NZ programming Contest 10/10/98

NEW ZEALAND
PROGRAMMING CONTEST
1998

Problem A A Nice Number 5 points

Print the smallest positive whole number whose digits are all different and which is exactly divisible
(with no remainder) by 2,3,4,5,6,7,8and 9

EXAMPLE
Input

(There's no input)

Output
421

(Actually the number isn't 421 but this is to show that the output, on the screen, must be a single number
starting at the left of the screen. Many of the answers to the problems are of this, or a similar, form. Do
NOT try to "improve" this output by writing "Number = 421" or similar; this will be regarded as a wrong
answer),

NZ programming Contest 10/10/98

Problem B Button Placement 5 points

Suppose you are designing a program which will display some information on the screen, and the user
has to respond by using the mouse to click one of the buttons on the screen, as in the following:

Ignore problem [Send bill Add fine

All sorts of important information about
a customer with a problem is displayed
in this box.

To make the program more user-friendly, you have to place the buttons so that they do not look crowded
(assume you are using a primitive language which does not place the buttons for you). One way of
placing them is shown above - the outer buttons line up with the edges of the box, and the buttons
between them are placed so the spacing between the buttons is exactly the same (to within one pixel - for
example, 130 pixels between some buttons and 129 between the others).

For this problem you will be given several sets of data which describe a situation like the one shown (but
possibly with more buttons above the box), and your program must provide information about where the
buttons must be placed, in the horizontal direction. The information you will be given is the number of
buttons (between 2 and 5), the width of the box, and the width of each button, You must give the
placement of the left side of each button, in pixels, relative to the left edge of the box (so the leftmost
buttons will have a placement of 0). The number of pixels between the right and left edges of adjacent
buttons must all be the same if possible; if it is not possible to make all the spacings the same, then the
spacings must differ by no more than 1 pixel, with the widest spacings all as far left as possible.

Input will be from standard input (ie the keyboard or a redirected file) and will be two lines for each
placement probiem. The first line will contain two numbers separated by one or more spaces. The first
number gives the number of buttons above the box, N, and the second number gives the width of the box
in pixels, W. N will always be greater than 1 and less than 6. The next line contains N numbers,
separated by one or more spaces, giving the width of each button. The sum of these numbers will always
be less than W - N. The end of the placement problems will be indicated by a line containing two 0's, ie

N=W=0.

Output, which must be written to standard output (the screen), must be one line for each placement
problem in the input, giving the distance of the left edge of each button, in pixels, from the left edge of
the box. The numbers must be separated by a single space

EXAMPLE

Input Output

3 576 0 273 484
143 82 92 0 389

2 576

187 187

00

NZ programming Contest 10/10/98

Problem C Report 5 points

For this problem you must produce a simple report.

Input will be from standard input (ie the keyboard or a redirected file} and will be a set of lines containing
sales data. Each line will contain two numbers relating to an item, the first giving the cost price in dollars
and cents, and the second giving the sales price in dollars and cents. The prices will all be less than
1000000.00 and greater than or equal to 0.00. The prices will be followed by the name of the item sold,
which will always be less than 20 characters. The numbers, and the name, are all separated by one or
more spaces. Each line will be less than 60 characters long., There could be any number of lines for the
report (tens of thousands). The input is terminated by a line containing two zeros.

Output, which must be written to standard output (the screen), must be a line of headings and a line of
totals, as shown below, and between them one line for each line in the input. Each of these lines must
start with the name of the item, left justified (ie no leading spaces}, followed by the cost price, then the
sales price, then the profit on the item which is worked out as:
profit = sales price - cost price.

Counting the first character on each line as column 1, the decimal point of the cost price must be in
column 30, the decimal point of the sales price in column 40, and the decimal point of the profit in
column 50. The total line must be like the other lines in the report, with an item name of TOTAL, and
the amount in each column being the sum of the amounts of the data in that column. You may assume all
the totals are less than 1000000.00 and greater than -1000000.00. The headings must line up with the

decimal points as shown below.

