South Pacific Contest, 1992 1

Problem A: Calculator Language

Calculator Language (CL) supports assignment, positive and negative integers
and simple arithmetic. The allowable characters in a CL statement are thus:

A..7Z variable names

0..9 digits

+ addition operator

— subtraction operator
multiplication operator
integer division operator
assignment operator
brackets

negative sign

.

All operators have the same precedence and are right associative, thus 15—
8—3 =15—(8—3) = 10. As one would expect, brackets will force the expression
within them to be evaluated first. Brackets may be nested arbitrarily deeply.
An expression never has two operators next to each other (even if separated by a
bracket), an assignment operator is always immediately preceded by a variable
and the leftmost operator on a line is always an assignment. For readability,
spaces may be freely inserted into an expression, except between a negative sign
and a number. A negative sign will not appear before a variable. All variables
are initialised to zero (0) and retain their values until changed explicitly.

Write a program that will accept and evaluate expressions written in this
language. Each expression occupies one line and contains at least one assign-
ment operator, and maybe more.

Input will consist of a series of lines, each line containing a correct CL ex-
pression. No line will be longer than 100 characters. The file will be terminated
by a line consisting of a single #.

Output will consist of a series of lines, one for each line of the input. Each
line will consist of a list of the final values of all variables whose value changes as
a result of the evaluation of that expression. If more than one variable changes
value, they should be listed in alphabetical order, separated by commas. If a
variable changes value more than once in an expression, only the final value is
output. A variable is said to change value if its value after the expression has
been evaluated is different from its value before the expression was evaluated.
If no variables change value, then print the message ‘No Change’. Follow the
format shown below exactly.

Sample input

A=B=4
C=(D=2)*_2
C=D=2=x _2
F=C-D
E =D % _10

South Pacific Contest, 1992

Z=10/3
#

Sample output

A=4,B=4
C=-4,D=2

D=-4
No Change
E =40

Z =3

South Pacific Contest, 1992 3

Problem B: Network Wars

It is the year 2126 and comet Swift-Tuttle has struck the earth as predicted. The
resultant explosion emits a large cloud of high energy neutrons that eliminates
all human life. The accompanying electro-magnetic storm causes two unusual
events: many of the links between various parts of the electronic network are
severed, and some postgraduate Al projects begin to merge and mutate, in
much the same way as animal life did several million years ago. In a very short
time two programs emerge, Paskill and Lisper, which move through the network
marking each node they visit: Paskill activates a modified Prolog interpreter
and Lisper activates the ‘Hello World” program. However ‘Hello World’ has
mutated into an endless loop that so ties up the node that no other program,
not even Lisper, can re-enter that node and the Prolog interpreter immediately
reverse compiles (and destroys) any program that enters. However, Paskill
knows which nodes it has visited and never tries to re-enter them. Thus if Lisper
attempts to enter a node already visited by Paskill it will be annihilated; neither
can enter a node already visited by Lisper, if either (or both) cannot move both
will halt and if they ever arrive at a node simultaneously they annihilate each
other. Both programs move through the network at the same speed.

Write a program to simulate these events. All nodes in the the network
are labelled with a single uppercase letter as shown below. When moving to
the next node, Paskill searches alphabetically forwards from the current node,
whereas Lisper searches alphabetically backwards from the current node, both
wrapping round if necessary. Thus, (in the absence of the other) if Paskill enters
the network below at A, it would visit the nodes in the order A, B, C, D, G, H,
E, F; if Lisper enters the network at H it would visit them in the order H, G,
E, F. Simulation stops when one or more of the above events occurs. If more
than one event occurs, mention Paskill first.

Input will consist of a series of lines. Each line will describe a network and
indicate the starting nodes for the two programs. A network is described as
a series of nodes separated by ‘;” and terminated by a period (*.”). Each node
is described by its identifier, a > and one or more of the nodes connected to
it. Each link will be mentioned at least once, as will each node, although not
all nodes will be ‘described’. After the period will appear the labels of the
starting nodes—first Paskill and then Lisper. No line will contain more than
255 characters. The file will be terminated by a line consisting of a single #.

Output will consist of one line for each network. Each line will specify the

South Pacific Contest, 1992 4

terminating event and the node where it occurs. The terminating event is one
or two of the following:

e Lisper destroyed in node 7
e {Paskill/Lisper} trapped in node ?

e Both annihilated in node 7

Sample input

A:BD;C:BD;F:E;G:DEH;H:EG. A H
E:AB. A B

B:ACD. B D

A:B;B:C;D:E. A D

#

Sample output

Paskill trapped in node D Lisper trapped in node F
Both annihilated in node E

Lisper destroyed in node B

Lisper trapped in node E

South Pacific Contest, 1992

Problem C: Withdrawn

For technical reasons, this problem has been withdrawn.

