
PROBLEM SET

PREAMBLE

Please note the following very important details relating to input and output:

• Read all input from the keyboard, i.e. use stdin, System.in, cin or
equivalent. Input will be redirected from a file to form the input to your
submission.

• Do NOT prompt for input as this will appear in your output and cause a
submission to be judged as wrong.

• Write all output to the screen, i.e. use stdout, System.out, cout or
equivalent. Do not write to stderr. Do NOT use, or even include, any
module that allows direct manipulation of the screen, such as conio, Crt or
anything similar.

• Output from your program is redirected to a file for later checking. Use of
direct I/O means that such output is not redirected and hence cannot be
checked. This could mean that a correct program is rejected! You have been
warned.

• Unless otherwise stated, all integers will fit into a standard 32-bit computer
word. If more than one integer appears on a line, they will be separated by
white space, i.e. spaces or tabs.

• An uppercase letter is a character in the sequence 'A' to 'Z'. A lower case
letter is a character in the sequence 'a' to 'z'. A letter is either a lower case
letter or an upper case letter.

• Unless otherwise stated, a word or a name is a continuous sequence of
letters.

• Unless otherwise stated, a string is a continuous sequence of visible
characters.

• Unless otherwise stated, words and names will contain no more than 60
characters, and strings will contain no more than 250 characters.

• If it is stated that ‘a line contains no more than n characters’, this does not
include the character(s) specifying the end of line.

• Input files are often terminated by a ‘sentinel’ line, followed by an end of file
marker. This line should not be processed.

Please also note that the filenames of your submitted programs may need to follow a
particular naming convention, as specified by the contest organisers at your site.

PROBLEM A MEMBERSHIP 3 POINTS

The Western Suburbs Croquet Club has 2 categories of membership, Senior and Open. They
would like your help with an application form that will tell prospective members into which
category they will be placed.

To be a senior, a member must be at least 55 years old, and must have a handicap no lower
than 8. In this croquet club, handicaps range from -2 up to +26; the better the player, the lower
the handicap. In a match, the difference in handicaps is used to determine how many bisques
(free shots) the weaker player will receive. A player with no existing handicap will be given a
handicap of 26.

Input

Input begins with a line containing a single integer, N (0< N <= 50), which is the number of
potential new members for you to classify. This is followed by N lines, each line being data for
one member. The data will consist of two integers, A and H, separated by a space. A, the
person’s age, will be a positive integer, H a valid handicap.

Output

For each line of input, produce one line of output. The output should be the category in which
the prospective member would be placed, Senior or Open.

Sample Input

4

18 20

45 2

61 12

58 4

Output for Sample Input

Open

Open

Senior

Open

New Zealand Programming Contest 2014

PROBLEM B GEOMETRIC PROGRESSIONS 3 POINTS

Wikipedia tells us that “In mathematics, a geometric progression, also known as a geometric
sequence, is a sequence of numbers where each term after the first is found by multiplying the
previous one by a fixed, non-zero number called the common ratio.” So

1 6 36 216

is a geometric progression with a common ratio of 6. As you can see

1 x 6 = 6

6 x 6 = 36

36 x 6 = 216

In this problem you will be given sets of numbers and, if the numbers in a set form a geometric
progression, you are to give the common ratio.

Input

Input begins with a line containing a single integer, N (0< N <= 100), which is the number of sets
of numbers for you to evaluate. This is followed by N lines, each line being a set of numbers.
There will be at least 3 but no more than 20 numbers on a line. If there is a common ratio, its
value will be between +1 and +20 or between -1 and -20, both inclusive.

Output

For each line of input, produce one line of output. If the input line is a geometric progression,
the output line should be the word “yes” followed by a space, followed by the common ratio. If
the input line is not a geometric progression, the output line should be the word “no”.

Sample Input

2

1 6 36 216 1296

2 4 8 32 64

Output for Sample Input

yes 6

no

New Zealand Programming Contest 2014

PROBLEM C COUNTING DIGITS 3 POINTS

How many 1s are there in the numbers between 10 and 15 inclusive?

10 11 12 13 14 15

You will see that there are 7. In this problem you will be asked to perform similar counts.

Input

Input begins with a line containing a single integer, N (0< N <= 100), which is the number of
counts you have to make. Each count is represented by a separate line containing 3 integers, S
F C, separated by single spaces. S (-1000 <= S < 1000) is the start number, F is the finish
number (S < F <= 1000) while C is the digit to count (a single digit).

