the correct form of (8) + (60) + (120) is (7, 140)

(c) Since the Egyptian numeral syster did not lend itself to large numbers, no number greater
than or equal to 1,000,000 was used in a fraction.

A list of integers of the form (a,b,c,..) such that 1/a + 1/b + 1/c +... < 1 and satisfying the
rules above, will be called an Egyptian fraction. Write a program which will perform
calculations on Egyptian fractions.

Input will be from a file called PROBLEMH.DAT and will consist of a series of lines, each line
consisting of two Egyptian fractions, separated by a +, —or * (for sum, difference and
product), possibly with one or more blanks. Each Egyptian fraction will be written with an
open bracket, a list of whole numbers in increasing order separated from each other by commas
and possibly blanks, and terminated by a close bracket. The file will be terminated by a line

consisting of a single empty Egyptian fraction ().

Output will consist of a series of lines, one for each line of the input. Each line will consist of
the result of the input expression written as an Egyptian fraction if the answer is less than 1, as
a single 1 if the answer is exactly 1, or as '14 followed by an Egyptian fraction if the answer
is more than 1, If the answer less than or equal to zero the output line must contain the word
‘Invalid'. There must be no blanks in the output line.

Example

INPUT OUTPUT

(1) - (3) (3)

(2) + (2) 1

(1, 6) + (1, 6) 14(1) A,.k_.,/
(13,999983) - (13,999983) Invalid -

(1) * (3,8,120) (5,9)
()