South Pacific Contest, 1992 6

Problem D: Strategy

A well known psychology experiment involves people playing a game in which
they can either trade with each other or attempt to cheat the other player. If
both players TRADE then each gains one point. If one TRADESs and the other
CHEATS then the TRADEr loses 2 points and the CHEATer wins 2. If both
CHEAT then each loses 1 point.

There are a variety of different strategies for playing this game, although
most people are either unable to find a winning strategy, or, having decided
on a strategy, do not stick to it. Thus it is fairer to attempt to evaluate
these strategies by simulation on a computer. Each strategy is simulated by
an automaton. An automaton is characterised by a program incorporating the
strategy, a memory for previous encounters and a count reflecting the score of
that automaton. The count starts at zero and is altered according to the above
rules after each encounter. The memory is able to determine what happened
on up to the last two encounters with each other contender.

Write a program that will read in details of up to 10 different strategies, play
each strategy against each other strategy 10 times and then print out the final
scores. Strategies will be in the form of simple programs obeying the following
grammar:

<program> 1= <statement>.

<statement> 1= <command> | <ifstat>

<ifstat> ::= IF <condition> THEN <statement> ELSE <statement>
<condition> ::= <cond> | <cond> <op> <condition>

<op> == AND | OR

<cond> = <memory> {= | #} {<command> | NULL}
<memory> = {MY | YOUR} LAST {1 | 2}

<command> ::= TRADE | CHEAT

Note that LAST1 refers to the previous encounter between these two au-
tomata, LAST2 to the encounter before that and that ‘MY’ and ‘YOUR’ have
the obvious meanings. Spaces and line breaks may appear anywhere in the pro-
gram and are for legibility only. The symbol ‘#’ means ‘is not equal to’. NULL
indicates that an encounter has not ocurred. The following are valid programs:

CHEAT.

IF MY LAST1 = CHEAT THEN TRADE ELSE CHEAT.
IFYOURLAST2=NULLTHENTRADEELSEIFYOURLAST1=TRADETHENTRADE
ELSECHEAT.

Input will consist of a series of programs. Each program will be no longer
than 255 characters and may be split over several lines for convenience. There
will be no more than 10 programs. The file will be terminated by a line con-
taining only a single ‘#’.

Output will consist of one line for each line of input. Each line will consist
of the final score of the relevant program right justified in a field of width 3.

South Pacific Contest, 1992

Sample input

CHEAT.

IF MY LAST1 = CHEAT THEN TRADE ELSE CHEAT.
IFYOURLAST2=NULLTHENTRADEELSEIFYOURLAST1=TRADETHENTRADE
ELSECHEAT.

#

Sample output

1
-12
-13

South Pacific Contest, 1992 8

Problem E: Keywords

Many researchers are faced with an ever increasing number of journal articles
to read and find it difficult to locate papers of relevance to their particular lines
of research. However, it is possible to subscribe to various services which claim
that they will find articles that fit an ‘interest profile’ that you supply, and pass
them on to you. One simple way of performing such a search is to determine
whether a pair of keywords occurs ‘sufficiently’ close to each other in the title
of an article. The threshold is determined by the researchers themselves, and
refers to the number of words that may occur between the pair of keywords.
Thus an archeologist interested in cave paintings could specify her profile as
“0 rock art”, meaning that she wants all titles in which the words “rock” and
“art” appear with 0 words in between, that is next to each other. This would
select not only “Rock Art of the Maori” but also “Pop Art, Rock, and the Art
of Hang-glider Maintenance”.

Write a program that will read in a series of profiles followed by a series
of titles and determine which of the titles (if any) are selected by each of the
profiles. A title is selected by a profile if at least one pair of keywords from the
profile is found in the title, separated by no more than the given threshold. For
the purposes of this program, a word is a sequence of letters, preceded by one
or more blanks and terminated by a blank or the end of line marker.

Input will consist of no more than 50 profiles followed by no more than 250
titles. Each profile and title will be numbered in the order of their appearance,
starting from 1, although the numbers will not appear in the file. Each profile
will start with the characters “P:”, and will consist of a number representing a
threshold, followed by two or more keywords in lower case. Each title will start
with the characters “T:”, and will consist of a string of characters terminated
by “|”. The character “|” will not occur anywhere in a title except at the end.
No title will be longer than 255 characters, and if necessary it will flow on to
more than one line. No line will be longer than eighty characters and each
continuation line of a title will start with at least one blank. Line breaks will
only occur between words. All non-alphabetic characters are to be ignored,
thus the title “Don’t Rock — the Boat as Metaphor in 1984” would be treated
as “Dont Rock the Boat as Metaphor in” and “HP2100X” will be treated as
“HPX”. The file will be terminated by a line consisting of a single #.