Output

For each count line in the input, produce one line of output. The output should be the number of
times the required digit occurs in the specified number range (inclusive).

Sample Input

5

10 15 1

1 8 9

-10 10 0

52 160 7

27 398 3

Output for Sample Input

7

0

3

21

176

New Zealand Programming Contest 2014

PROBLEM D PICTURE ENCODING 3 POINTS

Pictures can take up a lot of memory, so ways to encode images to save memory have been
invented. In this problem you have to take a fairly simple encoding and turn it into a picture.

The images here are all black and white and have been represented by X characters for black
and dot (.) characters for white. The encoding rule is simple. Starting from the left, the number
of consecutive white characters is recorded. This will be from 0 to 9 – if there are more than
nine, subsequent characters will be encoded separately, preceded by a _ character to show a
continuation. The number of consecutive black characters is then similarly recorded.

Your task is to expand the encoded data to produce the original picture.

Input

The input will consist of a number of rectangular images, each represented by encoded data.
The first line will contain two integers C and L, separated by a space. C (0 < C < 100)
represents the number of characters to a line while L (0 < L < 50) represents the number of
lines in the image. The line 0 0 will mark the end of input and should not be processed.

L lines will follow each consisting of a set of single digits representing the characters in that line.
The _ character will be used where more than 9 consecutive characters of the same type occur
(see above). Adding the digits will give C.

Output

For each image, output a line of the format Image n, where n is the image number. The images
are numbered consecutively in the order they appear in the input, starting with 1. The
characters on each line of the image must be output with X characters to represent black and
dot characters to represent white.

[Turn over for sample input and output]

New Zealand Programming Contest 2014

Sample Input

20 22

9_9_2

9_9_2

419_6

329_6

21119_6

519_5

619_4

719_3

819_2

983

9211124

911111114

9211124

911111114

974

91514

91514

91514

91514

91514

9_9_2

9_9_2

0 0

Output for Sample Input

Image 1

....................

....................

....X...............

...XX...............

..X.X...............

.....X..............

......X.............

.......X............

........X...........

.........XXXXXXXX...

.........XX.X.XX....

.........X.X.X.X....

.........XX.X.XX....

.........X.X.X.X....

.........XXXXXXX....

.........X.....X....

.........X.....X....

.........X.....X....

.........X.....X....

.........X.....X....

....................

....................

New Zealand Programming Contest 2014

PROBLEM E LAB USE 10 POINTS

After a number of complaints from pupils about bad behaviour in computer labs, Mr Crossley
has introduced some rules with accompanying demerit points. Any pupil who accumulates 50
such points in a week is banned from the lab for 2 days the following week.

Your job is to help Mr Crossley by giving him a list of all pupils in a class who accumulate 50
points in a week.

The following table has been given to all classes:

Unacceptable Behaviour Code Demerit points

Bringing food into the lab FD 10

Using Facebook outside permitted times FB 25

Using mobile phone in the lab PH 40

Excessive talking TK 15

Copying code from another pupil CP 30

Causing damage to equipment DM 50

Playing music that can be heard by others MS 20

Input

Input consists of a number of scenarios, each representing one week. The first line of a
scenario consists of a single integer, N, (0 < N <= 40), the number of pupil demerit entries in
that week. Input is terminated by a zero value for the number. Do not process that line.

The first line in a scenario will be followed by N lines, with each line containing a name (at most
20 letters with no spaces) and a code as described in the table above. The name and code
will be separated by a space.

There may be more than one week’s data.

Output

Output will consist of one line for each week. The line starts with the word “Week” separated by
a space from the week number followed by the names of the people who are to be banned the
following week. Weeks are numbered from 1 in the order they appear in the input. Names
must appear in the order that they appear in the input list. There should be a space after the
week number and a space between each name. If no pupils were given 50 points in that week,
output a message “No pupils banned”.

[Turn over for sample input and output]

New Zealand Programming Contest 2014

Sample Input

4

Norman TK

Josephine FB

Javier TK

Abdullah FD

8

Shen FD

Shen CP

Norman PH

Shen FD

Maurice FD

Norman MS

Sarah MS

Siobhan PH

0

Output for Sample Input Explanation

Week 1 No pupils banned No pupil has more than 25 demerits.

Week 2 Shen Norman Shen has 50 demerits, Norman has 60.

