New Zealand Programming Contest 1999 Page 4

Problem A Format Checking 5 points

One of the stated aims of the so-called 'streamless' education system is that students’ academic records foll-
ow them from one institution to another. This sounds fine except that the formats, the number of fields and
even the characters used to separate fields can all differ. Thus one institution may have 6 fields separated by
commas while another may have 8 fields separated by tabs. In the general case this can be a very difficult
problem, but for this situation we will simplify it considerably.

Write a program that will read in a number of lines containing fields separated by commas. There should be
- 6 fields in each line and hence 5 commas, no more and no less. Some fields may be blank; we wish to know
how many of them.

Input consists of a number of lines containing characters. The input is terminated by a line consisting of a
single #'. This line should not be processed.

For each line determine how many commas it contains. If it does not contain exactly 5 commas write 'Invalid'
and continue to the next line. If it does, determine how many empty fields there are and write this number to
standard output.

Sample Input

Name, Addressl,Address2, Address3, City, Country
Name, Addressl, Address2, City, Country

Name, Addressl,Address?2, ,City, Country

Name, Addressl, Address2, ,City,Country

#

Sample Output
0
Invalid

1
1

Mew Zealand Programming Contzst 1999 Fage 5

Problem B Words Words 5 points

It is surprisingly common for people to repeat a word in writing, even when it makes no sense. Here is an
example from the documentation of a well-known and valuable tool-kit:

If a command pipeline is opened for writing, keystrokes entered into the console are not
visible until the the pipe is closed.

Write a program which reads some text from standard input and reports the adjacent repeated words. All the
letters will have been converted to lower case first. To count as adjacent, there must be no letters between
the words, but there may be any number of spaces, line terminations, and punctuation marks.

Input will be a sequence of up to 50 lines, terminated by a line consisting of a single '#. The lines may con-
tain O to 80 printing characters, including spaces, punctuation marks, and lower case letters. A word is a

maximal non-empty sequence of letters.

Sample Input

if a command pipeline is opened for writing,
keystrokes entered into the conscle are not
visible until the the pipe is closed.

closed pipes cannot be reopened. row, row,
row your boat, gently down the stream.
#

Sample Output
the

closed

row

row

New Zealand Programming Contest 1999 Page 7

Problem D Choices 5 points

Typically, when an organisation gets too big for all the members to be involved in its organisation, the sol-
ution is to form a committee to run it for them. There are many ways in which a committee can be formed, in
fact NU/(k!(N-k)!), where N is the size of the organisation and k is the size of the committee. The ! oper-
ator refers to the factorial function, defined as:

N=1x2x3x..xNMN
Thus 5! =1x2x3x4x5=120,

Write a program that will determine the number of ways a committee of size k can be formed from a group
of size N.

Input consists of a number of lines containing pairs of integers (¥ and k) separated by spaces. N will be
in the range 1 to 12 and k will be in the range 1 to N. The list will be terminated by a line containing two
zeroes (0 0).

For each line in the input (each N, k pair), output the number of ways in which the committee of size k
can be formed from N members.

Sample Input
5 3
& 2
00

Sample Output
10
15

Mew Zealand Programming Contest 1999 Page 6

Problem C Registration Plates ' 5 points

New Zealand, in common with many countries, has a centralised car registration system with a simple, incre-
mental, system of generating new plates. At least I believe so, | have never actually seen a vehicle with a
number ‘next to’ mine — close admittedly, but never next to.

This then raises the problem of what we mean by close. Which of these is closest to NZ3868: NZ38787
NZ3BT707 NY3R6RT MZ3IR6R7 What about NA3Z687

For the purposes of this problem we will define ‘closeness’ to be the overall numeric similarity. To deter-
mine this we count the number of differences and form their absolute sum. The first criterion is the number of
differences (fewer is closer); if these are equal then the smaller sum determines the closeness. The examples
should make this clear. The differences are between the characters as they stand, without wrap-around, so
the difference between ‘A" and ‘2" is 25 not 1.

Input consists of a number of lines, each containing thres strings representing New Zealand registration
plates, i.e. two upper case letters followed by 4 digits. These strings will be separated by exactly one space.
Your task is to determine which of the second two strings is closest (under the above definitions) to the first.
The list is terminated by a line consisting of only the character #.

For each line except the terminal line print the closest plate to the first one. If both are equally close, print
both.

