

Problem Set

PREAMBLE

Please note the following very important details relating to input and output:

• Read all input from the keyboard, i.e. use stdin, System.in, cin,
Console.ReadLine or equivalent. Input will be redirected from a file to form
the input to your submission.

• Do NOT prompt for input as this will appear in your output and cause a submission
to be judged as wrong.

• Write all output to the screen, i.e. use stdout, System.out, cout,
Console.WriteLine or equivalent. Do not write to stderr. Do NOT use, or even
include, any module that allows direct manipulation of the screen, such as conio,
Crt or anything similar.

• Output from your program is redirected to a file for later checking. Use of direct I/O
means that such output is not redirected and hence cannot be checked. This could
mean that a correct program is rejected! You have been warned.

• Unless otherwise stated, all integers will fit into a standard 32-bit computer word.
If more than one integer appears on a line, they will be separated by spaces.

• An uppercase letter is a character in the sequence 'A' to 'Z'. A lower case letter is
a character in the sequence 'a' to 'z'. A letter is either a lower case letter or an
upper case letter.

• Unless otherwise stated, a word or a name is a continuous sequence of letters.

• Unless otherwise stated, a string is a continuous sequence of visible characters.

• Unless otherwise stated, words and names will contain no more than 60
characters, and strings will contain no more than 250 characters.

• If it is stated that ‘a line contains no more than n characters’, this does not include
the character(s) specifying the end of line.

• Input files are often terminated by a ‘sentinel’ line, followed by an end of file marker.
This line should not be processed.

PROBLEM A SECURITY CHECK 3 POINTS

Keepsafe is a tool used by KiwiBank to “provide an extra layer of security to
help protect customers while using Kiwibank Internet Banking.” Customers
have to set up a number of security questions and answers. After logging
in with a user name and password, a customer is presented with one of
their security questions and a space for the answer. Two letters in the
answer have to be entered as shown by white boxes.

For example:

If the pet's name was “Whisper”, the customer would press the P key then the R key. The
letters pressed must correspond, in order, to the two spaces in the outline answer to the
security question.

For this problem, you have to check customers' answers and verify that they are as expected.

Input

Input consists of a security question answer and a login attempt for one customer, each on a
separate line.

The first line contains the security question answer. It will consist of upper case letters and
single spaces only, starting and ending with a letter. There will be no more than 32 characters.

The next line shows the login attempt which consists of 2 positive integers followed by 2 upper
case letters, all separated by single spaces. The integers are the numbers of the characters
required to fill the two spaces in the outlined answer. They are presented in ascending order.
When numbering characters in the answer, the first character is 1, but only letters are assigned
numbers, spaces being ignored. The two letters are those entered by the customer into the two
spaces. They are expected to correspond to the letters in the appropriate places in the security
answer required.

Output

Output consists of a single line containing one word. If the two letters entered match the letters
in the required places in the answer, in the order presented, then the output will be “correct”.

If one or both letters are not correct, the output is “error”.

Turn over for sample input and output

Sample Input 1

THE ALL BLACKS
4 9 A A

Output for Explanation
Sample Input 1

correct Ignoring spaces, letters 4 and 9 in THEALLBLACKS are both As.

Sample Input 2

WHISPER
1 6 W P

Output for Explanation
Sample Input 2

error Letters 1 and 6 in WHISPER should be W and E, not W and P.

PROBLEM B HAVE YOU HAD YOUR BIRTHDAY YET? 3 POINTS

Today it is 11th September. If you were born before 11th
September (in whatever year you were born) then you have
already had your 2021 birthday. If you were born after 11th
September, you have not yet had your 2021 birthday. If you
were born on 11th September – happy birthday! If you were
born on 29th February – unlucky, you do not have a birthday
this year, as 2021 is not a leap year!

Input

Input will consist of a number of lines containing dates. All dates will be valid and no
date will be repeated, so there will be no more than 366 lines. The format for a line
will be one or two digits, a space, and the full name of a month. The name will begin
with an upper case letter, and the other letters will be lower case. Input will be
terminated by a line containing just 0 #. This line should not be processed.