EXAMPLE

Input

11.50 13.00 Shovel

59.00 103.00 Wheelbarrow

15.50 0.00 Raincoat

0.00 951376.41 Gold Nuggets

23167.50 4671.00 Mechanical Scrubber

00

Output

Item Name Cost Sales Profit
Shovel 11.50 13.00 1.50
Wheelbarrow 59.00 103.00 44,00
Raincoat 15.50 0.00 -15.50
Gold Nuggets 0.00 951376.41 951376.41
Mechanical Scrubber 23167.50 4671.00 -18496.50

TOTAL 23253.50 956163.41 932909.91

NZ programmming Conlest 10/10/98

Problem D Caesar Cipher S5 points

A simple way of concealing information is to use a cipher to transform each letter into another one; a way
of doing this is called a cipher. The simplest cipher was used by Julius Caesar more than two thousand
years ago; in this "Caesar cipher", each letter is changed into one a fixed number ahecad - for example,
with a shift of 3, a is changed to d, b to e, ¢ to f and so on. The letters wrap around after z so that w is
changed to z, x is changed toa, ytoband z to ¢,

Input will be from standard input (ie the keyboard or a redirected file) and will be in pairs of lines, where
the first line contains a number, giving the amount of forward shift (always > 0 and < 26), and the next is
a line of text to be changed using the cipher (lines will always be less than 60 characters). The input is
terminated by a line containing a single zero.

Output, which must be written to standard output (the screen), must be a the lines of text which are
changed using the Caesar cipher., Make sure that only the letters in the line are changed - spaces and
punctuation are to be unaffected. Also, uppercase and lowercase form must be preserved,

EXAMPLE

Input

3

A simple way of concealing information is to use a cipher
10

to transform each letter into another one; a way of doing
25

this is called a cipher. The simplest cipher was used by
1

Julius Caesar more than two thousand years ago.

0

Output

D vlpsoh zdb ri frgfhdolqj lgirupdwlrq lv wr xvh d flskhu
dy dbkxcpybw okmr voddob sxdy kxydrob yxo; k gki YP nysxq
sghr hr bzkkdc z bhogdq. Sgd rhlokdrs bhogdg vzr trde ax
Kvmjvt Dbftbs npsf uibo uxp uipvtboe zfbst bhp.

NZ programming Contest 10/10/98

Problem E Depreciation 5 points

Computers lose value very fast. Just when you thought you had the latest and best, two weeks later
another model is announced and your computer is not nearly as valuable! Your task in this problem is to
write a program which will compute just how much less valuable your computer is, as the weeks pass,
assuming a constant rate of loss. You will be given the original value of the computer, and the percent by
which it loses value ("depreciates") each week. For example, if the original value was $5000 and the rate
of depreciation is 2%, then after one week it has lost $100, so its value is $4900. Next week it loses 2%
of $4900, ie $98, so its value is $4802. Next week it loses $96.04, so its value is $4705.96. The next
week it loses $94.1192, but because we can't deal in fractions of a cent, this is truncated to $94.11, so its
value after four weeks is $4611.85. Note that this is not the same as you would get by simply taking
4 x 2% off $5000 - this would give $4600.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of a number of
depreciation scenarios. Each will be described by three numbers, the first giving the original value of the
item in dollars and cents, the second giving the percentage depreciation per time period, and the third
giving the number of time periods the depreciation must be computed over. The original value will
always be less than $1,000,000. The percentage depreciation will always be a whole number less than
100 and greater than 0. The number of time periods will always be less than 500. The output will be
terminated by a line containing three 0's.

Output, which must be written to standard output (the screen), must be one number for each depreciation
scenario, giving the final value of the item, in dollars and cents (ie with two decimal places). Note that
the amount depreciated must be computed for each time period and then truncated to give whole cents, as

shown in the calculation above.

EXAMPLE

Input

5000.00 2 4
44281.15 10 10
000

Output
4611.85
15439.91

NZ. programming Contest 10/16/98

Problem G Golf 15 points

An "intelligent" golf ball has been invented, which will mean that golfers no longer need to keep
scorecards. This golf ball has built-in electronics (very rugged), so that every time it is hit, it sends a
message to the club house giving its ID. Furthermore, every one of the 18 holes in the golf course is
wired so that when a ball drops into it, the hole sends a message giving its number and the ball's ID.
According to the rules of golf, each player must have a single ball, which they must hit (possibly taking
several hits) into each hole. The number of hits each player takes for each hole can now be counted
automatically, and the outcome of a tournament decided before the golfers reach the clubhouse (the

winner is the one with the fewest hits).

You must write a program which will analyse the messages received at the clubhouse and compute the
total number of hits each ball has received. Players must play each hole, from 1 to 18, in order; thus, for
each ball, you expect a sequence of hits followed by a hole, which must be first number 1, then 2, then 3
and so on up to 18. If a hole is played out of order, or the ball is simply carried to the next hole and
dropped in, the round for that ball is invalid. A final total can only be computed for those balls which
have been hit into hole 1, then 2, etc up to hole 18. Of course, the messages are sent randomly as the
various balls are hit in different parts of the golf course, so the input stream of messages will closely
resemble a random list of ID numbers, with hole numbers scattered randomly throughout the list,

Input will be from standard input (ie the keyboard or a redirected file) and gives the data for a single
period of time on the goif course. The input will consist of lines of numbers separated by spaces, with no
more than 80 characters on each line. The numbers will either be ball ID numbeis (between 100 and 999)
or hole numbers (from I to 18). No more than 100 balls will be used. Each hole number will be followed
by the ID of the ball which is in the hole. The input will be terminated by the number 0.