Sample Input

NZ3868 NZ3768 NZ3859
NZ3B68 NY3IB69 NZ3969
NZ3868 NZI9695 NZ3669
AR0001 AA0002 ABOOO1
+

Sample Output
NZ3758
NY3I863 NZ3963
NZ3969
AR0002 AR0OOQOL

New Zealand Programming Contest 1999 Page 3

Problem E Simple String Comparison 5 points

Most programming languages make it easy for you to compare characters and strings according to some
comnputer character set. Unfortunately, this doesn't maich fusman conventions very well. For example,

Context Order

Dictionary Aardvark < elephant < Zebra
ASCII Aardvark < Zebra < elephant
EBCDIC elephant < Aardvark < Zebra

The full ISO specification for how to sort according to human conventions runs to 150 printed pages, re-
guires large tables (not least because it has to deal with nearly 40 000 characters), and allows up to seven

passes. It needs four passes for English. Here's how they go:

1 Compare characters left to right, ignoring everything that isn't a letter, and paying no attention to
alphabetic case or accents. Some letters (such as ‘®") are mapped to several letters (such as ‘ae’)
before comparison. If a difference is found, report it, otherwise continue.

2 Compare characters left to right, ignoring everything that isn't a letter, and paying ne attention to
alphabetic case. Accents are noticed, and ligatures (such as '®") remain single letters. If a difference
is found, report it, otherwise continue.

3. Compare characters left to right, ignoring everything that isn't a letter. This time, pay attention to
alphabetic case as well as accents. If a difference is found, report it, otherwise continue.

4. Compare all the characters left to right. If a difference iz found, report it, otherwise the strings are

equal.
You have a much easier task: implement just pass 1, zltssuming that the character set is ASCII, so you only
need to consider the letters 'A' ..."Z' and 'a’ ... 'Z".

Input consists of pairs of lines each containing at least 1 and no more than 72 characters and is terminated by
a pair of lines each consisting of a single “#'.

Output one of the following codes on a line by itself for each pair of lines in the input, except the terminating
pair.

LT if the first line is less than the second line (according to pass 1 above);
EQ if the first line is equal to the second line (according to pass 1 above);
GT if the first line is greater than the second line (according to pass 1 above);

Sample input Sample Output
Aardvark LT

elephant GT

elephant LT

dardvark LT

elephant EQ

Zebra

Eland

elephant

**this will FOX them!
This will fox THEM .
#
#

Mew Zealand Programming Contest 1999 Page B

Problem H Bank Statement 15 points

A bank statement is an every-day document that most people will be familiar with. In this problem, you need
to produce a series of human readable bank staternents from some raw input data.

Each set of raw data begins with the letter 'O’ followed by the opening balance of the account. This is foll-
owed by the transactions that have occurred in the current month, terminated by a line starting with 'E'. Four
pieces of information are given for each transaction:

= the transaction type (‘D' for deposit or "W’ for withdrawal).

* the day of the month on which the transaction occurred (it is assumed that each statement covers a

single calendar month).
+ the amount of the transaction (withdrawals reduce the balance; deposits increase it).
+ atext field that describes the transaction.

A single space character appears between input fields. Input is terminated by a line containing a single '#.
This line must immediately follow an 'E' line.

Write a program to produce a bank statement for each set of raw data (between an 'O’ and an 'E’). A bank
statement consists of a line for the opening balance, followed by the various transactions terminated by a
closing balance, followed by a blank line. The transactions are listed in the order they appear in the input.

Each non-blank line in a statement consists of 6 or 7 fields:
* atwo character field for the day of the month, followed by a space.
» a 16 character field for the transaction type
= a 23 character field for the transaction description.
s an 8 character field for the deposit amount.
= an 8 character field for the withdrawal amount.
= an 8 character field for the current balance.
+ if the balance is negative there is a final field containing " OD" (if the balance is positive then the Jast
character in the line is the final digit of the balance).

The justification of each field is demonstrated in the sample output below, where the digits on the first line
indicate spacing only and are not to be reproduced. All spacing is to be done using space characters (tabs
must not be output). Note that the input values are such that the specified field widths are never exceeded.