New Zealand Programming Contest 2014

PROBLEM F ALPHA PUZZLE 10 POINTS

An alpha puzzle is a type of crossword puzzle where each letter square (ie one that is not black)
contains a number to represent a letter. Throughout the puzzle, a particular letter is always
represented by the same number. All letters of the alphabet are used, so numbers range from 1
to 26.

In this problem you will be given a prepared alpha puzzle and must check it to see that all 26
letters have been used at least once each, making it a valid puzzle. Valid puzzles go to the next
stage of preparation, invalid ones go back to the designer.

Input

You will be presented with a number of puzzles to validate. Each puzzle starts with a single
integer, S, on a line by itself (10 <= S <=20). S is the size of the puzzle – the number of rows
and columns of squares that it contains. If S is 0 it marks the end of input – do not process that
puzzle.

There then follow S lines each containing S integers separated by spaces. Integers will be in
the range 0 to 26, with 0 representing black squares (ie squares which do not contain letters),
while the other integers each represent a letter of the alphabet.

Output

Output one line for each puzzle presented. If the puzzle contains all 26 letters at least once, the
output should be “Ready to go”. Otherwise, the output should be “Back to the designer”.

[Turn over for Sample Input and Sample Output]

New Zealand Programming Contest 2014

Sample Input

13

1 2 3 1 4 5 6 7 0 0 5 0 7

8 0 9 0 9 0 9 0 7 5 10 11 12

6 9 13 4 11 9 4 12 14 0 11 0 9

2 0 13 0 15 0 4 0 2 0 5 11 15

1 8 15 16 0 17 5 18 15 11 10 0 15

0 0 2 0 17 0 13 0 15 0 0 0 5

19 11 7 2 4 7 0 15 9 6 13 5 6

11 0 0 0 9 0 21 0 12 0 9 0 0

21 0 15 11 13 19 8 7 0 11 15 15 7

13 2 9 0 11 0 9 0 22 0 15 0 2

8 0 23 0 24 9 25 5 8 4 11 13 2

4 2 2 1 16 0 2 0 7 0 2 0 26

2 0 7 0 0 6 4 5 13 2 7 13 7

13

5 7 9 25 20 10 4 0 16 2 16 16 3

21 0 2 0 2 0 13 0 25 0 4 0 7

25 23 23 2 18 0 14 25 26 26 25 11 10

26 0 26 0 12 0 15 0 26 0 5 0 4

26 21 2 13 4 20 10 23 0 15 25 23 20

7 0 0 0 2 0 23 0 9 0 9 0 0

26 19 13 10 25 4 0 1 23 7 10 22 10

0 0 12 0 20 0 25 0 2 0 0 0 8

1 7 4 10 0 5 4 25 16 9 23 25 16

10 0 13 0 17 0 9 0 7 0 25 0 4

6 25 5 5 7 12 10 0 5 25 23 11 2

10 0 24 0 6 0 23 0 25 0 10 0 20

23 21 3 14 10 0 26 16 4 13 23 11 10

0

Output for Sample Input Explanation

Back to the designer

Ready to go

One letter, represented by 20, is missing

New Zealand Programming Contest 2014

PROBLEM G FIZZ, BUZZ 10 POINTS

Fizz, Buzz is a game for 2 or more players, often children who are learning maths. Each player
in turn has to take a number, starting at 1 and going up in 1s. If the number is a multiple of 3,
instead of the number they must say “Fizz”. If the number is a multiple of 5, instead of the
number they must say “Buzz”. If the number is a multiple of 3 and of 5, instead of the number
they must say “Fizz Buzz”. For all other cases, the person says the number. There will be an
agreed stopping point. A typical round would start like this:

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, Fizz Buzz.

This problem is a variation of that game. You will be given a number of games each with a start
number and an end number, and two numbers whose multiples you are to replace by Fizz and
Buzz, like 3 and 5 in the above example. You are to display the correct output for each game.

Input

The first line of input will contain a single integer, N (0 < N <= 20), which is the number of
games to play out. N lines then follow, each representing one game.

A game will be defined by 4 positive integers on a single line, F, L, N1 and N2. F is the first
number to be called in the game, L is the last number. 1 <= F <= L < 100. N1 and N2 are the
numbers whose multiples must be replaced. 1 < N1, N2 < 20.

