NZ Contest, 1992, Division 1 1

Problem A: Anagram checker

It is often fun to see if rearranging the letters of a name gives an amusing
anagram. For example, the letters of “‘WILLIAM SHAKESPEARE’ rearrange
to form ‘SPEAK REALISM AWHILE.

Write a program that will read in a dictionary and a list of phrases and
determine which words from the dictionary, if any, form anagrams of the given
phrases. Your program must find all sets of words in the dictionary which can
be formed from the letters in each phrase. Do not include the set consisting of
the original words. If no anagram is present, do not write anything, not even a
blank line.

Input will consist of two parts. The first part is the dictionary, the second
part is the set of phrases for which you need to find anagrams. Fach part of the
file will be terminated by a line consisting of a single #. The dictionary will be
in alphabetic order and will contain up to 2000 words, one word per line. The
entire file will be in upper case, and no dictionary word or phrase will contain
more than 20 letters. You cannot assume the language being used is English.

Output will consist of a series of lines. Each line will consist of the original
phrase, a space, an equal sign (=), another space, and the list of words that
together make up an anagram of the original phrase, separated by exactly one
space. These words must appear in alphabetic sequence.

Sample input

ABC
AND

DEF

DXZ

K

KX

LJSRT

LT

PT

PTYYWQ

Y

YWJSRQ

ZD

ZZXY

#

ZZXY ABC DEF
SXZYTWQP KLJ YRTD
ZZXY YWJSRQ PTYYWQ ZZXY
#

Sample output
SXZYTWQP KLJ YRTD = DXZ K LJSRT PTYYWQ

NZ Contest, 1992, Division I

DXZ K LT PT Y YWJSRQ
KX LJSRT PTYYWQ ZD
KX LT PT Y YWJISRQ ZD

SXZYTWQP KLJ YRTD
SXZYTWQP KLJ YRTD
SXZYTWQP KLJ YRTD

NZ Contest, 1992, Division I 3

Problem B: Forests

The saying “You can’t see the wood for the trees” is not only a cliche, but is
also incorrect. The real problem is that you can’t see the trees for the wood. If
you stand in the middle of a “wood” {in NZ terms, a patch of bush), the trees
tend to obscure each other and the number of distinct trees you can actually
see is quite small. This is especially true if the trees are planted in rows and
columns (as in a pine plantation), because they tend to line up. The purpose of
this problem is to find how many distinct trees you can see from an arbitrary
point in a pine plantation (assumed to stretch “for ever”).

You can only see a distinct tree if no part of its trunk is obscured by a
nearer tree—that is if both sides of the trunk can be seen, with a discernible
gap between them and the trunks of all trees closer to you. Also, you can’t
see a tree if it is apparently “too small”. For definiteness, “not too small” and
“discernible gap” will mean that the angle subtended at your eye is greater than
0.01 degrees (you are assumed to use one eye for observing). Thus the two trees
marked O obscure at least the trees marked from the given view point.

Write a program that will determine the number of trees visible under these
assumptions, given the diameter of the frees, and the coordinates of a view-
ing position. Because the grid is infinite, the origin is unimportant, and the
coordinates will be mumbers between 0 and 1.

Input will consist of a series of lines, each line containing three real numbers
of the form O.nn. The first number will be the trunk diameter—all trees will
be assumed to be cylinders of exactly this diameter, with their centres placed
exactly on the points of a rectangular grid with a spacing of one unit. The
next two numbers will be the x and y coordinates of the observer. To avoid
potential problems, say by being too close to a tree, we will guarantee that
diameter < z,y < {1 — diameter). To avoid problems with trees being too
small you may assume that diameter > 0.1. The file will be terminated by a
line consisting of three zeroes,

NZ Contest, 1992, Division I 4

Output will consist of a series of lines, one for each line of the input. Each
line will consist of the number of trees of the given size, visible from the given
position.

Sample input

0.10 0.46 0.38
oo

Sample output
124

NZ Contest, 1992, Division I o

Problem C: Double Time

In 45 BC a standard calendar was adopted by Julius Caesar—each year would
have 365 days, and every fourth year have an extra day-—the 29th of February.
However this calendar was not quite accurate enough to track the true solar
year, and it became noticeable that the onset of the seasons was shifting steadily
through the year. In 1582 Pope Gregory XIII ruled that a new style calendar
should take effect. From then on, century years would only be leap years if they
were divisible by 400. Furthermore the current year needed an adjustment to
realign the calendar with the seasons. This new calendar, and the correction
required, were adopted immediately by Roman Catholic countries, where the
day following Thursday 4 October 1582 was Friday 15 October 1582. The
British and Americans (among others) did not follow suit until 1752, when
Wednesday 2 September was followed by Thursday 14 September. (Russia did
not change until 1918, and Greece waited until 1923.) Thus there was a long
period of time when history was recorded in two different styles.

