
PROBLEM SET

NEW ZEALAND PROGRAMMING CONTEST

2009

PREAMBLE

Please note the following very important details relating to input and output:

• Read all input from the keyboard, i.e. use stdin, System.in, cin or
equivalent. Input will be redirected from a file to form the input to your
submission.

• Do NOT prompt for input as this will appear in your output and cause a
submission to be judged as wrong.

• Write all output to the screen, i.e. use stdout, System.out, cout or
equivalent. Do not write to stderr. Do NOT use, or even include, any
module that allows direct manipulation of the screen, such as conio, Crt or
anything similar.

• Output from your program is redirected to a file for later checking. Use of
direct I/O means that such output is not redirected and hence cannot be
checked. This could mean that a correct program is rejected! You have been
warned.

• Unless otherwise stated, all integers will fit into a standard 32-bit computer
word. If more than one integer appears on a line, they will be separated by
white space, i.e. spaces or tabs.

• An uppercase letter is a character in the sequence 'A' to 'Z'. A lower case
letter is a character in the sequence 'a' to 'z'. A letter is either a lower case
letter or an upper case letter.

• Unless otherwise stated, a word or a name is a continuous sequence of
letters.

• Unless otherwise stated, a string is a continuous sequence of visible
characters.

• Unless otherwise stated, words and names will contain no more than 60
characters, and strings will contain no more than 250 characters.

• If it is stated that ‘a line contains no more than n characters’, this does not
include the character(s) specifying the end of line.

• Input files are normally terminated by a ‘sentinel’ line, followed by an end of
file marker. This line should not be processed.

Please also note that the filenames of your submitted programs may need to follow a
particular naming convention, as specified by the contest organisers at your site.

Problem A Team Selection 3 points

It is the night before the IOI team selection is to be announced. All the students are
awake and confident, eagerly anticipating the results. Looking through the exam
scores, however, Bernard begins to worry. Every student has achieved a perfect
score on the exam, making it impossible to determine who should be on the team.

Shutting the lid of his laptop, Bernard announces that team selection this year will
take place a little differently. The process will start by Bernard announcing a number,
k, and then have all the students stand in a circle. Bernard will then, starting with the
first student in the circle, move around the circle removing every kth student until the
circle is empty. The last four students removed from the circle will form the team.

You decide that if you want to make the team, you will have to act fast and ensure
you stand in one of the four selected positions in the circle. Your task is to write a
program that, given the number of students in the circle and the number k, will
determine the last four positions to be selected by Bernard.

Input

The input consists of a series of single lines consisting of two integers, n k, separated
by a single space 4 <= N <= 10,000,000, 1 <= K <=10,000,000. N represents the
number of students in the circle, while K represents how often Bernard removes a
student. The last line is 0 0. This represents the end of the input – do not process
this line.

Output

For each line of input the output should consist of a single line with four integers,
each separated by a single space. These integers are the last four positions in the
circle to be removed by Bernard. These positions should be listed in the order in
which Bernard removes them.

Sample Input

9 3

11 7

0 0

Sample Output

5 2 7 1

6 1 4 5

Explanation

In the first sample input, there are 9 students in the
circle and every 3rd student is removed. Students
are removed in the circle in the order 3, 6, 9, 4, 8,
5, 2, 7, 1. The last four students to be removed are
therefore 5, 2, 7 and 1. These students form the
team.

Problem B Cuboids 3 points

A cuboid is a 3 dimensional shape in which each of the six faces is a rectangle. Sally Jones, a
primary school teacher, is giving her pupils some practice at calculating the volume of a cuboid.
I am sure you remember that volume = length x width x height.

Sally has given her pupils a table of lengths, widths, heights and volumes. Each row on the
table has one of the 4 values missing; the pupils have to work out the missing value and write it
in the table such that the values on each line represent the length, width, height and volume of
one cuboid.

Input is a series of lines, each containing 4 integers, l, w, h and v representing the length,
width height and volume of a cuboid in that order. The integers are separated by a single
space. 0 < l, w, h <100, 0 < v < 100,000. In each row, one of the values has been replaced by
a zero. The final row contains 0 0 0 0 and should not be processed.

Output is the same series of lines but with the zero in each line replaced by the correct value for
length, width, height or volume as appropriate. The new value is always an integer.