Output

For each game, the first line must be of the format Game n, where n is the game number. The
first game in the input list will be Game 1 with games numbered consecutively in the order they
are listed.

For each game, all numbers between F and L are to be displayed, each on a separate line. If a
number is a multiple of N1, it must be replaced by the word “Fizz”. If a number is a multiple of
N2, it must be replaced by the word “Buzz”. If a number is a multiple of N1 and N2, it must be
replaced by the words “Fizz Buzz”.

Turn over for sample input and output

New Zealand Programming Contest 2014

Sample Input

1

1 15 3 5

Output for Sample Input

Game 1

1

2

Fizz

4

Buzz

Fizz

7

8

Fizz

Buzz

11

Fizz

13

14

Fizz Buzz

New Zealand Programming Contest 2014

PROBLEM H PHONE CYPHER 10 POINTS

Tom and Jerry have come up with a simple way of encrypting their text messages to each
other. In this problem you will help them by translating encrypted messages into normal text.

Both boys' phones have letters on the keys 2 to 9 as is
standard (see diagram). When Tom sends a message to
Jerry, he presses the required key one time too many, so
gets the letter after the one he wants, unless the letter is
the last one on the key when he presses the key just
once.

When Jerry sends a message to Tom, he presses the
required key one time less than he normally would, so gets the letter before the one he wants,
unless the required letter is the first one on the key when he selects the last letter.

The boys do not encrypt digits, punctuation or spaces. All letters are lower case.

Input

Each line in the input begins with a letter to show who sent the message that follows – this will
be an upper case J (for Jerry) or an upper case T (for Tom). This is not part of the message,
but is there so you know how to decrypt it. The last line starts with # - do not process this line.

Output

For each line of input, output the normal text translation of the message (excluding the initial
letter). Each output should be on a line of its own.

Sample Input

T xibu bsf zmv emgoh umoghiu?

J sqdscqhmi enq vgd bnmvdrv, ne bntqrd!

#

Output for Sample Input

what are you doing tonight?

preparing for the contest, of course!

New Zealand Programming Contest 2014

Time Limit: 10 sec Approximation NZPCнлмп PROBLEM I

Often, when doing a programming contest, we need to do some approximate arithmetic – possibly estimating the
number of iterations or the memory size required to solve a problem. One fast mental arithmetic technique is
known as RUNT (Round-Up Numbers Technique). Arithmetic in RUNT works as follows:

• A number in RUNT is zero or has exactly one non-zero digit.
0, 100, 5, 5000 are valid RUNT numbers.
101, 99, 5.5 and 5500 are not valid RUNT numbers.

• When we are given an arithmetic problem we immediately ‘round’ all numbers to the nearest RUNT number
• After doing an arithmetic operation we ‘round’ the result to the nearest valid RUNT number.
• RUNT ‘rounding’ works as follows: if the second significant digit is 2 or less, we round down; if 3 or greater,

we round up. For example: 1200 rounds to 1000; 1091 rounds to 1000; 1300 rounds to 2000. There are
similar rules for fractions and negative numbers, but they are not required for this problem.

Your task is to write a RUNT desk calculator. Your calculator should accept arithmetic expressions involving non-
negative integer literals, parentheses ‘(‘ ‘)’, addition ‘+’ and multiplication ‘*’ (no other operators are required).
Normal operator precedence applies:

• Parenthesized expressions first.
• Multiplication has precedence over addition.
• In a sequence of additions or multiplications, operations are performed from the left.

Note: Of course such a calculator should never be used. You should think of it as an aid to training, not a useful
means of performing calculations.

Input

On the first line of input is a single number N: 1 <= N <= 100, being the number of expressions to evaluate. On the
next N lines are N arithmetic expressions. No expression is more than 1000 characters long. There may be space
characters before, after or between tokens in an expression. Every expression contains at least one integer literal.
All expressions are syntactically valid (parentheses match, literals and operators are used correctly).

Output

One line for each expression, being the integer result of doing the RUNT calculation. Note that all arithmetic can be
done using 32 bit integers.

Sample Input

6
 2299
100 + 29
135+235
120 + 120+120
4 + 5 * 5
8 * ((3 + 2))

Sample Output

2000
200
500
300
40
40

Time Limit: 60 sec Glass Cutting NZPCнлмп PROBLEM J

Window glass is manufactured in large rectangular sheets. An important problem in the glass business is trying to
cut these sheets into the various pane sizes required by customers as efficiently as possible. PC Glass Limited is
working on a new strategy to address the problem and has asked you to develop software to help. Their system is as
follows

• Sizes are measured using a new unit – the ‘Glass Regular Inch’ (‘grinch’ for short – the grinch is close to an
inch, but just a little smaller for easy conversion to millimetres (25 mm/grinch)).