Output, which must be written to standard output (the screen), must list the ball ID's you have found in
the input (in increasing numeric order), followed by a space then either the total number of hits recorded
for that ball, or the number 0. You must print 0 'if the round was invalid for that ball - ie if the hole
numbers recorded for that ball do not follow the strict sequence 1,2, ..., 18, or if there was no hit recorded
for the ball between two successive hole numbers. Any hits and holes after hole 18 has been played
should be ignored - the player must have been simply practising.

EXAMPLE:

Input

100 111 222 100 222 100 111 1 111 100 222 111 222 2 111 100 1 222 111
100 111 222 3 111 100 222 100 111 2 222 111 100 4 111 222 100 100 111
222 5 111 6 100 3 222 111 222 100 100 111 222 100 222 100 111 6 111 100
222 111 222 7 111 100 4 222 111 100 111 222 8 111 100 222 100 111 5 222
111100 9 111 222 100 100 111 222 10 111 1 100 6 222 111 222 100 111
222 100 222 100 111 11 111 100 222 111 222 12 111 100 7 222 111 100 111
222 13 111 100 222 100 111 8 222 111 100 14 111 222 100 100 111 222 15
111 2 100 9 222 111 222 100 111 222 100 222 100 111 16 111 100 222 111
22217 111 100 10 222 111 100 111 222 18 111 100 222 100 111 11 222 111
100 4 111 222 100 100 111 222 5 111 3 100 12 222 111 222 100 100 111 222
100 222 100 111 11 111 100 222 111 222 12 111 100 13 222 111 121 111

222 13 111 100 222 100 111 14 222 111 100 14 111 222 100 100 111 222 15
111 4 100 15 222 111 222 100 111 222 100 222 100 111 16 111 100 222 111
222 17 111 100 16 222 111 100 111 222 18 111 100 222 100 111 17 222 111
100 4 111 222 100 100 111 222 5 111 18 100 18 222 0

Output
100 0O
111 32
121 0
222 53

NZ programming Contest 10/10/98

Problem H Lists of words 15 points

For this problem you will be given a set of words, and you must output the word in a given position when
they are arranged in increasing alphabetical order. For examples, if the words are "cat", "ant", "ewe",
"bee", "dog", and you want the 2nd in alphabetic order, then the word "bee" must be output.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of a number of
problem sets. The data for each problem starts with a line containing a single number, k, which is the
position of the word wanted when the words are in alphabetic order. This line will be followed by from |
to 100 lines containing the words, each word being at most 20 characters in length and entirely in
lowercase letters. There could be duplicate words in the list; if so, the term "increasing order” should be
interpreted to mean that all the words which are the same are listed one after the other. The list of words
will be terminated by a line consisting of the single character #. The end of the problem sets will be
given by a line containing the number O (ie k = 0 for a problem set).

Output, which must be written to standard output (the screen), must be one word on a separate line for
each problem set, the word requested as above.

EXAMPLE
Input
2

cat
ant
ewe
bee
dog
#

2
cat
cat
cat

#
0

Output
bee
cat

NZ programming Contest 10/10/98

Problem I Summing Digits 15 points

Given any number, the sum of its digits characterises the number, but there is a lot of duplication. For
example, the numbers 431, 17, 1001200201001 and 8 all have the digit sum of 8. For this problem you
need to find the smallest number whose digits sum to a given number.

Input will be from standard input (ie the keyboard or a redirected file} and will consist of lines each with
a single whole number, n, which could be positive or negative. If n is positive, you must find the smallest
number whose digits sum to n (n will be no more than 81). If n is negative, you must find the smallest
number, all of whose digits are different, and whose digits sum to abs(n). If n is negative it will be no
smaller than -45. The input will be terminated by a line consisting of a single 0.

Output, which must be written to standard output (the screen), must be the solution number for each non
zero number in the input.