Sample Input

2 1 0 6

6 5 4 0

0 8 5 80

9 0 8 576

0 0 0 0

Sample Output

2 1 3 6

6 5 4 120

2 8 5 80

9 8 8 576

Problem C On the Bus 3 points

A bus leaves the bus depot with 4 passengers aboard. At the first stop, 3 more passengers get
on. At the next stop, 1 passenger gets off and 2 get on. How many passengers are now on the
bus?

This problem presents you with a number of scenarios of this nature. All you have to do is state
how many passengers are on board the bus at the end of the scenario.

Each scenario begins with a route number (up to 5 numbers or letters with no spaces) and Z,
the size of the bus (maximum number of passengers, 10 <= Z <= 100) separated by a space.
Input is terminated by a line containing just # 0 – this line should not be processed. The 2nd
line of the scenario gives P, the initial number of passengers on the bus (0 <= P <=Z). The 3rd
line of the scenario gives S, the number of stops that are to be considered (1 <= S <= 100).
There then follow S lines each containing 2 integers separated by spaces. The first number
represents the number of passengers getting off at the stop, the second the number of
passengers waiting to board. If the number of passengers waiting to get on is greater than the
number of available seats, after the alighting passengers have got off, then the excess
passengers are left behind. Health and Safety regulations prohibit the carrying of standing
passengers.

Output consists of 1 line of text per scenario. It should show the route number exactly as input,
followed by a space, followed by the number of passengers aboard the bus at the end of the
scenario.

Sample Input

36A 26

4

2

0 3

1 2

0

Sample Output

36A 8

Problem D Jumbled Words 3 points

Did you konw taht the hamun biran is so celevr taht it can raed a steennce lkie tihs as lnog as
ecah wrod has the coercrt leetrts and the frsit and lsat ltrtees are ceorcrt?

I'll translate! Did you know that the human brain is so clever that it can read a sentence like this
as long as each word has the correct letters and the first and last letters are correct?

If you understood the sentence first time, you proved the point. In this problem you will be given
normal words and will have to jumble them by reversing all letters within the word, keeping the
first and last letters in the correct place. Our test sentence would have to look like this:

Did you konw taht the hamun biarn is so cevelr taht it can raed a scnetnee lkie tihs as lnog as
ecah wrod has the ccerrot lrettes and the fsrit and lsat lrettes are ccerrot?

Input consists of a number of lines of text each containing no more than 250 characters. The
text will consist of lower case letters and spaces only. There will be a single space between
each word, but no leading or trailing spaces. The last line will contain just the character # - this
line should not be processed.

Output will be one line of text for every input line. In the output line all letters within each word
will have been reversed, except for the first and last letters, which will be unchanged.

Sample Input

did you know that the human brain is very clever

only a short sentence

Sample Output

did you konw taht the hamun biarn is vrey cevelr

olny a sroht scnetnee

Problem E, Noughts & Crosses, 10 points

Noughts and crosses is a simple game played by 2 people. The aim is to get a row of 3 of your
own symbols (vertically, horizontally or diagonally) before your opponent can do so. For
example:

Game 1 shows X winning with a horizontal row. Game 2 shows O winning with a diagonal row.
Game 3 is a draw as neither side has completed a row.

In this problem you will be given one or more games to follow and must determine who has
won. Each game occupies a single line and begins with a letter, X or O, which shows who
takes the first turn. Input is terminated by a line which contains just the character # - this line
should not be processed.

A number of turns follow the initial letter, on the same line, all separated from each other by a
space. A turn is designated by one of the numbers from 1 to 9, numbers representing board
squares as shown below:

Game 1 above could have been represented as

X 1 5 9 7 3 6 2

For each game in the input, 1 line of output should be given. If there is a winner, the output
should be an upper case X or an upper case O as appropriate. If there is no winner, the output
should be the word Draw.

Sample Input

X 1 5 9 7 3 6 2

X 3 5 6 9 2 1

O 1 5 9 2 8 7 3 6 4

Sample Output

X

O

Draw

Problem F Brackets 10 points

As a C/Java programmer, you will be used to dealing with brackets. For the purpose of this
problem, we will consider three type of bracket, round (), square [] and curly {}. As you know,
every opening bracket must have a corresponding closing bracket, and brackets must be
correctly nested.