Sample Input

123.45

2 0.53 HRiccarton

7 Z200.%6 Pak'n'save

16 16.20 Some Meney Machine

=50.,98

#=*HOoOEDE OO

Sample Output
1234567890123456789012345678901234567890123456789012345678901234567890

Opening balance 123 .45

2 Deposit Riccarton 0.53 123.598

7 Withdrawal Pak'n'save 200.96 76.98 QD

16 Deposit Some Money Machine 16,20 80.78 0D
Clozing balance 60.78 OD
Opening balance 99.88 Q0D

Closing balance 99.99 4D

WNew Zealand Programming Contest 1999 Page 10

Problem 1 Crossword Helper 15 points

Cryptic crossword compilers often embed the answer in the clue. For example, the answer to the clue "Liquid
stew at Eric's" might be water. You have been asked to write & program that will help people find answers

of this type.

Input consists of a number of pairs of lines. The first line of each pair contains the text of the clue. This line
contains at least one character and no more than 80. The second line of each pair contains a "pattern” that re-
presents what is known about the answer (this line also contains at least one character and no more than 80),
The characters that can appear in a pattern are the lower case letters and the ? character. The end of input is
indicated by a clue line that consists of just the # character.

Output for each pair of lines is the heading "Output for elue N" (where N is a counter that starts at 1) foll-
owed by the 0 or more matches for the specified pattern in the specified clue, followed by a blank line. For a
match to occur, a sequence of letters from the clue must match the characters specified in the pattern (a ques-
tion mark matches any character). All non-letters in the clue (spaces, digits, punctuation, and so on) are ig-
nored in the matching process. If there are two or more matches, they must be printed in the order encount-
ered when scanning the clue from left to right. All matches are output in lower case.

Sample Input

Liguid stew at Eric's
wWrPrte?

aaaszazasa

b?

Abba's baby (boys)!
b?b?

#

Sample Output
output for clue 1
wakber

output for clus 2

output for clue 3
balbw
bvbo

Mew Zealand Programming Contest 1999 Page 11

Problem J Tramping by torchlight 15 points

The Out-in-the-Wop-Wops Tramping Club (OTC} has a reputation for ranning trips in which parties end up
tramping in the dark. For some reason, it always turns out that exactly one person in the party is in possess-
ion of a torch. Things become tricky when such a party has to cross a bridge in the dark. DOC assigns a
maximum capacity to each bridge. If the party is too big to cross the bridge together then it must cross the
bridge in groups. When a group crosses the bridge one of the members of the group must have the torch (so0
they can see where they are going). Also, the group must stick together, which means that it must travel at
the speed of the slowest member of the group. Of course once a group reaches the other side, one member
of the group must cross the bridge again to convey the torch back to the remaining members of the party.

The OTC have commissioned you to write a program that, given details of a particular party and bridge cap-
acity, computes the shortest possible time in which the party could cross the bridge. The input for each scen-
ario consists of several positive integers:

» (, the bridge capacity (= 2).

+ N, the number of members of the party (in the range 1 to 30)

+ N integers that specify for each party member how long it takes them to cross the bridge.

Input is terminated by C = 0.
Qutput consists of the shortest possible time it takes the entire party to cross the bridge.

Sample Input
23123
341067 4
0

Sample QOutput
6
20

New Zealand Programming Contest 1999 Page 12

Problem K | Squash Ladder 15 points

A ladder is an ordered list of players (individuals or teams) that specifies (hopefully) their ranking. That is,
someone high on the ladder is better than someone Jow on the ladder. Thus a typical ladder could look be:

Alfred

Brian

Carol
Desdemona
Evita

Frank

To move up the ladder, players can challenge anyone up to 3 places above them. If the higher ranked player
wins, then nothing changes. If the lower ranked player wins then (s)he moves above her/his opponent, and
everyone moves down one place. Thus, for instance, if Evita beats Brian (she could have challenged Desde-
mona or Carol) the ladder becomes:

Alfred
Evita

Brian

Carol
Desdemona
Frank

You are to write a program to maintain the ladder. Note that a game which was valid when it was set up, may
be invalid by the time it is finished because of movements in the ladder. Assume that Desdemona challenges
Alfred while Evita and Brian are playing. If Evita wins, Brian is ‘out of reach’ of Desdemona and hence their
game becomes invalid. If Evita loses then the Desdemona-Brian game is still valid.

Input will consist of a number on a line by itself, giving the number of players in the ladder (more than 5 and
fewer than 100), followed by that many names, each name on a line by itself, representing the initial state of
the Jadder. Each name will be no more than 20 characters in length, with no embedded spaces.

This will be followed by a series of transaction lines, either games or requests to show the ladder. A game
line.consists of the letter 'G' followed by the winner and loser in the game. All names will have appeared in
the list already and all fields will be separated by 1 space. A print request is the letter 'P' on a line by itself.
The file is terminated by a # on a line by itself.