EXAMPLE
Input

8

21

=21

0

Output
8

399
489

NZ programming Contest 10/10/98

Problem J Smart House Wiring 15 points

A firm is constructing "Smart Houses" which have single processors imbedded in each internal and
external wall. They have developed a very simple network, which depends on a single wire joining all
the processors, running from a starting processor to a finishing one, crossing the wall at each of the other
processors, not crossing any wall at any other place, and not crossing itself (in the plan). For example, a
possible wiring scheme is shown for the house below:

R *
r 1

They have been surprised to find that no such wiring scheme is possible for the following house plan:

+ . + .
-]
This is a classic topological problem with an easy answer: a wiring scheme is possible if the house has no

more than two rooms with an odd number of sides. You must write a program to determine whether a
wiring scheme is possible, given the coordinate of the corners of the house. You may assume every wall

is parallel to the x or y axis.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of several house
plans. Each house plan is given by a series of lines which describe the walls parallel to the x-axis, in
increasing y-order. The y-coordinate of this wall is given (an integer greater than 0), followed by the x-
coordinates (integers greater than 0) of points where walls parallel to the y-axis meet this wall, given in
increasing x-order. The list of x-coordinates is terminated by a 0. The input is terminated by a 0 (ie an
empty house plan). Two separate walls will never have the same x-coordinate or y-coordinate, i.e. the
situation on the right below will not occur. The houses pictured above are given in the examples.

Output, which must be written to standard output (the screen), must be the word "Yes" if a wiring scheme
is possible for this house plan, otherwise the word "No".

EXAMPLE

Input Output
11370 Yes
337090 No
5170

9170

0

113570

33570

5170

9170

0

0

NZ programming Contest 10/10/98

Separate lines,
same y-coord

Separate lines,

WILL NOT OCCUR same x-coord

NZ programming Contest 10/10/98

Problem K Table Headings 15 points

In Problem C you had to print out a table with numbers arranged in columns, and with fixed heading on
the columns. For this problem you must print out the same sort of table, but this time the hcadings will
not be fixed but will be supplied together with the data and they could be guite long. In fact you could
have up to four lines for the headings, and you must break the headings at a gap between words. See the

example below.

Input will be from standard input (ie the keyboard or a redirected file) and will be a series of tables to be
printed out. Each table starts with a number giving the number of columns, N, followed by a line with N
numbers separated by spaces, giving the width of each column in characters. After this comes N lines,
the first of which contains the heading for the first column, the next the second column, and so on. The
data for the body of the table follows, which will consist of N-1 real numbers followed by a name, exactly
as in Problem C. The table data is terminated by N-1 zeros, and may be followed by additional tables.
The end of the input is a line containing a single zero, i.c. a table with 0 columns. Each input line will be

less than 60 characters,

Output, which must be written to standard output (the screen), must be the table with each column headed
by its heading. The heading may consist of several lines, and the line given must be broken up so it fits
into the corresponding column width - 1 (to allow for a gap between headers). The breaks must be at
space characters, and the first line, second line etc of the heading must be as long as possible, so the
number of lines used by the headings is a minimum. In the first column, everything including the
heading parts must be left justified, and in the columns everything is right justified. The last line of each
heading must be the line above the data. There is no total line or profit column in this problem. You can
assume that it is always possible to break the heading as specified so that it fits into at most four rows; in
particular, every word in the header will be shorter than the column width. There must be a blank line

between every fable.

EXAMPLE

Input

3

20 15 15

Name of the item found by Police at the scene
Estimated Value

Price being charged by the suspect

11.50 13.00 Shovel

59.00 103.00 Wheelbarrow

15.50 0.00 Raincoat

0.00 951376.41 "Gold" Nuggets

23167.50 4671.00 Mechanical Scrubber
00

0

Output

Name of the item Price being
found by Police at Estimated charged by the
the scene Value suspect
Shovel 11.50 13.00
Wheelbarrow 59.00 103.00
Raincoat 15.50 0.00
"Gold" Nuggets 0.00 951376.41

Mechanical Scrubber 23167.50 4671.00

NZ programming Contest 10/10/98

Problem M Josephus Problem 50 points

A classic problem in this sort of contest, which dates from several thousand years ago (it is rumoured to
have first appeared in the 1541BC New Zealand Programming Competition), is the "Josephus" problem.
The basic motivation for this is that one person or thing has to be selected from a group, in a random
manner. Because randomness was not well understood a few thousand years ago, a mechanical process
which is hard to analyse was used for the selection. You must write a computer program which will work
~out, for each Josephus problem, the thing chosen.