This problem will give you some pieces of code. You have to check whether the brackets are
legal or not. To keep things simple, there will be no brackets enclosed in quotes (which do not
follow the standard rules, of course). New line characters have also been removed, so each
line of input represents one piece of code to be checked.

Input will consist of a number of lines of text (code), each one containing no more than 250
characters. The last line of input will contain just # - this line should be ignored. Each piece of
code must be checked for legal brackets, and its status reported. If a line of code contains no
brackets, or if all brackets are correctly paired and nested, the output should be Legal on a line
on its own. If there are any errors, the output should be Illegal on a line on its own.

Sample Input

void test(int num) { num = double(num); }

int count(int value) { return (value + 2; }

while(sum < 200) { sum += data[test(sum]); }

Sample Output

Legal

Illegal

Illegal

Explanation

Line 1 has 2 sets of round brackets, and one set of curly brackets, correctly nested.

Line 2 has a set of round brackets and a set of curly brackets, but has an extra opening round
bracket with no corresponding closing bracket.

Line 3 has 2 sets of round brackets, one set of curly brackets and one set of square brackets.
They are not correctly nested, however, with the closing square bracket inside the round
brackets.

Problem G Untied Airlines 10 points

An airline called Untied, has had a series of bad press articles. The flying public are not
impressed. So Untied has decided to award upgrades on future flights if a passenger suffers
certain elements of poor service.

The poor service includes things like lost luggage, the stewardess swiping a passenger in the
face as she reaches past them, or cancelling flights at short notice and not offering alternative
flights in time for connections.

These elements of poor service are encoded and each is awarded points. If a passenger
collects 200 such points on one flight, then their next flight is automatically upgraded. The poor
service codes and associated points are shown in the table below.

Your job is to tell Untied for each flight, how many upgrades are awarded.

Input consists of a series of flights, each beginning with a flight number. Input is terminated by
a flight number which is just a single # - do not process this flight.

The flight number starts with UT, in upper case, followed by a sequence of up to 4 digits (eg:
UT525). Each line after the flight number begins with a seat number (a 2 digit number followed
by a single letter eg: 25H means seat H in row 25). The seat number is followed by a space
and then one of the letter codes, always upper case. The seat letter will be in the range A to J.

The last seat number for a flight is 00A, which does not correspond to a valid seat. Do not
process this seat.

Table of codes and points awarded

Service Problem Code Points

Lost Luggage L 120

Struck by Stewardess S 150

Overbooked and bumped off flight
after checking in

B 150

Not greeted by name N 40

Not given seat in class paid for C 160

Drinks trolley ran into passenger D 100

Stewardess rude R 100

No space in overhead locker O 100

Output consists of a single line for each flight in the input. It consists of the flight number,
followed by a space, followed by the number of flight upgrades that have to be awarded. If the
flight has no upgrades awarded, still display the flight number with a zero as the number of
upgrades.

Sample Input

UT525

03A L

76F S

15H N

03A C

76E B

00A

UT612

55F N

00A

UT109

18F B

34B O

34B R

09H C

18F L

00A

Sample Output

UT525 1

UT612 0

UT109 2

Explanation

On UT525 the only seat to collect 200 points is 03A for
lost luggage and not given seat in class paid for.

UT612 had no passengers qualifying for an upgrade

UT109 had seats 34B and 18F suffering sufficient lack of
service to accumulate 200 points or more.

Problem H Anagrams 10 points

Two words are anagrams if they contain the same letters but in a different order. For example
ant and tan are anagrams, but ant and ton are not.

In this problem you will be supplied with a list of words. All you have to do is to pick out the
word with the most anagrams and report how many anagrams it has.

Input consists of a number of lists. Each list begins with a number, n, which is the number of
words in the list (0 < n <= 1000). The last line of input contains the number 0 – this marks the
end of input and should not be processed. Each list contains n words, each on a single line. All
words consist of lower case letters only. No word will contain more than 8 letters. Every list will
contain at least one word that has an anagram in the list.

Output consists of one word from each list, the word with the most anagrams within the list,
followed by a space, followed by the number of anagrams. The word displayed will be the first
occurrence in the list of the anagram. If more than one word has the same highest number of
anagrams, display only the one that comes first in the list of words.