Output will consist of the current state of the ladder whenever a print request is read. Separate successive
printouts by a blank line.

Sample Input Sample Output

6

Alfred Alfred

Brian Evita

Carol Brian

Desdemona Carol

Evita ‘ Desdemona

Frank Frank

G Evita Brian

P Alfred

G Desdemona Alfred Evita

P } Brian

Carol
Desdemona

Frank

WNew Zezaland Programming Contest 1999 Page 13

Problem L Time Difference 15 points

In Unix, the standard way of recording a timestamp is as the number of complete seconds that have elapsed
since 00:00:00 on January 1st 1970, thus any file created at or after 11:30:00 but before 11:30:01 on January
Ist [970 will be time stamped 41400. In calculating the number of seconds that have elapsed since 00:00 on
1970-01-01 it is assumed that every day is 86400 seconds long. Unfortunately, this is not entirely true. Be-
cause modern atomic clocks measure time very accurately, and because the earth's speed of rotation is grad-
ually decreasing (which means that the solar day is slowly lengthening), leap seconds are occasionally
inserted to keep the standard timescale used for civil purposes (UTC) synchronised with the solar day.

When a leap second is added, it is added as the last second of June or December. The following table
summarizes the 23 leap seconds added to date:

June: 1972, 1981-3, 19835, 1992-4, 1997
December: 1971-9, 1987, 1989, 1990, 1995, 1998

As can be seen from the table, irregularities in the rotation speed of the earth mean that intervals between
successive leap seconds vary somewhat. When the first leap second was added to the end of December
1971, the following sequence of time stamps occurred:

UTC time Wiz i
1971-12-31 23:59:58 63071998
1971-12-31 23:59:59 63071999
1971-12-31 23:59:60

1972-01-01 00:00:00 63072000
1972-01-01 00:00:01 63072001

As you can see from the table, the Unix time scale doesn't allow for leap seconds. Another way to think of
this is that some "Unix seconds” last for two "physical seconds”. For example, the Unix second that began
at 1971-12-31T23:59:59 lasted two physical seconds. This causes problems if you want to know the number
of physical seconds that elapsed between two UNDX timestamps. Two seconds actually elapsed between
63071999 and 63072000, but the difference between the two Unix timestamps is only 1 second.

Input takes the form of a series of lines that each contain two integers that represent Unix timestamps (the
end of input is indicated by a line that contains two -1 values). Each integer lies in the range 0 to 946684792
(which represents UTC time 1999-12-31 23:59:59).

The output consists of one integer for each pair of integers in the input. The output is the number of physical
seconds in the interval that starts when the first Unix timestamp starts and ends just when the second Unix
timestamp starts, i.e if a pair is ut] ut2 in that order, then the output integer is:

complete physical seconds elapsed before ut2 — complete physical seconds elapsed before utl.

Sample Input
63071999 63072000
20 10

-1 -1

Sample Output
2

~-10

New Zealand Programming Contest 1999 Page 14

Problem O The Messy Professor 50 points

Professor Elarg has laboured long and hard over many pages of multiplications. Unfortunately, he is very
untidy, and many of the figures he has written are illegible. Consequently, he has asked you to assist him in
reconstructing the calculations he has done.

Input consists of a number of multiplications (there is one multiplication per line; end of input is marked by a
line containing only a #). The format of each multiplication is:

numl x num?2 = product

The spacing is exactly as shown (in other words, each line contains four spaces, two around the ¢’ and two
around the ‘="). The thres ‘integers’ (numl, nwm2 and product) consist of digits and *?’ characters. The
digits represent information that could be read from the original manuscripts. The numl and num2 strings
are between 1 and 3 characters in length and the product string is between 1 and 6 characters in Jength.

Your program must attempt to find digits to replace all 7 characters in the multiplication so that when nuwmnl
and num2 are multiplied the answer is indeed product. Note that the first digit in each number, whether
supplied in the input or computed by vour program is never 0. If you can find a valid substitution, then the
details of the multiplication should simply be printed. So far no case examined has had more than one solut-
ion, however, if that situation should occur then print any of them. Otherwise, the string "No solution found
for " should be printed followed by the criginal multiplication you were trying to solve.