Output

Output will consist of a single line of text for each line of input:

 "You have had your birthday." if a person born on that date would have already

 had their birthday in 2021,

"Your birthday is still to come." if they would not,

"Happy birthday!" if the date is 11th September and

"Sorry, leapling, no birthday this year." if the date is 29th February.

Sample Input

5 January

15 December

29 February

11 September

0 #

Sample Output

You have had your birthday.

Your birthday is still to come.

Sorry, leapling, no birthday this year.

Happy birthday!

PROBLEM C SEQUENCES 3 POINTS

An arithmetic sequence is one in which there is some first
number, and then a series of numbers which are all a
fixed number different.

For example 3, 5, 7, 9 is an arithmetic sequence that has
a first number 3. Then each term after that in the
sequence is formed by adding 2 to the previous term.
(The terms are different by 2). The 3 is also called the first
term (term 1) and 9 is the 4th term.

Given a starting number, a difference and a value, your program is to work out if the number
could be part of the sequence. If so, output which term that number would be, and if not, output
that it is not in the sequence.

Input

Input will consist of a number of lines, where each line has 3 numbers separated by spaces.

The first number is an integer that is the first term in the sequence. The second is the
difference - this will be a non-zero integer. The third is the value that you will need to test to
determine whether it can be part of the sequence or not. It will not be the same as the first
term.

Input is terminated by a zero value for each of the 3 numbers.

Output

Output will consist of one line for each input line. It will consist of either “Term X“ where X is an
integer indicating which term it is, or “Not in sequence” if the number isn’t part of the
sequence

Sample Input

3 2 11

-1 –3 –8

0 0 0

Output for Sample Input

Term 5

Not in sequence

Explanation

11 is the 5th term

The sequence is –1, -4, -7, -10

(-1+ -3 = -4, -4 + –3 = -7, -7+ -3 = -10)

-8 isn’t in the sequence

PROBLEM D CAR PARK 3 POINTS

Our local car park needs your help. They have a fixed number of spaces
for parking and want to be able to tell drivers who are approaching the
park just how many spaces are available to use. They also need to stop
the entry barrier from opening if the park is full. If your system works, they
will sell it to other car park owners.

Input

Input consits of a single scenario representing a single car park. The first line consists of two
integers, S and C (10 <= S <= 500, 0 <= C <= S). S is the number of spaces in the car park

overall, and C is the number of cars currently parked there.

The second line consists of a string of from 0 to 255 characters, each character being one of
the upper case letters ‘I’ or ‘O’. This string represents a stream of data from the entry and exit

barriers. I means that a car has attempted to come in to the car park, O that a car has driven

out. If the car park is not full, a car attempting to enter will be allowed in and counted. If all the
spaces in the car park are filled with cars, a car attempting to enter will be refused entry and not
counted. (Such a car may try again later).

If there are no cars in the car park, an ‘O’ in the data stream at that point represents an error,

and processing of that scenario should stop.

Output

Output consists of a single line. If there has been an error in the data stream, it will contain just
the word “Error.”. Otherwise, it will show the number of cars in the car park at the end of the

scenario in the format “X cars.” The line ends with a full stop.

Sample Input

50 12

IIOIOOIOIIIOOIOIOOII

Output for Sample Input

14 cars.

Problem E WORD EXTRACTION 10 points

I am trying to create a dictionary of all the words in common use by my students. To
do this, I am planning to feed text from their work, discussion forum entries and emails
through a program that extracts the words.

To make it easy to check if a word has been seen before, I am
formatting the text carefully. Firstly, I put everything in lower
case, then I strip out all punctuation leaving the words separated
by single spaces. If the punctuation comes within a word, it is
removed and not replaced with a space. If a "word" consists only
of digits, it is ignored. Finally, I sort the words into alphabetical
order, removing duplicates.

Punctuation is considered to be anything that is not a letter, a number or white space.

Input

Input will consist of a piece of text to be analysed. It will be a single line which will
contain no more than 250 characters, and will contain at least one word which can be
extracted.

Output

Output will be the qualifying words extracted from the text, one per line, in alphabetical
order.