Sample Input

6

not

ant

tan

ton

cat

nat

4

time

timer

emit

mote

0

Sample Output

ant 2

time 1

Explanation

In the first list, ant, tan and nat are anagrams. ant
comes first so it is displayed. There are 2 words
which are anagrams of ant.

In the second list time has one anagram, emit.

Problem I Amicable 30 points

The numbers 220 and 284 are called Amicable Numbers because they are not equal, and for
each, the sum of its divisors equals the other number. That is, the sum of the divisors of 220,

 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 equals 284,

and the sum of the divisors of 284,

 1 + 2 + 4 + 71 + 142 equals 220.

Produce a program that takes in a natural number and finds the pairs of Amicable Numbers up
to and including the given value.

Input Specification

The input is a series of lines, each with a single number N. 0 < N < = 106. Input is terminated
by a line with the value 0.

Output Specification

For each input number N, output a blank line, then a line with the text ‘Amicable numbers
between 1 and N. Follow that with a line for each distinct amicable pair discovered, giving the
pair of numbers, separated with a space. Amicable pair should be output with the lesser of the
two numbers displayed first. Pairs should be in ascending order of their lesser values. If there
are no amicable pairs, display ‘None’. Note: A number cannot form an amicable pair with itself.

Sample Input

100

300

0

Output for Sample Input (Note blank line at start)

Amicable numbers between 1 and 100

None

Amicable numbers between 1 and 300

220 284

Problem J Balanced Change 30 points

When giving change to a customer in a shop, clerks are careful to hand over the minimum
number of coins – so unless they have run out of coins of the appropriate denomination they
will, for example, always give a customer needing $2 in change, one $2 coin rather than 2 $1
coins or 4 50c coins. It might be that this is not always the best strategy however, when there is
an imbalance in the stock of coins. If you have an excess of $1 coins in the cash drawer, it
might be better to give 2 $1 coins to a customer, if only to prevent the $1 coin bucket from
overflowing. Your task is to devise and test an algorithm to decide what coins to give in change,
which tries to balance the stock of coins of each denomination.

More precisely: you have a cash draw with buckets for $2, $1, 50c, 20c and 10c coins. We
define imbalance as follows: Let min be the minimum number of coins in any bucket. Then the
imbalance is the sum of the squares of the number of coins above the minimum in each bucket.
If we have 2, 3, 4, 3, 5 of $2, $1, 50c, 20c and 10c coins respectively: the minimum is 2 and the
imbalance is (2-2)2 +(3-2)2 +(4-2)2 +(3-2)2 +(5-2)2 = 0 + 1 + 4 + 1 + 9 = 15. Your task is to write
a program to give change in such a way as to minimize the imbalance of the cash remaining in
the cash draw. If more than one way of giving cash gives the same imbalance you should use
the one which gives the greater number of $2 coins. If the number of $2 coins is the same, then
prefer the one with the largest number of $1 coins, then 50c, etc.

Input Specification

The input file contains several change giving problems. Each problem is described on one line
of input by 5 integers and a dollar amount. The first 5 are the numbers of $2, $1, 50c, 20c, and
10c coins in the cash drawer. The dollar amount takes the form ‘$n.m’ where n is always
present, but may be zero and m is always two digits. It is the amount of change to be given.
Input ends with a line holding 5 zeroes and ‘$0.00’. The amount of change to be given is
always greater than zero and never more than $5.

Output Specification

For each problem output a line with ‘Problem #n:’, followed by the number of $2, $1, 50c, 20c
and 10c coins respectively. This should be formatted as illustrated below with correct use of
commas, and the word ‘and’. If it is not possible to provide exact change, output ‘not possible’.

Sample Input

2 2 4 2 2 $1.00

0 0 0 0 0 $1.00

2 2 4 3 1 $1.30

0 0 0 0 0 $0.00

Output for Sample Input

Problem #1: 2 50c coin(s)

Problem #2: not possible

Problem #3: 2 50c, 1 20c and 1 10c coin(s)

Problem K Expressions 30 points

In this problem you are asked to help the designer of a new card game. The motive for the
game is to encourage children to practice mental arithmetic. In the game, each card will
present players with a range of one digit numbers and an integer value. Players must then find
a way of using the basic arithmetic operations: add, subtract, multiply and modulus on the range
of numbers in order to produce the given integer value. Notice that the game designer is a
computer scientist and chose modulus (remainder) as the fourth arithmetic operation, rather
than division as might have been expected. Your task is to write a program which finds
answers for the problems on the cards.