Sample Input

T3 =9
7?7 x 11 = 127
TP x P2 =7
i

Sample Output

Iix3=279

1L %11 = 121

No soluticon found for 77 x 77 = 7

New Zesland Programming Contest 1999 Page 15

Problem P Long Patience 50 points

This card game is played with a standard deck of 52 cards. Each card is a unigue combination of one of 4
suits (spades, clubs, diamonds, hearts) and one of 13 face-values (Ace, 2, 3, 4, 5,6, 7, 8, 9, 10, jack,
gueen, king). The game is played as follows. The top 48 cards of the deck are laid face down in a grid that
has 4 rows each of 12 cards. The top card in the deck is put at the top left hand corner of the grid. The next
11 cards are wsed to fill positions 2 throngh to 12 of the top row (row 1). Cards 13 to 24 then form the
second row, and so on until the 48th card is placed in the bottom right hand corner, leaving 4 cards over
which form a 'spares’ pile.

Play starts by turning over the top card of the pile of four spares. This card is then placed in its rightful place
on the grid. Hearts go in the top row, diamonds in the second, clubs in the third and spades in the bottom
row. Aces go in the left hand column, 25 to 10s in the column of the same number, jacks in column 11,
gueens in column 12 and kings in column 13 (after the original deal only columns 1 to 12 contain any cards;
column 13 is initially empty). To place the first card in position, a face down card will have to removed to
make room for the first card (unless the first card is a king — see later). The displaced card is then placed in
its correct position which in turn displaces another card and so the game continues. This process continues
until a king (of any suit) is encountered. A king is placed in the empty column 13, which means there is no
card to displace. At this point the second card in the spares pile is turned over, and the placement sequence
begins again.

Once the second king has been placed, the third card in the spares pile is turned over, and when the third
king is turned up the fourth and final card in the spares pile is tumed over. The game ends once the 4th king
has been placed. You are to write a program to play this game.

The input consists of a series of card deck specifications. Each card deck specification gives the order in
which the cards appear in the deck (the first card in the input is the one on the top of the deck when the deal
begins). Each card deck is specified in two lines. Each line lists 26 cards, with a single space between card
specifications. Cards are represented as a two character code. The first character is the face-value (A=Ace,
2--9, T=10, J=Jack, Q=Queen, K=King) and the second character is the suit (C=Clubs, D=Diamonds,
H=Hearts, S=Spades). The final line of the input file contains a # as its first character.

For each card deck in the input, your program simulates the game and then prints the grid as it appears at the
end of a game. A single space separates card specifiers, and there is a single blank line after each grid. Each
face down card is represented by the sequence #4.

Sample Input

QD AD 8H 55 3H 5H TC 4D JH XS 6H 8S JS AC AS 8D 2H QS TS 38 AH 4H TH TD 3C 68
8C 7D 4C 4S 7S 9H 7C 5D 2S KD 2D QH JD 6D 9D JC 2C KH 3D QC 6C 95 KC 7H 9C 5C
AH KH QH JH TH 9H 8H 7H 6H 5H 4H 3H 2H 2S AS XS QS JS TS 95 85 75 65 58 45 35
3C 2C AC KC QC JC TC 9C 8C 7C 6C 5C 4C 4D 3D 2D AD KD QD JD TD 9D 8D 7D 6D 5D

#

Sample Output

2H 3H ## SH 6H 7TH 8H 9H TH JH OH KH
AD 2D 3D 4D 5D 6D 7D 8D ## ## JD ## KD
“AC 2C 3C 4C 5C 6C 7C 8C 9C TC JC QC KC
AS 2S 35 4S5 #4 65 75 88 95 TS JS QS KS

ZH ## §F #3% B F4 FF ¥4 7 #F #9 KH
AD 2D 3D 4D 5D 6D 7D 8D SD TD JD QD ED
AC #4# ## ## 5C 6C ## #F #4 #4 8% ## KC
AgZ 28 #% 45 58 65 75 Bg 98 TS JE QE KE

New Zealand Programming Contest 1999 Page 16

Problem Q The psychic robot 50 points

A group of psychology students has grown tired of gefting rats to run mazes, and plans to get robots to navi-
gate them instead. You are assisting in writing the navigation software for one of the robots---the Guru 2000.
This robot comes equipped with the latest development in computer technology-—a chip that gives the robot
psychic powers. This chip, the IC12, provides the robot complete knowledge of the maze, including the loc-
ations of the start and target points, before the robot begins its maze run. Armed with this knowledge, you
have been asked to write a program to determine the smallest number of moves needed to get from the start

point to the target point.