Write a program that will read in a date, determine which style it is in, and
then convert it to the other style.

Input will consist of a series of lines, each line containing a day and date
(such as Friday 25 December 1992). Dates will be in the range 1 January 1600
to 31 December 2099, although converted dates may lie outside this range. Note
that all names of days and months will be in the style shown, that is the first
letter will be capitalised with the rest lower case. The file will be terminated
by a line containing a single ‘4’

Output will consist of a series of lines, one for each line of the input. Each
line will consist of a date in the other style. Use the format and spacing shown
in the example and described above. Note that there must be exactly one space
between each pair of fields, To distinguish between the styles, dates in the old
style must have an asterisk (“*') immediately after the day of the month (with
no intervening space). Note that this will not apply to the input.

Sample input

Saturday 29 August 1992
Saturday 16 August 1992
Wednesday 19 December 1981
Monday 1 January 1900

#

Sample output

Saturday 16* August 1992
Saturday 29 August 1992
Wednesday 1 January 1992
Monday 20* December 1899

NZ Contest, 1992, Division I 6

Problem D: Power Crisis

During the power crisis in New Zealand this winter (caused by a shortage of rain
and hence low levels in the hydro dams), a contingency scheme was developed to
turn off the power to areas of the country in a systematic, totally fair, manner.
The country was divided up into N regions (Auckland was region number 1, and
Wellington number 13). A number, m, would be picked ‘at random’, and the
power would first be turned off in region 1 (clearly the fairest starting point) and
then in every m’th region after that, wrapping around to 1 after N, and ignoring
regions already turned off. For example, if N = 17 and m = 5, power would be
turned off to the regions in the order:1,6,11,16,5,12,2,9,17,10,4,15,14,3,8,13,7.

The problem is that it is clearly fairest to turn off Wellington last (after all,
that is where the Electricity headquarters are), so for a given N, the ‘random’
number m needs to be carefully chosen so that region 13 is the last region
selected.

Write a program that will read in the number of regions and then determine
the smallest number m that will ensure that Wellington (region 13) can function
while the rest of the country is blacked out.

Input will consist of a series of lines, each line containing the number of
regions (N) with 13 < N < 100. The file will be terminated by a line consisting
of a single 0,

Output will consist of a series of lines, one for each line of the input. Each
line will consist of the number m according to the above scheme.

Sample input
17

0

Sample output
7

NZ Contest, 1992, Division I 7

Problem E: Tree’s a Crowd

Dr William Larch, noted plant psychologist and inventor of the phrase “Think
like a tree—Think Fig” has invented a new classification systemn for trees. This
is a complicated system involving a series of measurements which are then
combined to produce three numbers (in the range [0, 255]) for any given tree.
Thus each tree can be thought of as occupying a point in a 3-dimensional space.
Because of the nature of the process, measurements for a large sample of trees
are likely to be spread fairly uniformly throughout the whole of the available
space. However Dr Larch is convinced that there are relationships to be found
between close neighbours in this space. To test this hypothesis, he needs a
histogram of the numbers of trees that have closest neighbours that lie within
certain distance ranges.

Write a program that will read in the parameters of up to 5000 trees and
determine how many of them have closest neighbours that are less than 1 unit
away, how many with closest neighbours 1 or more but less than 2 units away,
and so on up to those with closest neighbours 9 or more but less than 10
units away. Thus if d; is the distance between the ’th point and its nearest
neighbour(s) and 5 < d; < k, with j and k integers and & == § + 1, then this
point (tree) will contribute 1 to the j’th bin in the histogram (counting from
zero). For example, if there were only two points 1.414 units apart, then the
histogram would be 0, 2, 0, 0, 0, 0, 0, 0, 0, 0.

Input will consist of a series of lines, each line consisting of 3 numbers in the
range 0, 255]. The file will be terminated by a line consisting of three zeroes.

Output will consist of a single line containing the 10 numbers representing
the desired counts, each number right justified in a field of width 4.