Output will consist of a series of lines, one for each profile in the input.
Each line will consist of the profile number (the number of its appearance in
the input) followed by “” and the numbers of the selected titles in numerical
order, separated by commas and with no spaces.

South Pacific Contest, 1992

Sample input

T:

P
P
P
T:
T
T

: 0 rock art
: 3 concepts conceptions

1 art rock metaphor concepts
Rock Art of the Maori|
Jazz and Rock - Art Brubeck and Elvis Presley|

: Don’t Rock --- the Boat as Metaphor in 1984, Concepts

and (Mis)-Conceptions of an Art Historian. |

Carved in Rock, The Art and Craft of making promises
believable when your ‘phone bills have gone

through the roof |

Sample output

1:
2:
3:

1,2

1,2,3,4

South Pacific Contest, 1992 10

Problem F: City Navigation

Most US cities are constructed according to a very simple plan—they have
Avenues running north and south, and Streets running east and west, enclosing
square blocks. Avenues and Streets are numbered, with numbers increasing
westward and southward. There are 50 driveways on each side of a block,
numbered 00 to 98 on one side and 01 to 99 on the other. House numbers
increase in the same directions as Street and Avenue numbers. If you are
travelling in the direction of increasing numbers then odd numbers are on your
right. Thus the house at 1288 16th Street (S16 1288) is located on 16th Street,
west of 12th Avenue and east of 13th Avenue, and is on the right-hand side
going east. The residence described as A1l 1543 lies on 11th Avenue, south of
15th Street and north of 16th Street, and is on the right-hand side going south.
Both of these are marked on the following typical street map:

13th 12th 11th 10th Avenues

15th Street W

nw—r =2z

16th Street
o7| |96
17th Street I §
99| < |98
01 99
Street
18th Street 00)
o1 |oo

Quiet suburbs are formed by the simple expedient of making some Avenues
and Streets discontinuous as shown above. Note that Avenues and Streets keep
the same name, even when there are places where they simply don’t exist. It
is difficult to get lost in such a city, as the address tells you exactly where to
go. However, if you don’t know the pattern of missing portions, you can spend
a lot of time going into dead-end roads.

Write a program that will firstly read in a description of the ‘missing’ areas
in a city and then a series of pairs of addresses, where an address is assumed to
specify a driveway not necessarily a residence. For each pair of addresses the
program must calculate the distance between them, by the shortest legal route.

South Pacific Contest, 1992 11

The distance is the number of driveways you pass (on your side of the road)
excluding the source and destination. You may make the following assumptions:

e You drive on the right hand side of the road.

e You may not cross a lane of traffic except at an intersection, that is you
must turn right when entering or leaving a driveway.

e Driveways are located in the centres of their sections.
e U-turns are illegal except at the end of cul de sacs.

e Streets and Avenues are numbered from 00 to 49 and there are no roads
beyond these bounds; however there are driveways on both sides of the
bounding roads.

e Sections on corners have two driveways.
e A route exists between any pair of driveways.

Input will be divided into two portions: a “missing road” portion and an
address portion, each terminated by a line consisting of a single ‘#’. The
“missing road” portion consists of a series of lines with each line containing a
road identifier and a pair of house numbers. A road identifier is an ‘A’ or an ‘S’
(specifying an Avenue or a Street) followed by a number in the range 00 to 49.
A house number is an even number in the range 0000 to 4898. The area between
and including the specified numbers on the identified road is inaccessible. Note
that the line goes directly across the street, thus if number 1612 is inaccessible,
then so is 1613. Inaccessible portions run from the borders of sections not from
driveways. There will be exactly one space separating parts of the input.

The address portion consists of a series of lines each line containing two
addresses. An address is a road identifier (as above) followed by a number in
the range 0000 to 4899. There will be exactly one space separating parts of the
input.

Output consists of a series of lines, one for each line in the address portion
of the input file. Each line contains the distance between the two houses spec-
ified in the input (the number of driveways passed) written as an integer, left
justified.

The following sample data matches the diagram on previous page. (Note
the intersection of A13 and S17).