A number J is first chosen - usually, this is less than the total number of things to be selected from, but it
could be greater. Then the objects from which the selection must be done are arranged in a line, and
counting ts started from the first one, which is counted as "1", the next one is "2", and so on. When the
thing numbered "J" is reached, it is removed from the line, everything after it is moved up one place to
fill in the gap, and counting is started again, taking the thing which has just moved into the gap as "1".
When counting reaches the end of the line, it is continued from the beginning without a break - for
example, if the last thing in the line has number "2", then the first thing in the line is counted again as
number "3". For example, taking the 7 objects below, and taking J as 5, then the situation is shown after
three objects have been removed:

X
Original line: 1 2 3 4115 6 7

Just after 3rd object removed: {1 41161 |7
X

X = will be counted as 1 for next removal stage

The process stops when there is one thing left, and this is the selected thing. In the case shown, it will be
the thing numbered 6. The order the things are removed is 5,3,2,4,7, 1.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of lines with two
positive whole numbers on each line, both more than 1 and less than 10,000. The first number gives the
number of objects in the original line and the second number gives the Josephus counting distance, J.
The input will be terminated by a line consisting of a two O's.

Output, which must be written to standard output (the screen), must be one number for each line of input,
giving the number, in the original line, of the selected item.

EXAMPLE
Input
75

8 9

999 888
00

Output
6

8

755

NZ programming Contest 10/10/98

Problem N Snakes and Ladders | 50 points

A popular board game for children is called "Snakes and Ladders". The board has squares which are
numbered from 1 to 100, and players have counters which start on the theoretical square 0. The players
take turns at throwing a die with the numbers 1 to 6 on it, and each moves his or her counter forward the
number of squares corresponding to the uppermost number on the die (the square they reach is found by
adding the die number to the square number their counter is on). The first person to reach square 100 is
the winner. The interest is caused by the fact that pairs of squares are connected together by "ladders"
(which connect a lower-numbered square to a higher-numbered square) and "snakes" (which run from
high to low). If a counter lands on the start of a snake or ladder (ie this is the square reached after
throwing the die), then the counter is moved to the corresponding square at the end of the ladder or snake.
Note that landing on the end square of a ladder or a snake has no effect, only the start square counts.
Furthermore, there are some squares such that if a player's counter lands on them, then the player must
either miss their next turn, or immediately throw the dice again for another turn, depending on what is
written on the board. A miss-a-turn or extra-turn square is never the start or end of a ladder or snake. If a
player is on square 95 or higher, then a die throw which takes them past 100 must be ignored - thus a
player on square 99 must ignore all throws which are not 1. Actually, in many games, square 99 is the
start of a long snake so this particular case doesn't arise, and furthermore throwing the die on squares 93

to 98 can be stressful.

Input will be from standard input (ie the keyboard or a redirected file) and will start with a set of less than
1000 die throws which you must use for all games, starting each new game with the first player
"throwing" the first number in the set, the next player "throwing" the second number, and so on. This set
of die throws will simply be a list of random numbers between 1 and 6, separated by single spaces, with
not more than 80 characters on each line, It will be terminated by the number 0. After this set of die
throws, there will be one or more game sets. Each game set is in three parts. The first part is a line
containing a single number giving the number of players in the game. This will be more than 1 and less
than 6. Then the board is described, in two parts. The first part lists the ladders and the snakes on the
board, each ladder or snake being defined on a single line. Each is given by two numbers, from 1 to 99,
separated by one or more spaces. The first number gives the start square, and the second number gives
the end square; so it is a ladder if the first number is less than the second number, and a snake if the order
is the other way. The snake/ladder definitions are terminated by a line containing two 0's, The second
part of the board description gives the lose-a-turn/extra-turn squares. These are single numbers, one per
line, defining the squares, If the number is negative, it is a lose-a-turn square, if positive an extra-turn
square. The end of this set of descriptions, and of the game description, is given by a single 0. The end
of all the game descriptions is given by a game with the number of players equal to 0.

Output, which must be written to standard output (the screen), must be one line for each game in the
input, giving the number of the player who wins the game. Every game will determine a winner in fewer
throws that those given at the start of the data.

EXAMPLE
Input
3632513423120
2

695

991

00

-3

98

0

2

399

690

NZ programming Contest 10/10/98

Problem O Real numbers 50 points

For this problem you will have to write a parser to analyse numbers expressed in Pascal real format. This
problem will be no simpler for teams using Pascal (if any) because the size of the numbers involved will
be too large to be handled by the Pascal version used in this contest.

Pascal requires that real constants have either a number including a decimal point, or a number followed
by an exponent (which is the letter e or E followed by an integer). If a decimal point is included it must
have at least one decimal digit on each side of it. As expected, a sign (+ or -) may precede the entire
number, or the integer in the exponent, or both. Exponents may not include decimal points. Blanks may
not be embedded within the real constant, Note that the Pascal syntax rules for real constants make no
assumptions about the range of real values, and neither does this problem.