Specifically, given a contiguous range of digits taken from 1,2,3,4,5,6,7,8 and a target integer
value: find all ways of expressing the target integer value as an expression involving the one
digit numbers, written in order. You may use the four binary operators: add, subtract, multiply
and modulus, and brackets to control the order of evaluation. (Note: the digit 9 is never
included.). For example: Given the range 1..4 and the integer 10, we note that ((((1 + 2)+3)+4)
= 10. That is not the only possibility however. See sample output for the rest.

Input Specification

The input is a sequence of problems. Each problem is described on one line of input by 3
numbers: A B C. The first two are the range of digits: 1 <= A <= B <= 8. C is the target value.
Input is terminated by a line with three zeroes (not to be processed).

Output Specification

For each problem output a line with ‘Problem #n: A..B => C’. Then output one line for every
expression evaluating to the target integer. Expressions will be fully bracketed in the sense that
there will be a pair of brackets enclosing each operator and its operands. Expressions will be
output in order as follows. Firstly, order by bracketing pattern – working left to right digits come
before brackets, so (1+(… comes before ((1+… Secondly: again working left to right, for
expressions with the same bracketing pattern, + comes before * comes before – comes before
%. (1+(2+… is before (1+(2*… is before (1*(2+… is before (1*(2*…

Only valid expressions with correct bracketing should be output. Expressions involving divide
by zero are not considered valid.

Turn over for sample data.

Sample Input

1 4 10

2 2 2

0 0 0

Output for Sample Input

Problem #1: 1..4 => 10

(1+(2+(3+4)))

(1+((2+3)+4))

(1*((2*3)+4))

((1+2)+(3+4))

((1+(2+3))+4)

((1*(2*3))+4)

(((1+2)+3)+4)

(((1*2)*3)+4)

Problem #2: 2..2 => 2

2

Problem L Circles 30 points

Your task is to write a program that outputs the number of points with integer coordinates that
are contained in the union of a given set of circles (where the radii and centre points of the
circles are also integers).

For example, the smaller circle (centre (1,1), radius 1) in the diagram below contains 5 points;
the larger circle (centre (2,2), radius 2) contains 13 points; and the union of the two circles
contains 15 points. Points exactly on the boundary of a circle are considered to be contained by
the circle.

As an additional constraint, your program must only count points with x and y coordinates that
are integers in the range [-(2^14-1),2^14]. Circles may extend past the boundaries of this
region, but points outside this region must not be counted.

Input Specification

The input includes a number of area problems. Each problem has n lines, where n is the
number of circles – one line per circle. Each line has three integer values, separated by spaces:
the x coordinate of the circle's centre, the y coordinate, and the radius. The end of input for a
problem is indicated by a line with three zeroes. There will be no more than 10,000 circles in
one problem. A set with no circles marks the end of the problem set.

Output Specification

For each problem output a line with ‘Problem #n:’, followed by a space and the number of
contained points.

Turn over for sample data.

Sample Input

1 1 1

2 2 2

0 0 0

-16383 -16383 2

0 0 0

0 0 0

Output for Sample Input

Problem #1: 15

Problem #2: 6

Problem M Stars 100 points

On a clear moon-less night, you can see millions of stars glimmering in the sky. Faced with this
overwhelming number, the Greeks started nearly 2,000 years ago to bring some order to the
chaos. They identified groups of stars, called constellations, and gave them names that are still
in use today. Examples are "Ursa Minor'', "Pisces'', "Cancer'', etc.

Given a sketch of the constellation, it is not easy for an amateur to actually find the constellation
in the sky. Moreover, the shapes of simple constellations, such as "Triangulum'' (triangle,) which
consists of only three stars, may appear several times in the sky. Singling out the :correct''
occurrence is not easy.

Traditionally, maps were printed for just this purpose. In this problem, we will see how the
computer can help us find constellations in the sky.

You will be given a star map; for simplicity this will be a collection of points in the plane, each
having a certain brightness associated with it. Then, given a “constellation”, also as a set of
points in the plane, you are to determine:

• the number of occurrences of the constellation in the star map, and

• the position of the brightest occurrence, if one exists. (The rationale behind this is as follows:
if a constellation seems to appear several times in the sky, the brightest one is most likely to
be the real one, since it is the most eye-catching one.)