Sample input

A11 1612 1720
A12 1508 1636

S16 1152 1250

S17 1048 1134

S17 1272 1326

#

S16 1288 A11 1543
#

South Pacific Contest, 1992

Sample output
213

12

South Pacific Contest, 1992 13

Problem G: Paper Folding

If a large sheet of paper is folded in half, then in half again, etc, with all the
folds parallel, then opened up flat, there are a series of parallel creases, some
pointing up and some down, dividing the paper into fractions of the original
length. If the paper is only opened “half-way” up, so every crease forms a 90
degree angle, then (viewed end-on) it forms a “dragon curve”. For example,
if four successive folds are made, then the following curve is seen (note that it
does not cross itself, but two corners touch):

.
I

Write a program to draw the curve which appears after N folds. The exact
specification of the curve is as follows: The paper starts flat, with the “start
edge” on the left, looking at it from above. The right half is folded over so it
lies on top of the left half, then the right half of the new double sheet is folded
on top of the left, to form a 4-thick sheet, and so on, for N folds. Then every
fold is opened from a 180 degree bend to a 90 degree bend. Finally the bottom
edge of the paper is viewed end-on to see the dragon curve. From this view,
the only unchanged part of the original paper is the piece containing the “start
edge”, and this piece will be horizontal, with the “start edge” on the left. This
uniquely defines the curve. In the above picture, the “start edge” is the left
end of the rightmost bottom horizontal piece (marked ‘s’). Horizontal pieces
are to be displayed with the underscore character, and vertical pieces with the
“|” character.

Input will consist of a series of lines, each with a single number N (1 < N
< 13). The end of the input will be marked by a line containing a zero.

Output will consist of a series of dragon curves, one for each value of N in
the input. Your picture must be shifted as far left, and as high as possible.
Note that for large N, the picture will be greater than 80 characters wide, so it
will look messy on the screen. The pattern for each different number of folds is
terminated by a line containing a single ‘.

Sample input
2

4
1
0

South Pacific Contest, 1992

Sample output

14

South Pacific Contest, 1992 15

Problem H: Shuffling Patience

Many children enjoy playing cards, especially some of the simpler forms of
patience or solitaire, yet many of them find it difficult to shuffle the cards
adequately. The following ‘patience’ game assists this as well as aiding card
recognition and boosting simple arithmetic skills. The essence is to ‘cover’
exposed pairs or triples of cards that have a specific relationship to each other.

A deck of cards consists of 52 cards, in four suits of 13 ranks. The suits are
spades, hearts, clubs, diamonds and the ranks run from ace (face value one), 2,
3,4,5,6,7, 8,9, 10, jack, queen and king. During play up to 16 piles in a 4
by 4 grid may be created if necessary, although usually fewer are needed. Deal
cards, face up, in this 4x4 grid. Before playing each card check whether a pair
or triple of cards already played can be covered. A pair of cards can be covered
if they are of rank ace to ten and their face values add to 11. A triple of cards
can be covered if they form the set {jack, queen, king}. If no pairs or triples
exist, a new pile is started.

Where more than one pair and/or triple exists, only one is covered before
reassessing. Cards are always covered in the same order they were dealt, that
is left to right, top to bottom. The first card covered shall be the eligible card
nearest the start of play. The second card covered (and also the third for a
triple) is its partner nearest the start of play. Thus if the first part of a deck
consists of: TS QC 8S 8D QH 2D 3H KH 9H..., then the first seven cards will
be played as follows:

TS QC 8S 8D
QH 2D 3H

The next two cards (KH 9H) will then cover the pair 8S and 3H respectively.
Note that covering pairs or triples is considered an indivisible operation, and
thus further covering operations are not considered until it is complete.

Write a program to simulate the playing of this game. Your program must
read in one or more decks of cards, simulate the play and determine how many
cards are on each pile at the end. If it is not possible to remain within the
stipulated 16 piles, terminate that deal with a message as described below.

Input will consist of a series of decks of cards, each deck specified as 4 lines
each containing 13 cards. Each card will be specified by two characters, a rank
(A,2,3,4,5,6,7,8,9, T, J, Q, K) followed by a suit (S, H, C, D). Cards will
be in the order in which they will be played. The file will be terminated by a
line consisting of a single #.

Output will consist of a series of lines, one line for each deck in the input.
Each line shall start with the deck number, followed by a colon. If it is not
possible to play a deck within the specified 4x4 grid, then write a space followed
by the message ‘Overflowed on card no’ followed by the number of the card
about to be dealt. If it is possible to play the entire deck, then write out the
non-zero numbers that represent the numbers of cards in each pile when the
deck is fully dealt. All numbers are to be right justified in a field 3 characters
wide.

South Pacific Contest, 1992

Sample input

TS QC 85 8D QH 2D 3H KH 9H 2H TH KS KC
9D JH 7H JD 2S QS TD 2C 4H 5H AD 4D 5D
6D 4S 95 55 7S JS 8H 3D 8C 38 4C 6S 9C
AS 7C AH 6H KD JC 7D AC 5C TC QD 6C 3C
#

Sample output
1: 8 6 7 4 3 5 4 4 2 5 4

16