Sample input (single line which is wrapped round here)

Can I please have the spec for the Programming 3 assignment? B.T.W.
I haven't got the lecture notes either! Sorry, thank you.

Output for Sample Input Notes

assignment The ? after assignment is ignored.
btw btw – the full stops have been removed from B.T.W.
can
either The ! after either is ignored.
for
got
have
havent havent – the apostrophe has been removed.
i
lecture
notes
please
programming
sorry The , after sorry is ignored.
spec
thank
the
you The . after you is ignored.

PROBLEM F POSTMAN JOE 10 POINTS

Postman Joe is a fitness fanatic. He has a single row of 20 houses on his
delivery route, and sets himself a task every day that will require him to walk up
and down the row several times. A typical task will look something like this:

3 U3 D2 U1 U6 D4 D5 U7 U9 D5 D3 U5 U4 D2 D5 U8

This means that Joe delivers firstly to house 3, moves 3 houses up the street
and delivers to house 6, then moves 2 houses down the street and delivers to
house 4, and so on. The houses are numbered sequentially from 1 to 20, house 1 being at the
bottom of the street.

Not every house will necessarily receive a delivery each day, but Joe's instructions must never
take him to the same house twice, nor take him beyond either end of the row of houses.

To solve this problem, you must write a program to help Joe. It must check that Joe has set
himself a legal task and, if so, must report those houses which do not receive a delivery.

Input

Input will consist of a single task that Joe has set, on a single line.

The task represents the deliveries for a single day. The line starts with a single integer S (1
<=S <= 20) being the first house to which Joe makes a delivery. This is followed by a sequence
of letter-number pairs, each separated by a single space. The letter will be U or D, U meaning
go up the street (increasing house number), D go down the street. The number will be a single
digit integer, stating the number of houses to move.

Output

Output will consist of a single line. If the instructions for the task are legal (ie no house is visited
twice, and Joe is not taken beyond either end of the street), output will be a list of houses that
do not receive a delivery that day. The list will be in numerical order with a space between each
house number. If all houses receive a delivery, output should be the word none.

If the instructions for a task are not legal, output should be the word illegal.

Turn over for sample input and output

Sample Input 1

3 U3 D2 U1 U6 D4 D5 U7 U9 D5 D3 U5 U4 D2 D5 U8

Output For Sample Input 1 Explanation

1 8 14 16 Joe makes 16 deliveries, missing these 4 houses.

Sample Input 2

8 D7 U5 U6 D9 U2 D4 U9 U3 D2 U7 U2

Output For Sample Input 2 Explanation

illegal The 7th delivery (D4) is to house 1 which received the
2nd delivery.

PROBLEM F HOSTEL NIGHTS 10 POINTS

Students staying in a hostel on the first floor have a reputation for
being a bit too noisy. The warder decides to investigate reports of
noisiness over the course of 5 nights of a week. Other students
are not willing to dob in their floor-mates directly but will help him
eliminate some rooms where the students were not noisy. They
are eliminated through being either odd or even, because they are
a multiple of some number n, or because the inhabitant’s name
starts with a particular letter.

Over the 5 nights the warden manages to form 3 variables from various other students’ help. At
the end of 5 nights he will be able to work out who the noisiest students are. There is at least
one as this floor is notorious.

Input

Input gives the data for one week of 5 days. The data for the week begins with 20 lines, each
showing a room number and the name of a student, separated by a space. Rooms are
numbered from 101 to 120. A student is represented by a single name which begins with an
upper case letter.

This names list is followed by 5 lines each representing one night of the week. Each line
consists of a letter, a number and another letter, each of which is separated by a space. The
first letter is E or O to indicate whether even (E) or odd (O) numbered rooms may be eliminated.
The number is used to eliminate all rooms that are a multiple of that number. The second letter
may be used to eliminate any students whose name begins with that letter.

Output

Output for each week consists of a list of the noisiest students; that is those who have not been
eliminated on the greatest number of nights. Names are output in room number order, one per
line.

Turn over for sample input and output.