• Glass sheets are manufactured with dimensions that are always an integral number of grinches. For
example, they may manufacture 100 by 200 grinch sheets.

• Glass panes are sold in a set number of standard sizes (all rectangles in integral grinch sizes).
• Depending on stock levels and demand, PC Glass chooses and makes regular alterations to the prices at

which they sell panes of different sizes.

After setting prices, PC Glass wants software to determine an optimal cutting pattern. The software will be given a
sheet size and a list of required pane sizes with prices. It must decide how best to cut one sheet into panes, so as to
maximize the value of panes obtained (less the cost of the cuts). The collection of panes that results is of concern.
For example, if a sheet is cut entirely into panes of one size and no panes of other sizes are produced and this
happens for too long, PC Glass will simply alter the prices to favour other pane sizes and run the program again.

Glass cutting has one unusual feature that must be taken into account. The method of cutting a sheet of glass is to
score (scratch) it in a straight line, and then to snap the glass along the scored line. This means that the cut must go
all the way from one side of the glass to the other. Further the glass cutting tables at PC Glass only allow cuts
parallel to an existing side of a piece of glass – always leading to rectangular panes.

Input

Input will start with a single line holding one positive integer (0 < N < 100), being the number of cutting problems to
solve. This will be followed by data for each of the N problems. The data for a problem starts with a line of four
numbers: W, H, C and S. W and H are the width and height of the glass sheet in grinches: 1 <= W, H <= 500. C is
the cost of making one cut: 0 <= C <= 1000. S is the number of sizes of pane that may be cut: 1 <= S <= 20. Next are
S lines, each with three numbers: w, h and p. Where w and h are the width and height of a pane and p is its price.
1 <= w <= W, 1 <= h <= H. Note that prices are positive integers - all finance is managed in integral dollar amounts.

Output

One line per problem, holding a single number – the maximum price obtainable by cutting the given sheet of glass
with the given pane price structure, less the cost of making the cuts. Notes:

• The cutting pattern for maximum price may not be unique.
• The orientation of the glass is not important – 1 by 3 grinch pane may be cut as a 1 by 3 or as a 3 by 1.
• There may be unused glass that is wasted after making cuts

Sample Input

4
4 3 5 1
2 1 10
3 4 5 3
3 3 10
1 2 3
1 3 4
3 4 20 3
3 3 10
1 2 3
1 3 4
3 4 1 3
3 3 10
1 2 3
1 3 4

Sample Output

35
9
0
13

Time	 Limit:	 10	 sec	 Line	 Ends	 NZPC2014	 PROBLEM	 K	
In	 2D	 graphics,	 an	 important	 function	 is	 line	 drawing.	 	 When	 lines	 are	 thin	 we	
don’t	 have	 to	 think	 very	 much	 about	 the	 way	 they	 join.	 	 However,	 if	 we	 use	 wide	
lines,	 joints	 become	 a	 concern.	 	 In	 the	 picture	 to	 the	 left	 a	 wide	 horizontal	 line	 has	
been	 drawn,	 connected	 to	 a	 wide	 vertical	 line.	 	 Each	 line	 is	 many	 pixels	 wide,	 but	
stops	 exactly	 at	 its	 end	 point.	 	 The	 result	 is	 an	 unsightly	 gap	 at	 the	 joint.	 	 In	 2D	
graphics	 libraries	 there	 is	 usually	 a	 mechanism	 for	 adding	 ‘caps’	 to	 joints.	 	
Different	 geometries	 are	 used.	 	 Two	 common	 forms	 are	 the	 rounded	 cap	 and	 an	

angular	 one.	

	

	

	

	

For	 lines	 joining	 at	 different	 angles	 we	 can	 use	 a	 version	 of	 the	 angular	 cap	 made	 by	 extending	 the	 sides	 until	 they	
meet	 giving	 an	 extended	 pointed	 cap.	 This	 shape	 is	 	
especially	 useful	 in	 forming	 arrow.	