For example, 112.65 is a valid Pascal real constant, and it is the same number as all of the valid constants
+1.1265E+2, 0.01265e4, 11265E-2 and +1126500.0e-6.

Your task in this problem is to process possible Pascal real constants, identify whether they are valid
format, and rewrite them in a "normal form", which is a Pascal real constant written in the format
+d.nnn..Exmm... where d is a single nonzero digit, nnn... is the decimal part which has no trailing zeroes
(unless it is a single zero) and mm... is a whole number with no leading zeroes unless it is a single zero (in
which case the sign preceding it must be +); for example, +1.1265E+2 is the normal form for 112.65, and
-1.0E+0 is the normal form for -1.0. The number zero cannot be represented in this form, so it has the

special normal form +0.0E+0

Input will be from standard input (ie the keyboard or a redirected file) and will consist of lines each
consisting of a possible Pascal real constant. Any exponents in the valid constants given will always lie
between -1000000 and +1000000, and the numbers could be any size, except that the line will have a
maximum of 60 characters. The input will be terminated by a line consisting of a single #.

Output, which must be written to standard output (the screen), must be one line for each line of input,
giving either the normal form of the number if the Pascal real constant is valid, or the word "Invalid".
The answer will never be will always be able to be expressed in GO characters or less.

EXAMPLE
Input

1.2

1.

e-12

-6.5E
412345.67890e-00999999
7.6e+12.5
99
123x456.789
#

Output

+1,2E+0

Invalid

Invalid

Invalid
+4,123456789E-999994
Invalid

Invalid

Invalid

NZ programming Contesl 10/10/98

Problem P Farmer Bob's Sprogs 50 points

In a certain area of the country (beyond Erewhon) the fields are laid out in a totally regular grid, each
field being square and exactly one hundred acres in area (so each side is about 600m), and oriented so the
sides run North, South, East and West. Farms consist of a number of these squares, each of which is
connected to the other squares in the farm by at least one side. Thus in the diagram below, the left-hand
picture shows a valid farm while the other pictures are not valid farms.

XXX XX X X
XX X XX XX
XX X XX

Farmer Bob has a farm which consists of 17 fields, which he wishes to divide among his three sons. The
fields cannot be subdivided, so each will get five and the remaining two will be left as isolated bush
reserves, Farmer Bob found it a bit difficult to see how to make three valid 5-field farms from his farm,
which is shaped like this:
XXX X
KXXXKXX
XX X X
X X

so he called you in to write a general program to solve the problem, with the idea that a lot of his
neighbours will be wanting to do this too.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of data for several
farms. Each data set starts with a line containing a single integer, giving N (2 = N = 5), the number of
parts the farm must be split into. The size of each part must be (total size)/N, rounded down. This is
followed by a series of lines describing the farm, by giving a series of East-West traverses, from the
North end of the farm to the South. Each line consists of a stiing of 0 and 1, a 0 meaning the field is not
part of the farm and a 1 meaning it is. No farm is bigger than 10 fields in any dimension. The file will be
terminated by a line containing a single 0.

Output for each farm, which must be written to standard output (the screen), must start with the words
"Farm Number ", followed by the number of the farm data set in the input, the first data set being number
1. After this must follow either the word "Impossible”, if the farm (with a number less than N of fields
removed, if necessary) cannot be split evenly, or the farm map with the 1's replaced by a,b,c etc to
indicate the new farms being created, where a is used for all fields in the first farm, b for all fields in the
second farm, and so forth (any fields left over remain as 1's). Any of the possible solutions will be
marked correct. There must be a blank line after each farm map (or "Impossible"),

EXAMPLE
Input

2

11111

3
11101000
01111111
11001001
01001000
0

Output
Farm Number 1
aabbl

Farm Number 2
Impossible

NZ programming Contest 10/10/93

Problem Q New Calendars 50 points

The new Minister of Efficiency (your local MP) has just had a stroke of brilliance. He believes we can
improve the output of the country by 14% (1/7) by moving to an 8-day week instead of a 7-day week.
His logic that the weekly output of the country must rise by a factor of 1/7 is inescapable, especially as he
has assigned you the lucrative contract of recomputing calendars for future years. You suspect he would
be even more impressed by the efficiency gains with 9-day or 10-day weeks, but his advisers haven't
pointed this out to him yet. The new day names will be the more efficient names day0, dayl, day2 etc,
and (whatever week length is chosen) the first day of the year 2000 will be called day0.