Sample Input

101 Fred

102 Gregory

103 Susan

104 Rewi

105 Albert

106 Georgina

107 Peter

108 Bethany

109 Sarah

110 Justine

111 Barry

112 Matthew

113 Francis

114 Chris

115 Devina

116 Yong

117 William

118 Edward

119 Ruth

120 Luckylast

O 5 G

E 3 F

E 5 S

E 1 A

O 4 C

Output for Sample Input

Peter

Edward

Ruth

Explanation

Noisy students (those not eliminated) on each night are:

Night 1: Rewi, Bethany, Matthew, Chris, Yong, Edward

Night 2: Susan, Peter, Sarah, Devina, Ruth

Night 3: Fred, Peter, Barry, Francis, William, Ruth

Night 4: (none)

Night 5: Gregory, Georgina, Justine, Edward

Peter, Edward and Ruth appear twice each so are the
noisiest students.

PROBLEM H SET GAME 10 POINTS

Set is a card game played with a pack of 81 unique cards. Each card in
the pack has 4 properties, having one of the three possible values for
each property.

Colour – Red (R), Green (G), Blue (B) Number 1, 2, 3,

Shape – Diamond (D), Oval (O), Squiggle (S) Fill – Filled (F), Shaded (S), Empty (E)

This sample contains 3 cards and illustrates all the variations. If this is not in colour, note that
the left card is red, the middle is green and the right card is blue.

RD1F GO2S BS3E

Below each card is its representation, being the value for its colour, shape, number and fill in
that order.

The 3 cards illustrated form a set. A set is a collection of 3 cards such that for each property all
3 cards are either the same or different. The 3 cards above are different for all 4 properties.
Note that as each card is unique, cards must be different for at least one property.

Here are some other examples.

RD1F RD1S RD1E SET. Same colour, shape and number,
different fill.

RD1F RD1S RD2E NOT a set. Two are 1s but one is not.

RD1F GO2F BS3E NOT a set. Two are filled but one is not.

BS3E BD1E BO2E SET. Same colour and fill, different number
and shape.

In this problem you will be given data for groups of 3 cards. You must decide whether or not the
3 cards in each group form a set.

Input

Input begins with a single integer, N, on a line by itself (0 < N <= 100). There then follow N
lines, each line representing a group of 3 cards. Each card will be represented by 4 characters
as described above. The cards will each be separated by a space.

Output

For each line of input, produce one line of output containing either the word “Set” or the phrase
“Not a set”.

Sample Input

4

RD1F RD1S RD1E

RD1F RD1S RD2E

RD1F GO2F BS3E

BS3E BD1E BO2E

Output for Sample Input

Set

Not a set

Not a set

Set

New Zealand Programming Contest 2021

PROBLEM I FAMILY TREES 30 POINTS

Nowadays New Zealanders come from a variety of backgrounds. This means that any given
person's ancestry could include significant contributions from Maori, the Pacific Islands, various
western European nations and quite possibly some south east Asian as well. Given a suitable
database of family lineages, it should be reasonably simple to determine the proportions of
these contributions for any given individual. However, the world has never been simple, so really
all we can determine, for any given pair of individuals, is how much the earlier one contributed
to the later one (if any). Your task is to write a program to do this.

Input

Input will consist of a series of family trees and queries over that family tree. A family tree
consists of a series of lines terminated by a line consisting of a single '#'. Each line contains
three different names (each containing fewer than 20 letters) representing the person and his or
her parents. Any name will appear first at most once (i.e. everyone has exactly zero or two listed
parents) and there are no cycles (i.e. no-one is their own ancestor). The family tree is followed
by a series of queries terminated by a line consisting of a single '#'. Each query is a pair of
names that may or may not have appeared in the family tree. The file is terminated by a line
containing a single '#'.

Output

Output consists of one line for each query in the input. If either of the people named in the query
is a direct descendant of the other then print the name of the descendant, a space, the word
"is", another space, the fraction of ancestry in simplest terms (as shown below), another space,
and then the name of the ancestor followed by a full stop ('.'). If this is not the case (or if either
or both do not appear in the family tree) then the line consists of: "<name1> and <name2>
are not related.". Leave a blank line between successive family trees.