You	 task	 is	 to	 write	 a	 program	 to	 accurately	 determine	 	 	
which	 pixels	 to	 fill	 in	 a	 low	 resolution	 ‘graphics’	 environment	 	
when	 drawing	 and	 joining	 two	 wide	 lines	 using	 the	 ‘angular’	 cap	 as	 above.	

Think	 of	 your	 ‘graphics’	 surface	 is	 an	 N	 *	 M	 grid	 of	 cells,	 columns	 indexed	 from	 0	 to	 N-‐1	 and	 rows	 from	 0	 to	 M-‐1.	 	 	

	

The	 diagram	 shows	 9	 by	 7	 grid	 with	 a	 thin	 ‘line’	 drawn	 from	 cell	 (1,	 1)	 to	 (5,	 5).	 	 Coordinates	 refer	 to	 the	 centre	 of	 a	
referenced	 cell.	 	 	 Wide	 lines	 will	 have	 pixels	 filled	 to	 either	 side	 of	 the	 line.	 	 For	 a	 line	 of	 width	 W,	 consider	 a	
rectangle	 of	 width	 W	 around	 the	 line,	 as	 follows.	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Any	 cell	 (pixel),	 whose	 cell	 centre	 lies	 exactly	 on	 or	 inside	 the	 rectangle	 should	 be	 coloured.	 (Note	 that	 precise	
calculations	 are	 required	 here.)	

Finally,	 because	 we	 cannot	 use	 a	 graphics	 environment	 in	 a	 programming	 contest,	 we	 will	 represent	 our	 graphics	
surface	 as	 an	 array	 of	 characters	 –	 ‘@’	 representing	 black	 and	 the	 space	 character	 representing	 white.	 	 (This	 will	 only	
look	 correct	 with	 a	 non-‐proportional	 	 font.	

	

Input	

Input	 will	 consist	 of	 a	 number	 P	 of	 problems.	 	 The	 first	 line	 holds	 the	 number	 P.	 	 This	 is	 followed	 by	 P	 problem	
descriptions.	 	 Each	 problem	 is	 a	 sequence	 of	 connected	 line	 segments	 to	 be	 drawn.	 	 The	 first	 line	 for	 each	 problem	
has	 four	 non-‐negative	 integers	 	 1	 <=	 N,	 M,	 W	 <=	 100	 and	 1	 <=	 L	 <=	 5.	 	 N	 and	 M	 are	 the	 number	 of	 columns	 and	 rows	
of	 the	 drawing	 surface,	 W	 is	 the	 width	 of	 the	 lines	 to	 be	 drawn	 and	 L	 is	 the	 number	 of	 points	 to	 be	 connected	 by	 line	
segments.	 	 Then	 follow	 L	 lines	 each	 with	 an	 x	 (column),	 and	 y	 (row)	 index	 representing	 a	 point	 on	 the	 surface	
0	 <=	 x	 <=	 N,	 	 0	 <=	 y	 <=	 M.	

Output	

For	 each	 problem,	 a	 blank	 line	 followed	 by	 a	 grid	 of	 @	 and	 space	 characters	 of	 the	 specified	 size	 with	 the	 requested	
line	 segments	 ‘drawn’	 in	 @	 characters.	 	 Each	 line	 of	 the	 grid	 should	 be	 started	 and	 finished	 with	 a	 ‘|’	 character.	 	
Some	 lines	 and	 caps	 will	 extend	 off	 the	 grid	 –	 just	 ‘draw’	 the	 pixels	 that	 are	 on	 the	 grid.	

	 	

Sample	 Input	

4
20 10 3 2
1 2
10 2
20 10 3 3
1 2
10 2
4 6
20 10 3 3
1 2
16 2
16 8
20 10 3 3
2 5
8 2
16 8

Sample Output

| |
| @@@@@@@@@@ |
| @@@@@@@@@@ |
| @@@@@@@@@@ |
| |
| |
| |
| |
| |
| |

| |
| @@@@@@@@@@@@@@ |
| @@@@@@@@@@@@ |
| @@@@@@@@@@@ |
| @@@@@ |
| @@@@@ |
| @@@ |
| @ |
| |
| |

| |
| @@@@@@@@@@@@@@@@@ |
| @@@@@@@@@@@@@@@@@ |
| @@@@@@@@@@@@@@@@@ |
| @@@ |
| @@@ |
| @@@ |
| @@@ |
| @@@ |
| |

| |
| @@@ |
| @@@@@@ |
| @@@@@@@@@ |
| @@@@@@ @@@@@ |
| @@@@ @@@@@ |
| @ @@@@@ |
| @@@@ |
| @@@ |
| @ |

Time Limit: 10 sec Rope Patterns NZPCнлмп PROBLEM M

A fun children’s drawing activity is making patterns on grid paper. By drawing a systematic arrangement of vertical
and diagonal strokes in the cells of the grid paper it is possible to produce interesting pictures. For example, with
diagonals and vertical lines we can make a wandering pipe.