An occurrence is a subset of stars from the map that forms a (possibly) arbitrarily rotated and/or
scaled copy of the stars in the constellation. (Note that a given subset of stars may fit a
constellation in several orientations – a square will fit 4 ways at 90 degree rotations. These do
not count as distinct occurrences.)

The brightness of an occurrence is the average brightness of the stars it consists of, i.e. the
sum of individual brightnesses divided by the number of stars in the constellation.

Input Specification

The input file contains the descriptions of several star maps. Each map starts with a line
containing a single integer N, specifying the number of stars in the map (1 <= N < 1000). The
following N lines contain three integers each, namely the X- and Y-coordinates and the
brightness of every star. The larger the value, the brighter the star shines.

The next line contains a single integer M, the number of constellations to follow (1 <= M < 50).
Each constellation description starts with a line containing an integer S, the number of stars in
the constellation, and a string C, the name of the constellation. (C will consist of no more than
40 characters and contain no blanks.) The following S lines then contain the coordinates of the
constellation, again as X/Y-pairs.

All coordinates lie in the range -1000 to 1000; brightness levels lie in the range 0 to 100.

A blank line separates a star map from the next map. The input file ends with an empty map
(having N = 0), which should not be processed.

N.B.: Since all star coordinates are integers, you can easily rule out any rotated or scaled
constellation whose points do not fall on integer coordinates.

Output Specification

For each star map first output the number of the map (`Map #1', `Map #2', etc.) on a line of its
own.

For each constellation, in the same order as in the input, output first its name and how many
times it occurs in the map on one line, as shown in the output sample.

If there is at least one occurrence, output the position of the brightest occurrence by listing the
positions of the stars that form the brightest occurrence. The star positions should be printed in
ascending x-order. Positions having the same x-coordinates must be sorted in ascending y-
order. You may assume that star maps always have a single brightest occurrence for each
constellation. Adhere to the format shown in the sample output.

Output a blank line before each constellation and a line of 5 dashes (`-----') after every star map.

Sample Input

6

1 2 1

2 1 4

2 4 3

3 2 1

4 1 5

4 3 2

2

3 Triangulum

1 1

3 1

2 4

4 Cancer

1 3

4 3

6 1

7 5

0

Output for Sample Input

Map #1

Triangulum occurs 2 time(s) in the map.

Brightest occurrence: (1,2) (4,1) (4,3)

Cancer occurs 0 time(s) in the map.

Problem N Missing Letters 100 points

In the land of Bnicetotrees a serious attempt is being made to minimize paper usage. All new
documents are created and managed electronically. For convenience, old documents are being
scanned and automatic character recognition (ACR) is used to convert them into proper
electronic form. Their paper is then recycled. Unfortunately the scanning process used is not
reliable. In particular, it is unable to recognize some characters from old printing fonts. One
day the result is even worse. As well as dropping characters the system fails to notice the
spaces between words. Before the disaster was noticed many of the documents had been sent
for recycling and pulped. Your task is to write a program that tries to recover the text of a
document from the faulty ACR output. Fortunately samples of correctly recognized text using
the same vocabulary are available, so the set of words that might be in each document is
known. Also, the set of characters that may be missing is known.

Example: A sample of valid correctly recognized text is: ‘here and there we find this or maybe
that’. An attempt to scan the sentence ‘this and that’ is made with the recognizer failing to see
word spaces and failing to see any of the letters ‘a’, ‘b’, ‘c’ or ‘t’. The result is ‘hisndha’. (Notice
that all three words of ‘this and that’ occur in the valid text sample.) The problem is to
reconstruct ‘this and that’ from ‘hisndha’.

In the example given, there is only one possible reconstruction. Unfortunately the real data is
not so kind. Sometimes there are not enough letters to uniquely identify a word. For example,
with missing ‘a’, ‘i’ and ‘e’: ‘ship’ and ‘shape’ both look like ‘shp’. Sometimes it can be hard to
decide where one word starts and another ends. For example, with missing ‘e’ and ‘t’: the string
‘applsar’ could reconstruct as ‘apple start’ or ‘applets are’.