Turn over for sample input and output.

Sample Input

PebblesFlintstone WilmaFlintstone FredFlintstone

LisaRubble PebblesFlintstone BambamRubble

Don Jane FredFlintstone

Paul LisaRubble Don

Paul FredFlintstone

FredFlintstone BambamRubble

Jane Don

PebblesFlintstone WilmaFlintstone FredFlintstone

LisaRubble PebblesFlintstone BambamRubble

Don Jane FredFlintstone

Paul LisaRubble Don

Paul Jane

Jane Tarzan

Output for Sample Input

Paul is 3/8 FredFlintstone.

FredFlintstone and BambamRubble are not related.

Don is 1/2 Jane.

Paul is 1/4 Jane.

Jane and Tarzan are not related.

New Zealand Programming Contest 2021

PROBLEM J CHEMISTRY 101 30 POINTS

Chemistry is all about reactions—you throw a bunch of stuff into a test-tube, heat it up, hoping
that it will neither explode or poison you, then cool it down and try to work out whether what you
have is what you expected. That's the easy (and fun) bit—much harder is recording it all. As is
usual with skills of this type, chemistry instructors the world over rely on drill—a seemingly
endless set of reactions that the students have to complete. The trick is that everything that
appears on the left side (the reagents, or ‘input’) must appear on the right side (the products, or
‘output’). This ought to be simple, but generations of chemistry students have demonstrated
otherwise.

Professor Plumbius is getting tired of writing the same comments on his student's worksheets
over and over and he wants to automate the process. He wants to be able to enter the
equations as written by the students and have the computer produce the comments
automatically, thus giving him more time to dream up more equations to give his students to
practise on. This is where you come in.

Write a program that will read in a chemistry equation and determine whether it is balanced. If it
isn't, your program must tell the student what elements are out of balance and by how much.

Normally a chemistry equation is written like this:

2H2O + SO2 ⟷ H2 + H2SO4

but due to the limitations of computer input we will present it like this:

2H2O + SO2 = H2 + H2SO4

This example shows the essentials of an equation: each side consists of one or more
molecules, separated by ‘+’ signs (the spaces are optional). Each molecule may have a
multiplier before it which specifies how many instances of that molecule take part in the
reaction. A molecule consists of one or more elements. Each element has a symbol, which is
either an uppercase letter, e.g. ‘H’, or an uppercase letter followed by a lowercase letter, e.g.
‘Br’. A symbol may be followed by a multiplier specifying how many atoms of that element are
present in that part of the molecule. Thus the first term says that there are two instances of a
molecule consisting of two atoms of H and one atom of O. (This happens to be water, but you
do not need to know that.)

Given that these are exercises handed out to the students, the left hand sides are, by definition,
correct. Thus your job is to determine whether all the atoms that appear on the left also appear
on the right. If they do, then the equation is balanced. If not, you must report which elements
have been created or lost and how much of each.

Continues on the next page.

Input

Input will consist of a number of equations, each on a line by itself. Each line will contain no
more than 250 characters. Each equation represents a set of reagents and a set of products,
separated by an ‘=’ sign. Each set will consist of one or more molecules, possibly with
multipliers, separated by ‘+’ signs. There may be zero or more spaces on either side of the ‘+’
and ‘=’ signs.

The last line of input will be a ‘#’ on a line by itself. This line should not be processed.

Output

There will be at least one line of output for each equation in the input. If the equation is balanced
this line will say ‘Equation n is balanced.’ where n is the equation number (starting from
1). If the equation does not balance, then the output line will say ‘Equation n is

unbalanced.’ and will be followed by a series of lines of the form

You have ⟨created or destroyed⟩ m ⟨atom or atoms⟩ of element.

where element is the symbol of the element concerned, m is the number of extra or missing
atoms of that element, and ‘atom(s)’ is singular or plural as appropriate. For each unbalanced
equation, these lines should be ordered alphabetically by element symbol and terminated by a
blank line. (Note that this means that the final line of your output may be a blank line.)