If we also allow half diagonals, it is possible to give
the impression that pipes twist around each other.
We can think of these new forms as sketches of rope
with twisted strands.

You have been approached by the author of a children’s activity book to write a program to help them check the
accuracy of drawing instructions provided for drawing pipe/rope pictures on a grid. Your task is to take a coded
version of a picture, decide if it represents well-formed strands and if so, how many strands there are. A picture is
well formed if:

• The top and bottom rows of the diagram have only vertical line segments
and empty cells.

• It is possible to interpret the picture as a series of strands of width 1
running all the way from top to bottom. There should be no line segments
that are not part of a strand.

• Although a strand can ‘pass behind’ another strand, at least a part each
strand must be visible on every row of the diagram grid. For example, the
picture on the right is not well formed even though we can imagine a
strand passing from top right to bottom left, because it is not visible on the
third row. Note that the code for this picture is the second to last example
in the sample input below.

• A strand in a well formed picture starts on the first row and extends to the
last row of a diagram.

Input

The first line of the input is a number P, being the number of diagrams to analyse. Following are P diagram
descriptions. Each description starts with a line holding the number N of grid rows in the diagram and then has N
lines of coded grid cell descriptions 1 <= N <= 100. Coding is as follows: A space represents an empty grid cell, the
‘|’ character represents a grid cell with a vertical line down its left edge; a ‘\’ character represents a top left to
bottom right diagonal; ‘/’ is the other diagonal. Following a ‘\’ or ‘/’ may be the letter ‘u’ denoting a top half
diagonal of the opposite sense or the letter ‘d’ denoting a lower half diagonal. The number of cell descriptions on a
line is between 0 and 100 inclusive.

Note that there is an asymmetry in the set of patterns that can be drawn as a result of ‘|’ representing a line down
the left edge of a cell. This is not desirable and later versions of the coding scheme may fix the problem, but for the
program you are writing, the limitation is exists and should be taken into account.

Output

One line for each diagram. If the diagram is not well formed the output should be ‘Not well formed’. If the diagram
is well formed the output should be ‘Well formed with S strands’ where S is the largest number of strands that can
be interpreted as occurring in the diagram.

Sample Input

6
1
|||
3
3		
5		
//\d\u		
\\/u/d		
5		
\\u/		
/\d\		
4		

Sample Output

Well formed with 2 strands
Not well formed
Well formed with 3 strands
Well formed with 3 strands
Not well formed
Not well formed

Time Limit: 30 sec Flash Point NZPCнлмп PROBLEM N

Astronomers have long been interested ‘wanderers’ – objects in the sky that move against the background of ‘fixed’
stars – objects like planets, comets and asteroids. The standard method of searching for such objects is: to take a
photograph of an area of the sky; wait for a suitable time (days or months); take another photograph of the same
area; then compare the photographs. Prior to computers being available, that comparison was manual and time
consuming. Now big observatories have software to compare digital images. The NZPC Observatory lacks such
software and can’t afford to purchase it. Instead they are calling on you to write them a program.

Your program must take information from a pair of processed digitised images and decide if they provide evidence of
a wanderer. Of course there are some issues in developing the program. The observatory’s telescope alignment
system is not terribly reliable, so the images will not be exactly aligned. Observing conditions vary, so the observed
intensities of corresponding stars in a pair of images will not be identical.