Your task is to write a program which will print out "months" for future years, given that weeks are not 7
days but 8,9,10 etc, where a "month" is a set of 30 consecutive days. You will be given a year (we will
continue to use standard Gregorian years) and a day number in that year, and you must take this as the
first of the month and print out the next 30 days, using the standard calendar format as shown below (but
with bigger weeks and the new day names). Note that there is a single space between each day name, and

the columns are left justified.

Remember that, in the standard Gregorian calendar we use, there are 365 days in a year except for leap
years, when there are 366. Leap years are all years divisible by 4 and not 100, except that those divisible
by 400 are leap years - thus 1900 was not a leap year, 1904, 1908 ... 1996 were leap years, 2000 will be a
leap year, 2100 will not be a leap year, etc.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of lines containing
three numbers, separated by one or more spaces. The first number on each line will be the number of
days in the new week (between 7 and 12), the second number will be the year number (less than
1,000,000) and the third number will be the day of the year that the calendar starts.. The input will be
terminated by a line consisting of three 0's.

Output, which must be written to standard output (the screen), must be a calendar in standard format
(with wide weeks) as shown below.

EXAMPLE
Input
8 2000 1
9 4000 58
00O

Output
day0 dayl day2 day3 day4 day5 dayé6 day7
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30
day0 dayl day2 day3 day4 day5 day6é day7 day8
1 2 3 4 5 6
7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24
25 26 27 28 29 30

NZ programming Contest 10/10/98

Problem S Hole Cutter 150 points

A factory which specialises in making cuts in the interior of flat sheets has just acquired a new cutter
which can make cuts much more freely than any of their previous machines, and they want you to write a
program to calculate exactly what has happened when a complex series of cuts are made. In particular,
they need to know the number of holes which are formed in the sheet by the cuts. Here are some

examples of situations that can arise after cutting:

[]

Two holes Two holes One hole One hole

Input will be from standard input (ie the keyboard or a redirected file) and will consist of several cutting
operation descriptions. Each description starts with a number, N, giving the number of cuts in the
operation, followed by N lines giving the actual cuts. The number N will always be less than 100 and
greater than 1. Each cut will be given by four whole numbers separated by one or more spaces, the first
two giving the (x,y) coordinates of the start of the cut line and the second two defining the end of the cut
line; the coordinate values will always be whole numbers fess than [0000. You should assume the points
are always internal to the sheet, never on the boundary. Each cut will be parallel to the x or y axis of the
table. The input will be terminated by a line consisting of a single 0, ie a cutting operation description

with N=0.

Output, which must be written to standard output (the screen), must be one number for each cutting
operation description in the input, giving the number of distinct holes formed by the cuts. Note that the

minimum area of any hole is I square unit.

EXAMPLE
Input
4

OO
OO

1
1
0
0

[N
= N
L i ol

utput

OO OHONORRLO

NZ programming Contest 10/10/98

Problem T Saturn 150 points

Y ou have come in the possession of a puzzle called the Saturn. It consists of two rings, holding 32 disks
(16 per ring). Each disk has two (not necessarily different) colours, one colour a side. The disks are
presented in the rings with one side (i.e. one of their colours) showing. Using an ingenious construction,
the disks in each ring can be rearranged arbitrarily, a disk can be flipped over (therefore switching its
colour), or any two disks can be swapped between rings.

The aim of the puzzle is to arrange and orientate the disks in such a way that each ring contains 4 colours
of 4 disks each (giving a total of 8 different colours for the whole Saturn, each colour shown by 4 disks).
Obviously, each disks can (and must) participate in only one colour.

After trying for some time, you still haven't made much progress. So, you decide to write a computer
program which will solve problems of this type, and see if you can get it fast enough so that it will solve
the main puzzle in under two minutes. The hard part is knowing which colour each disk should show;
rearranging them is easy. Your solution must simply state the colour each disk is to show, in order to get

an equal number of disks of each colour.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of a number of
Saturn type data sets. Each set starts with a line containing two integers, giving the number of disks N
and the number of different colours C that make up the solution respectively. This will be followed by N
lines, each containing two integers representing the two colours for a disk. The file will be terminated
with a pair of zeroes for the number of disks and colours. You may assume that N is a multiple of C. Note
that the number of disks per colour in the solution will be N/C, but each colour in the input set may be
present on any number of disks, There will be at most 32 disks.

Output consists of all the solutions for each data set. There must be one solution per line, and there must
be a blank line between the solutions for each data set. A solution is a line containing information about
which colour is shown on each of the disks, starting from the first disk in the input data. For each disk,
write out the colour number shown on the disk. There must be one space between disks.