Sample Input

2HBr + H2O+SO2=H2+H2SO3+He

2H2O + SO2 = H2 + H2SO4

2H2O+SO2=H2+H2SO4

Output for Sample Input

Equation 1 is unbalanced.

You have destroyed 2 atoms of Br.

You have created 1 atom of He.

Equation 2 is balanced.

Equation 3 is balanced.

New Zealand Programming Contest 2021

PROBLEM K YET ANOTHER AMAZING MAZE PROBLEM 30 POINTS

This maze problem is based on an amazing real maze (YAAM) constructed for people to explore
on foot. It turned out to be quite a difficult maze to solve in person, so you have been asked to
write a computer program to check to see if mazes of this style can be solved.

As in most mazes, a YAAM maze is traversed by moving from intersection to intersection from a
starting location, until the goal intersection is reached. In YAAM mazes however, as each
intersection is approached from a given direction, a sign near the entry to the intersection
indicates in which directions the intersection can be exited. These directions are always left,
forward or right, or any combination of these. A valid solution to the maze must obey these
direction signs. The diagram below illustrates a YAAM maze.

The intersections are identified as “(row, column)” pairs, with the upper left being (1,1). The
“Entrance” intersection for the given maze is (3,1), and the “Goal” intersection is (3,3). You begin
the maze by moving north from (3,1). As you walk from (3,1) to (2,1), the sign at (2,1) indicates
that as you approach (2,1) from the south (travelling north) you may continue to go only forward.
Continuing forward takes you toward (1,1). The sign at (1,1) as you approach from the south
indicates that you may exit (1,1) only by making a right turn. This turns you to the east, walking
from (1,1) toward (1,2). So far there have been no choices to be made. This is also the case as
you continue to move from (1,2) to (2,2) to (2,3) to (1,3). Next however, after moving west from
(1,3) toward (1,2), you have the option of continuing straight or turning left. Continuing straight
would take you on toward (1,1), while turning left would take you south to (2,2). The actual
(unique) solution to this maze is the following sequence of intersections: (3,1) (2,1) (1,1) (1,2)
(2,2) (2,3) (1,3) (1,2) (1,1) (2,1) (2,2) (1,2) (1,3) (2,3) (3,3).

You must write a program to solve valid YAAM arrow mazes. Solving a maze means (if possible)
finding a route through the maze that leaves the Entrance in the prescribed direction, and ends
in the Goal. This route should not be longer than necessary, of course.

Continues on the next page.

Input

The input will consist of one or more YAAM mazes. The first line of each maze description
contains the name of the maze, which is an alphanumeric string of no more than 30 characters.
The next line contains, in the following order, the starting row, the starting column, the starting
direction, the goal row, and finally the goal column. All are delimited by single spaces. The
maximum dimensions of a maze for this problem are 9 by 9, so all row and column numbers are
single digits from 1 to 9. The starting direction is one of the characters N, S, E or W, indicating
north, south, east and west, respectively.

All remaining input lines for a maze have the format: two integers, one or more groups of
characters, and a sentinel asterisk, again all delimited by single spaces. The integers represent
the row and column, respectively, of a maze intersection. Each character group represents a
sign at that intersection. The first character in the group is N, S, E or W to indicate in what
direction of travel the sign would be seen. For example, S indicates that this is the sign that is
seen when travelling south. (This is the sign posted at the north entrance to the intersection.)
Following this first direction character are one to three arrow characters. These can be L, F or R
indicating left, forward, and right, respectively.

The list of intersections is concluded by a line containing a single zero in the first column. The
next line of the input starts the next maze, and so on. The end of input is the word END on a
single line by itself.

Notes
The “Entrance” and “Goal” intersections are distinct.
The “Entrance” and “Goal” intersections have no directions marked on them.
There is no way of reaching the “Entrance” again once it has been left.

Output

For each maze, the output should contain a line with the name of the maze, followed by a line
with either the number of ‘steps’ (edges traversed) of a minimum solution to the maze in the
form “Solved in x steps” or the phrase “No Solution Possible”.