The images used are of small rectangular regions of the sky taken with a digital camera having a resolution of 10,000
by 10,000 pixels. Preliminary processing of each raw image yields a star field array, in which each star is assigned a
brightness and reported as occurring at a single pixel location. Brightness is measured on a scale from 1 to 10. Given
the problem with telescope positioning, the images in a pair cover only approximately the same area of the sky. It is
known however, that the positioning misalignment is never greater than the equivalent of 2000 pixels. Scaling of the
images is determined by the geometry of the telescope and is therefore exactly the same. Alignment, in the sense of
having parallel X and Y axes respectively is also precise. As a result, the coordinates of stars (pixels) that occur in
both images of a pair are offset by some fixed vector (dx, dy), where -2000 <= dx, dy <= 2000. This is slightly
complicated by the fact that the real physical (dx, dy) offset of the images is not necessarily an integer. The result is
a random pixel alignment effect. In analysing the offsets of corresponding stars across the two images of a pair we
will observe one of two values for each of x offset and each y offset (differing by 1). For example images may have
stars offset by 100 or 101 pixels in the x dimension. In a similar way the brightness of each star will be consistently
different between images with a one intensity unit alignment uncertainty. Note however that the brightness
measurement difference may sometimes lead to a star being seen on one image, but being too dim to register on
the other.

The professional ridicule that astronomers who make false claims about discovering wanderers suffer is
considerable, so the staff have imposed strict conditions on your program. It must only announce that it has found a
wanderer if it can account for all the points of light observed in each image with the exception of one point occurring
at different locations in the images of a pair, and having the same brightness. Points may be accounted for by: being
at corresponding locations with corresponding brightness levels; by being outside the area of view on one image; or
being too dim in one image.

You may assume that at least half the stars in a set will match in location and brightness. You may also assume that
the stars are distributed reasonably uniformly and randomly in the images. There will not be more than one location
match between images. You may also assume that no two stars occupy adjacent (horizontally, vertically or
diagonally) pixel locations (that is a side effect of the operation of the preliminary image processing that has been
done).

Example

The picture on the right shows a section of the sky with 15 star
locations numbered 0 to 14. Two images are taken as
described. The left box is the area captured in the first image
and the right box is the area captured in the second image.

The next two pictures show the data captured in each of the images (with the same star location numbers).

Notice that: Star 10 is missing in image 2 because it is too dim. The star indexed as 4 and 8 is actually the wanderer,
appearing in different places in the two images. Notice that the x coordinates of fixed stars occurring in both of the
two images differ by 1500 or 1501. The y coordinates differ by 1000 or 1001. The brightness values differ by 1 or 2.

Input

Line one holds a single integer N, being the number of image pairs to examine. This is followed by N sets of data on
pairs. For each pair the first line of data holds two numbers N1 and N2, the number of stars observed in image one
and the number in image two. 10 <= N1, N2 <= 500. Next are N1 lines with star information for the first image and
then N2 lines with star information for the second image. Each line of star information contains three positive
integers: X, Y and B. X and Y are the coordinates of the star, relative to the top left corner of the respective image.
0 < X, Y < 10000. B is the observed brightness of the point 1 <= B <= 10. The star image information is in random
order for each image of the pair.

Output

One line per image pair. The line will either have the text “Couldn’t find wanderer” or 6 numbers: the reported X, Y
and B values of the wanderer from image one and from image two of the pair. (It is a requirement of identification
that the wanderer is observed in both images.)

Sample Input

1
13 10
4000 800 5
9000 800 4
2000 4000 6
6000 4000 7
9000 4000 8
4000 5000 3
6000 6000 6
1000 8000 7
3000 9000 1
7000 9000 4
9000 7000 3
5000 2000 5
8000 2000 4
9499 4999 4
500 2999 4
7499 3000 6
2499 4000 1
4499 5000 4
2499 5999 3
5500 8000 3
7499 5999 2
3499 999 4
6500 1000 3

Sample Output

6000 4000 7 2499 5999 3

	Preamble
	Preamble

	NZPC2014
	3 point problems
	A - Membership
	Blank Page

	B - Progression
	C - Digits
	D - Pictures
	Blank Page
	Blank Page
	Blank Page

	10 point problems
	E - Lab
	F - Letters
	G - Fizz Buzz
	H - Phone Cypher
	Blank Page
	G - Fizz Buzz.pdf
	Problem G Fizz, Buzz 10 points

	H - Phone Cypher.pdf
	Problem H Phone Cypher 10 points

	30 point problems
	I-RUNT
	Blank Page

	J-Glass
	K-LineEnds
	Blank Page

	L - Placeholder
	Problem L Placeholder 30 points
	Blank Page

	100 point problems
	M-Rope
	N-FlashPoint
	O - Placeholder
	Problem O Placeholder 100 points

	P - Placeholder
	Problem P Placeholder 100 points

	Blank Page
	Blank Page
	Blank Page