The input consists of a number of problems to solve. Each problem describes a maze defined on a rectangu-
lar grid with the origin in the top left corner. Each maze is specified by a line containing 6 integers followed
by lines containing the layout of the maze. The 6 integers are: mazerows, mazecels, startrow, startcol,
endrow, endcol where:
= mazerows and mazecols give the dimensions of the maze that follows, in the range 1 to 80.
= srartrow and staricol give the starting position (row, column) of the robot. Starrrow must be in the
range 1 to magerows, and startcol in the range 1 to mazecols.
» endrow and endcol give the target position (row, column) of the robot. Endrow must be in the
range 1 to mazerows, and endcol in the range 1 to mazecols.

Following the 6 integers are mazerows lines each containing mazecols characters specifving the layout of
the maze. A # character represents a cell in the maze that the robot cannot enter, a '’ character represents a
cell that the robot can enter, Note that the robot will be able to enter both the start and target cells. The end of

input is indicated by zerces (0000 0 0},

A single line is output for each maze specified in the input. If there is a legal path of moves between the start
and target points, the line printed has the form "Shortest path has length" followed by the number of moves
involved in the shortest path between the start and target points. Note that a legal move can only be made to
one of the 4 cells above, below, left or right of the current cell, and then only if the cell moved to is a*_' cell
within the maze (the robot cannot move outside the cells of the maze), If no path connects the starting and

target points, print the string "No path”.

Sample Input

452114

_FR__

e

_—

#

1:20 1131 1
4

000000

Sample Output
Shortest path has length 10
No path

New Zealand Programming Contest 1999 Page |7

Problem R Solitaire 50 points

You have received a new solitaire (one player game) for your birthday. Feeling lazy, you have decided to
write a program to solve the problems. The game comes with a number of layours. Each layout contains a
number of sguares, with each square identified by a unigue integer greater than or equal to 1. One of the
squares is designated the initial square and one of the squares (perhaps the initial square) is designated as the
final square. There are a number of lines with arrowheads that connect the squares. Each line goes from one
square to another, and 15 labelled with an upper case letter.

A problem involves a layout and a string of uppercase characters (of length | or more) representing an att-
empted solution. The game starts with a counter in the initial sguare. The first character in the string is in-
spected. If there is one line leaving the initial square labelled with that character then the counter can be
moved to the square at the other end. If there are several possible lines then you can move the counter along
any one of them, although you may need to revisit that decision later. The game continues in this fashion,
moving the counter along appropriately marked paths until you either cannot move or you get to the end of
the string. If you cannot move (there is no path marked with the next character in the input string) and you
have made at least one choice earlier, then you will need to back up to that position and make a different
choice. If it is possible to make a sequence of moves that uses all of the input characters and that leaves the
counter in the designated target square then you win the game, otherwise you lose

The input contains a number of layouts, and for each layout a number of strings. Each layout begins with
two integers giving the numbers of the initial and final squares. This line is followed by one or more lines
that specify the connections between squares. Each connection is specified by a letter and two numbers
specifying respectively the label and the start and end points of a line. Note that there can be two or more
lines from a square labelled with the same character as well as lines from different squares labelled with the
same character, but there will never be two lines with the same label and the same initial and final squares.
The end of the list of edges is signified by a line that contains '# 0 0'. Following each layout is a list of one
or more strings. Each string consists of between 1 and 80 uppercase letters terminated by a '#. A string that
consists of only a '# signifies the end of input strings for the current layont. The entire input is terminated
by a line containing two zerces (0 0.

Output consists of a single line for each string to test containing either "Won" or "Lost".

Sample Input Sample Output
s e Weon
Al 2 Won
A2 2 Lost
B3 Lost
B31 Wen
B33 Lost
#00 Lost
ABBE#

AMARBBEBBAABE#

ACBEBEBEE#

ARARBBAA#

Mew Zealand Programming Contest 1999 Fage 13

Prﬂb!em S Alien detection 50 points

A group looking for signs of extraterrestrial life has asked you to write some software to assist them in their
search. They are convinced that a race of alien super-beings is capable of moving stars, and has been re-
arranging star positions so that when viewed from Earth there will be many instances of groups of 4 stars

arranged in a perfect square.

They have written software that translates an image from a telescope into a list of coordinates of the positions
of all stars present in the image. Your program must take a list of coordinates, and return the number of

squares present in the image.