Sample Input

SAMPLE

3 1 N 3 3

1 1 WL NR *

1 2 WLF NR ER *

1 3 NL ER *

2 1 SL WR NF *

2 2 SL WF ELF *

2 3 SFR EL *

0

NOSOLUTION

3 1 N 3 2

1 1 WL NR *

1 2 NL ER *

2 1 SL WR NFR *

2 2 SR EL *

0

END

Output for Sample Input

SAMPLE

Solved in 14 steps

NOSOLUTION

No Solution Possible

Explanation

The first maze in the sample input is the maze
in the diagram on the previous page.

Figure 1

Figure 2

New Zealand Programming Contest 2021

PROBLEM M I'M A FRAYED KNOT 100 POINTS

On the table in front of you lie a bunch of pieces of coloured thread. All
the threads are different colours and the ends have been arranged in
a single line, for example red, blue, green, green, blue, red (see
Figure 1). Note that each colour appears exactly twice, once for each
end of that thread. You've been asked to tie the threads into a single
large loop by successively tying together some pair of adjacent thread
ends. In this example you could start by tying end 1 to end 2 (result
shown in Figure 2) or end 2 to end 3, but not end 3 to end 4 since that
would make a green loop. Likewise, if your first tie was a red to a blue,
then your second tie could not join the remaining red and blue.

Finding the job a little boring, you decide instead to count the number
of ways in which you could perform the task, i.e. the number of
sequences of ties that you could do. For instance, suppose that the
initial pattern was rrbb, then there is only one allowed sequence of
ties (join the middle two, then join the two remaining). On the other
hand if it were rbrb, then there are three allowed sequences (join any
consecutive pair to begin with, then join the remaining two).

Likewise you can see that if the initial pattern were rgrbgb, then four
of your initial ties lead to a subsequent pattern of the general form
abab, while one leads to abba. Thus there are 4×3 + 1×2 = 14 ways
to complete the ties in this case.

Input

Input will consist of a sequence of colour patterns represented by
words of length at most 22 consisting of lower case letters and will be
terminated by a line containing the single character '#'.

Output

Output will be a sequence of lines, one for each line in the input, each containing the number of
ways to tie off the pattern in the corresponding input line. If an input line is invalid (because it
does not contain exactly two occurrences of each of its characters) the output for that line
should be 0.

Sample Input

rrbb

rbrb

rgrbgb

gbg

Output for Sample Input

1

3

14

0

New Zealand Programming Contest 2021

PROBLEM N ADVENTURE GAME 100 POINTS

Part of an adventure game requires the adventurer to make her way through a magical maze of
numbered rooms. Each room has a set of numbered doors that lead to the indicated rooms.
Additionally, each room might contain either a leprechaun or a troll.

Whenever the adventurer visits a room containing a leprechaun, the leprechaun will ensure that
she leaves with at least a certain number of gold pieces (GP) in her sack. That is, if she arrives
with fewer GP than the prescribed amount, then the leprechaun will “top her up” to that amount;
however, if she arrives with the prescribed amount or more, then her supply of GP will remain
unchanged. Each time the adventurer visits a room containing a troll, the troll will demand a toll
of a certain number of gold pieces which must be paid before continuing.

The adventurer begins with 0 GP and the problem is to determine whether the adventurer can
make her way from room 1 to the highest numbered room. If the highest numbered room
contains a troll, the adventurer must also be able to pay the toll on arrival.

Input

Input will consist of a sequence of mazes. Each maze will begin with a line containing an integer
specifying the number of rooms in the maze (n, 1 ≤ n ≤ 1000). This will be followed by n lines
specifying the rooms in ascending order. Each line will specify the contents of the room (empty
(E), a leprechaun (L) or a troll (T)), followed by an integer specifying the number of GP that the
leprechaun will top up to, or that the troll will require from the adventurer. (For empty rooms this
amount is 0.) The rest of the line consists of a list of one or more numbers in the range 1..n and
terminated by a zero (0), representing the numbers on the doors of that room. The sequence of
mazes is terminated by a line containing a single zero (0).