You are to write a program that finds a reconstruction for misrecognised sentences. To resolve
ambiguity your program will work as follows. All letters must be included in a reconstruction. A
reconstruction will be scored as follows: for each word matched assign a score which is the
number of letters matched multiplied by the frequency with which the word appears in the
sample text; the score for an entire reconstruction is the sum of the scores for each word
matched. Your program should find the reconstruction with the highest score. If there is more
than one reconstruction with the same (highest) score, choose the one which is the first in
alphabetic order. The motivation for the scoring method is to favour commonly used words.
(Note spaces come before letters in alphabetic order.)

For example, if the word ‘apple’ occurs twice; ‘start’ and ‘applets’ occur once, and ‘are’ occurs
three times in the sample text. ‘apple start’ scores 4 * 2 + 3 * 1 = 11 and ‘applets are’ scores 5 *
1 + 2 * 3 = 11. The tie is resolved by alphabetic order and ‘apple start’ is the reconstruction of
choice.

Input Specification

The input file contains several reconstruction problems. Each problem starts with a number of
lines of text – being the correct sample text for the problem. The text will contain in total no
more than 10000 words. All words are in lower case letters only. No word is more than 14
characters long. There is no punctuation. Words are separated by one or more spaces.
Following is a line containing just the ‘#’ character. Next is a line with a list of omitted
characters and one or more lines containing the corrupted translation for reconstruction. You
should ignore line breaks – treat this as one continuous string. The total string length will be no
more than 10000 characters. Input for each problem ends with a line holding “##”. The whole
file ends with another ‘##’ line. Note that some test problems will be abstract – not real English
words – to test your algorithm thoroughly.

Output Specification

For each problem output a line with ‘Problem #n’, followed by a line with the reconstructed
output written after the text ‘Reconstruction:’. The reconstructed output should have a space
before each word.

Sample Input

apple apple start applets are are are

et

applsar

apple start applets are are are

et

applsar

aab aab a ab ba

s

abababaaab

Output for Sample Input

Problem #1

Reconstruction: apple start

Problem #2

Reconstruction: applets are

Problem #3

Reconstruction: a ba ba ba aab

Problem O Jury Compromise 100 points

In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of
members of the general public. Every time a trial is set to begin, a jury has to be selected, which
is done as follows. First, several people are drawn randomly from the public. For each person in
this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for
this person. 0 means total dislike, 20 on the other hand means that this person is considered
ideally suited for the jury.

Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial,
the tendencies of the jury to favour either defence or prosecution should be as balanced as
possible. The jury therefore has to be chosen in a way that is satisfactory to both parties.

We will now make this more precise: given a pool of n potential jurors and two values di (the
defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a
jury of m persons. If J is a subset of {1,...,n} with m elements, then D(J) = Σk in J dk and
P(J) = Σk in J pk are the total values of this jury for defence and prosecution.

For an optimal jury J, the value |D(J) - P(J)| must be minimal. If there are several juries with
minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should
be as ideal as possible for both parties. Finally, if there is more than one optimal jury under this
combined condition, the jury who’s list of candidate numbers comes first in ‘pseudo alphabetic’
order should be chosen. By ‘pseudo alphabetic’ order we mean order as though the candidate
numbers were letters. For example 1,5,6,9 comes before 2,3,4,5 because 1 < 2; 1,2,3,5,9
comes before 1,2,3,6,9 because 5 < 6; etc.

You are to write a program that implements this jury selection process and chooses an optimal
jury given a set of candidates.

Note: If your solution is based on an inefficient algorithm, it may not execute in the allotted time.

Input Specification

The input file contains several jury selection rounds. Each round starts with a line containing two
integers n and m. n is the number of candidates and m the number of jury members. These
values will satisfy 1 <= n <= 200, 1 <= m <= 20 and of course m <= n. The following n lines
contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next.

The file ends with a round that has n = m = 0.

Output Specification

For each round output a line containing the number of the jury selection round (`Jury #1', `Jury
#2', etc.).

On the next line print the values D(J) and P(J) of your jury as shown below and on another line
print the numbers of the m chosen candidates in ascending order. Output a blank before each
individual candidate number.

Output an empty line after each test case.

Sample Input

4 2

1 2

2 3

4 1

6 2

0 0

Output for Sample Input

Jury #1

Best jury has value 6 for prosecution and value 4 for defence:

 2 3