Input consists of a one or more data sets. Each data set begins with a line containing a single integer (N}
which is the number of points in the data set. N will be at least 1 and no more than 200 (0 is used to indicate
the end of input). Each of the N following lines contains two integer values that are the X and Y coordinates
of a single star. Each of these integers will be at least 0 and no more than 1000000.

Qutput for each data set is a single line containing the string "Squares found =" followed by the number of
squares found.

Sample Input

4

]

1000000 1000000
1000000 0
1000000

S ld Ld L B B B 2 e WD O
Ll B =t L B L B e

Sample Output
Sgquares found =
Scuares found = 6

|
et

Wew Zealand Programming Contest 1999 Page 19

Problem V Directions 150 points

Car trialling is a test of navigational and driving skills involving a set of misleading instructions designed to
get you from A to B but by a variety of different routes, depending on which traps you fall into. In the real
situation instructions can be amended by placing various signs along the route. However are not available in
a computer model, hence what follows is only a pale imitation of the real situation.

The following rules are loosely based on real car trialling instructions. BOLD-TEXT indicates text as it
appears in the instruction (case sensitive) and | separates options of which exactly one must be chosen.

instruction = start | inst. - .

start = START ON where BETWEEN numth AND numth AT num KMH

inst = navigational | time-keeping | navigational AND time-keeping

navigational = directional | navigational AND THEN directional

directional = turn | do

turn = TURN direction [TURN when direction | TURN direction AT where

direction = RIGHT | LEFT

when = FIRST | SECOND | THIRD

do =CROSS where | STOP

where = numth road

road = St | Ave

time-keeping = record | change

record = RECORD TIME

change = cas TO num KMH

cas = CHANGE AVERAGE SPEED | CAS

num = digit | digit digit | 100 '

digit=0111213141516171819

Note that num is a sequence of digits with no intervening spaces. There will be one or more spaces between
iterns except before a period (.). Check the examples below.

For convenience assume that this trial takes place in an American city which is laid out on a grid with all
intersections at right angles, Streets run east-west and are numbered from south to north starting from 1
and Avenues run north-south and are numbered from west to east starting from 1. The city is bounded to
the south and west by InterState highways (notionally Oth Street and Oth Avenue) but these highways are
ot of bounds to car trialists. City blocks are exactly lkm long. You can assume that the starting and stop-
ping places are car parks with the entrance/exit exactly in the middle of a block. Thus the starting instruction
"START ON 23th St BETWEEN 50th AND 51th AT 35 KMH." means that you will start at time zero as
you leave the car park heading towards 51st Avenue and attempt to maintain an average speed of 35
km/hour.

Instructions can be incorrect in that the words or syntax can be wrong or they can be semantically invalid,
for example, “CROSS 60th St.” is syntactically correct but is semantically invalid if you are travelling on
20th St. The input will not contain instructions that are syntactically valid but semantically invalid.

Write a program that will read a START instruction (which will always be correct) and a series of instruct-
ions (not including a START instruction), which may not be correct (as above), terminated by a valid STOP
instruction. If an instruction is invalid, simply ignore all of it (even any speed changes) and continue with
the next instruction. If an instruction includes a change of speed, determine how far you have travelled at the
current speed and hence how long it should have taken you and accumulate the total elapsed time. Note that
directional instractions can only be obeyed at intersections whereas time-keeping instructions can be obeyed
immediately. If a valid instruction contains a RECORD instruction then write your current position (street,
avenue) right justified in a field of width 4, a space, your heading (North, East, South, West) left justified in
a field of width 5 and total elapsed time, rounded to the nearest second, right justified in a field of width 6.
The last instruction will be "STOP". At this point you should specify your stopping position and time in a
similar format to a start instruction. See example below.

New Zealand Programming Contest 1999

Sample Input

START ON 23th St BETWEEN 50th AND 51th AT 36 KMH.
TURN SECOND LEFT.

TURN LEFT AT 24th S5t AND CAS TO 60 EMH.

TURN RIGHT AT 50th Ave AND RECORD TIME.

TUEN RIGHT AND THEMN TURN RIGHT AND THEN TURN SECOND RIGHT.

CROSS 50th St AND THEN CAS TO 40 EMH.
TUEN THIRD RIGHT AND CAS TO 36 ¥MH.
TURN SECOND RIGHT AND RECORD TIME.

TURN SECOND EIGHT AND THEN TURN SECOND LEFT AND THEN STOP.