Output

Output will consist of a sequence of lines, one for each maze — either “Yes” or “No” indicating
whether it is possible to reach the final room from the first one.

Sample Input

3

E 0 2 0

L 10 3 0

T 15 1 2 0

4

E 0 2 3 0

L 201 2 3 0

L 10 4 0

T 15 2 3 1 0

0

Output for Sample Input

No

Yes

New Zealand Programming Contest 2021

PROBLEM O LIST CALCULATOR 100 POINTS

Your job, should you choose to accept it, is to write an interpreter for a small list calculator. The
input will contain expressions which create and combine lists of numbers.

Operands in expressions are lists of integers. A number alone represents a list with one item.

The operators (from most tightly bound to least tightly bound) are: parentheses, list slicing,
unary operators, binary operators, and list concatenation.

Parentheses () are used to achieve control over the order of operations.

The unary operators are + and *, occurring to the left of an expression. They perform list
reduction: they repeatedly remove the first two items of a list, and replace them with the result of
the operator being applied (addition or multiplication). For example +(1:2:4) takes 1 and 2 off
the front of the list and applies "+" to them to get 3, which is placed on the front of the list leaving
+(3:4); then again it takes the first two items, removes them, applies +, and inserts the result
into the front of the list leaving +7 (recall that a number alone represents a list with one item).
Now the list has fewer than two items, so the operator returns the list with just the number 7.

The binary operators are + and * written using infix notation (i.e. between two expressions).
They are applied to the first element of both lists, then the second element and so on, and
return a list with the results. If one list is shorter than the other, then the shorter list is padded
with its last item until both lists are the same length. Thus (1:2:3)+(4:5) evaluates to
5:7:8. Binary * has higher precedence than binary +. The binary and unary operators will
never be applied to empty lists.

The : operator is used to concatenate two lists. It is written using infix notation and returns a list
consisting of the items of the left operand followed by the items of the right operand.

List slicing extracts a sublist and is done with the [begin:end] operator applied as a postfix to
an expression. Items are 0-indexed and a slice includes the beginning item but not the end item.
Thus (1:2:3:4:5)[1:3] evaluates to 2:3. The begin or end may be omitted, and that
means all items from the beginning or all items until the end respectively. Begin and end are
always integer literals (not expressions).

Input is a sequence of print and assignment commands. Each command is on a single line.

A print command is a line consisting of the word print, a space, and an expression. It outputs
the result of an expression on a single output line. Lists are displayed with “:” as an item
separator (and no spaces). The maximum number of items to be output on a line will be no
more than 20.

Assignment is provided with the = operator. Variable names are single letters and are case-
sensitive. A variable can only be assigned once, i.e. it is a constant. Variable definitions can be
recursive, which means lists can be infinite. However, the variables will always be defined so
that the next element can be directly calculated when required (as in the sample input).

Input will be terminated by a line consisting of a single '#'.

You may assume that all input is syntactically valid.

Turn over for sample input and output.

Sample Input

print +(1:2:4)

print (1:2:3:4:5)[1:3]

print (1:2:3)+(4:5)

N=1:(N+1)

E=2*N

print E[:5]

print +E[:10]

F=1:1:(F+F[1:])

print F[:10]

Output for Sample Input

7

2:3

5:7:8

2:4:6:8:10

110

1:1:2:3:5:8:13:21:34:55

	NZPC 2021 Easy
	NZPC 2021 Intro
	A Password
	B Birthday
	C Sequences
	Problem C Sequences 3 points
	Sample Input
	Output for Sample Input
	Explanation

	D Car Park
	Problem D Car Park 3 points

	E Dictionary
	F Postman Joe
	Problem F Postman Joe 10 points
	Output For Sample Input 1 Explanation
	Output For Sample Input 2 Explanation

	G Hostel Nights
	H Set
	Problem H Set Game 10 points
	Sample Input

	Blank Page
	Blank Page
	Blank Page

	I Family Trees
	J Chemistry 101
	K Yet Another Amazing Maze Problem
	M Im a Frayed Knot
	N Adventure Game
	O-List-Calculator
	Blank Page
	Blank Page