If there is no solution, write out the line "No solution". If there is more than one solution, the solutions
must be ordered in the usual lexicographical order; the solution 1 1 2 2 comes before 12 1 2 which comes
before 2 1 1 2, There should be no duplicate solutions in a set.

EXAMPLE:

Input Output

10 2 1111313333
1113113333

No solution

DWW R HSOOO
B WO RN R WO

ot
L=
[
19

17 16
14 14
15 16
3 15
16 16
14 16
35

00

NZ programming Contest 10/10/98

Problem U Coin Flipping 150 points

Suppose a set of coins is arranged in a square, with some coins being head up, and others tail up:

H T
= e
HHH

Each coin may be flipped over, and when this happen, the adjacent coins turn too. Thus, if the top left
coin is flipped, the arrangement becomes:

3 =+
HA3m
HHaH

For this problem you have to find the fewest number of flips which will turn all the coins in the same
direction, either heads or tails. For example, the strategy for the square shown is to flip the top right coin
and the bottom centre coin, for a total of two flips, to get a square of all H.

Input will be from standard input (ie the keyboard or a redirected file) and will consist of data for several
coin squares. Each data set starts with a line containing a single integer, giving N (2 = N < 4), the side
length of the square the coins are arranged in. The file will be terminated by a line containing a single 0.

Output for each coin square, which must be written to standard output (the screen), must be a single
number giving the minimum number of coin flips.

EXAMPLE
Input
3
HTT
HTT
TTT

2

HT
TT

4
THHH
HHHH
HHHH
HHHH
0

Output
2
2
6

NZ programming Contest 10/10/98

Problem V Foreign Exchange 50-150 Points

This problem involves the use of a visual programming language like Java. If your program performs
according to the specifications given it will automatically earn 50 points. Up to 100 extra points can be
earned by a well-designed interface the judges will look at the interface and make a decision {(which will

be available after the contest).

When money is transferred from the currency of one country to another, an official exchange rate is used
to calculate the amount in the new currency. The quantity of money in the originating country is
multiplied by this rate to give the quantity of money in the destination country. These exchange rates
change several times during a day, independently in each country. Thus, if money is moved from country
A to country B, and shortly afterwards from country B back to country A, there is a chance that the final
amount will be more than the initial amount, although it will never be very much more (often it will be
less). It is more likely that larger gains can be made when money is moved in a circle around several
countries (for example, from NZ to Australia, Australia to Japan, Japan to the US, US to NZ), if the right
country order is used,

For this problem, you must construct a screen which a money dealer can use to work out how to send
money in order to maximise the gain. The route that the money takes will be described by a "country
transfer list", giving the starting country, the first country the money is transferred to, and so forth back to
the starting country again. Exchange rates for the country transfers will be entered on the screen, and a
"total exchange rate" computed by multiplying these together. The money dealer needs to manipulate the
country list until this "total exchange rate" comes out as much greater than 1 as possible.

Input will be from a file called Exchange.dat and the first line will give the country codes of the countries
the dealer has contact with, all three-letter codes separated by space characters, for example:

NZL AUS JAP USA GBI OES DEU
There will be at most 10 countries. If there are N countries, then N lines will follow giving the exchange
rates. Each exchange rate line will have N numbers on it giving the exchange rate from the "row"
country to the "column" country. For example, with the country list above, the first exchange rate line
will give the exchange rate when the $NZL is converted to the currency in the other countries, so it could
be:

1.0000 0.8557 69.281 0.5061 0.3011 6.2814 0.9852
The second exchange rate line will give the exchange rate when the $AUS is converted to other

currencies, so it could be:
1.1686 1.0000 80.964 0.5914 0.3519 7.3407 1.1513

Each exchange rate will be a decimal number with at least 1 digit in front of the decimal point and
between 1 and 4 decimal places, and will always have 5 digits in it (so the largest possible exchange rate
is 9999.9 and the smallest 0.0001). The "total exchange rate” must be rounded so it conforms to this 5-
digit rule (the "total exchange rate” will always be within the limits given).

Y our program must display the country codes on the screen, and allow the user to select up to 5 different
country codes to form the country transfer list. When the user has indicated that the list is finished, your
program will then display the relevant exchange rates and calculate, and display, the total exchange rate.
The user must then be able to manipulate the country transfer list easily, by deleting countries, adding
countries (up to the 5-country limit), changing the order of countries, and so forth. Your program must
display exchange rates and the total exchange rate when the user requests a new calculation. The user
must be able to stop the program when finished.

There is no output. Only the user interface is required.