Sample Output
24 50 North 370
25 4B East 930
STOP ON 23th St BETWEEN 50th AND 5lth AFTER 1440.

Page 20

Problem W Backing Up 150 points

This problem has been withdrawn as a result of technical difficulties

Mew Zealand Programming Contest 1959 Page 22

Problem X 3D Noughts and Crosses 150 points

The ordinary (two dimensional) game of noughts and crosses is played by two players on a three by three
grid. One player is assigned the nought symbol (which we will represent with the "o" character) and the
other is assigned the cross symbol (which we will represent with the "x" character). The players take it in
turns to write their symbol in an empty cell until one player manages to get three characters in a vertical, hori-
zontal or diagonal line (in which case that player wins) or until the grid is full and no player has three sym-
bols in a line (in which case it is 2 draw),

By stacking three 3x3 grids one on top of the other, we get a three dimensional version of noughts and
crosses played on a 3x3x3 cube. Once again the aim is to be the first to get three symbols in a line. There are
many possible lines, including ones that consist of the central cell and any two opposite corners of the cube.
However even this game is too easy for some people. These superpeople play with cubes up to 101010
and lines up to the size of the cube.

Your task is to write a program that can determine the state of a game of three-dimensional noughts and
crosses given the size of the cube N (3 <N < 10), the length of a winning line I (3 = = N) and the

contents of the N° cells. Each cell is either empty (represented by '-) or it contains a nought {"o') or cross

('x"). The state of a game is one of:
1. "Out of turn" if the difference between the number of noughts and the number of crosses is greater

than one (for this to have happened the turn sequence must have been violated).

2. "Long line” if there is a line longer than 2/-1.

3. "Megal" if there are two or more differsnt lines (the game should have stopped when the first line was
completed). i,

4. "Won by o" or "Won by x" if there is exactly one line of length [or greater.

5. "Draw" if all cells are occupied, but there are no lines.

6. "In progress” if there are no lines but empty cells remain.

If more than one of these conditions is true then report the one with the lowest number.

Input consists of 2 number of game situations. The first line of each game situation consists of the pair of
integers NV and ! as described above, separated by at least one space. This is followed by N sets of N
lines, each line containing N characters, Each group of N lines represents one plane of the cube starting
from the bottom. Input is terminated by a line containing two zeroes (0 0).

For each game situation, ountput the state of the game by printing the appropriate string (of the 7 strings
quoted above) on a line by itself.

New Zealand Programming Contast 1999 Page 23

Sample Input
33

- e am

oo

Sample Output
Won by x
Illegal

New Zealand Programming Contest 1999 Page 24

Problem Y Cordless Telephones 150 points

Cordless telephones consist of two units — a base unit which connects directly to the telephone nstwork in
the normal way and the telephone unit which can be carried around the house and even into the garden. These
two units communicate by means of radio waves and each unit has a fixed frequency which is set at the time
of purchase. This frequency may need to be changed if you move house, but that will not concern us here.
The base unit typically has a reasonably powerful transmitter with a range of possibly several hundred metres
whereas the telephone unit has a much more limited range. Because of the larger range of the base unit, it is
essential that 'neighbouring’ units operate on a different frequency, since otherwise you could listen in on

your neighbour's calls and vice versa.

TelCon, the local mobile phone provider, is about to enter the next round of frequency negotiations. They
obviously wish to limit the number of frequencies they buy since they have to pay for them, but they have to
balance this against the cost of resetting the frequencies of existing units. In an attempt to get a feeling for
the problem they have hired you as a consultant to determine some crucial parameters for them. They have
selected a sample area 20 km sguare and determined the positions of all the base units in it; they want to
know, for a given number of frequencies &, the radius of the largest circle they can draw around any base
unit that will include no more than k-1 other base units.

Write a program that will determine this information.

Input will start with an integer N (¥ < 60,000} giving the number of sites, followed by N lines contain-
ing pairs of integers representing the coordinates of each base unit to the nearest metre. This part of the input
will followed by a series of values of £ {5 < k < 20) terminated by the integer zero.

Output will be the value of the radius in metres, truncated to a whole number, of the largest circle that can be
drawn around any base unit so that no more than k-1 other base units are included.

Sample Input
15

99 101
99 100
99 99
100 100
100 101
100 102
101 99
101 100
101 101
110 90
110 100
110 110
120 90
120 100
120 110
5

0

Sample OQutput
1