Sample input

i0 10 0
10 10 0
10 10 1
10 10 3
10 10 6
10 10 1
10 10 15
10 10 21
10 10 28
10 10 38
10 10 45
000

Sample output
2 1 i 1 1 1 1 1 1 1

NZ Contest, 1992, Division I 8

Problem F: Permalex

Given a string of characters, we can permute the individual characters to make
new strings. If we can impose an ordering on the characters (say alphabetic se-
quence), then the strings themselves can be ordered and any given permutation
can be given a unique number designating its position in that ordering. For
example the string ‘acab’ gives rise to the following 12 distinct permutations:

aabc 1 acab 5 bcaa 9
aacb 2 acba 6 caab 10
abac 3 baac 7 caba 11
abca 4 baca 8 cbaa 12

Thus the string ‘acab’ can be characterised in this sequence as 5.

Write a program that will read in a string and determine its position in
the ordered sequence of permutations of its constituent characters. Note that
numbers of permutations can get very large; however we guarantee that no
string will be given whose position is more than 23! — 1 == 2, 147, 483, 647.

Input will consist of a series of lines, each line containing one string. Each
string will consist of up to 30 lower case letters, not necessarily distinct. The
file will be terminated by a line consisting of a single #£.

Output will consist of a series of lines, one for each line of the input. Each
line will consist of the position of the string in its sequence, right justified in a
field of width 10.

Sample input

bacaa
abc
cha

#

Sample output

15
1

NZ Contest, 1992, Division I 9

Problem G: Recycling

Kerbside recycling has come to New Zealand, and every city from Auckland
to Invercargill has leapt on to the band wagon, The bins come in 5 different
colours—red, orange, yellow, green and blue—and 5 wastes have been identified
for recycling—Plastic, Glass, Aluminium, Steel, and Newspaper. Obviously
there has been no coordination between cities, so each city has allocated wastes
to bins in an arbitrary fashion. Now that the government has solved the minor
problems of today (such as reorganising Health, Welfare and Education), they
are looking around for further challenges. The Minister for Environmental
Doodads wishes to introduce the “Regularisation of Allocation of Solid Waste
to Bin Colour Bill” to Parliament, but in order to do so needs to determine an
allocation of his own. Being a firm believer in democracy (well some of the time
anyway), he surveys all the cities that are using this recycling method. From
these data he wishes to determine the city whose allocation scheme (if imposed
on the rest of the country) would cause the least impact, that is would cause the
smallest number of changes in the allocations of the other cities. Note that the
sizes of the cities is not an issue, after all this is a democracy with the slogan
“One City, One Vote”,

Write a program that will read in a series of allocations of wastes to bins
and determine which city’s allocation scheme should be chosen. Note that there
will always be a clear winner.

Input will consist of a series of blocks. Fach block will consist of a series
of lines and each line will contain a series of allocations in the form shown in
the example. There may be up to 100 cities in a block. Each block will be
terminated by a line starting with ‘e’. The entire file will be terminated by a
line consisting of a single #.

Output will consist of a series of lines, one for each block in the input. Each
line will consist of the number of the city that should be adopted as a national

example,

Sample input

r/P,o/G,y/S,g/A,b/N
r/G,o/P,y/S,g/4,b/N
r/P,y/8,0/G,g/N,b/A
r/P,0/S,y/A,g/G,b/N
e
r/G,o/P,y/S,g/A,b/N
r/P,y/8,0/G,g/N,b/A
r/P,o/S,y/A,8/G,b/N
r/P,0/G,y/S,g/A,b/N
ecclesiastical

#

NZ Contest, 1992, Division I

Sample output
1

10

NZ Contest, 1992, Division I 11

Problem H: All Squares

Geometrically, any square has a unique, well-defined centre point. On a grid
this is only true if the sides of the square are an odd number of points long.
Since any odd number can be written in the form 2k+1, we can characterise
any such square by specifying k, that is we can say that a square whose sides
are of length 2k+1 has size k. Now define a pattern of squares as follows,

1. The largest square is of size k (that is sides are of length 2k+1) and is
centred in a grid of size 1024 (that is the grid sides are of length 2049),

2. The smallest permissible square is of size 1 and the largest is of size 512,
thus 1 < k <512,

3. All squares of size & > 1 have a square of size k div 2 centred on each of
their 4 corners. {Div implies integer division, thus 9 div 2 = 4).

4. The top left corner of the screen has coordinates (0,0), the bottom right
has coordinates (2048, 2048).

Hence, given a value of k, we can draw a unique pattern of squares according
to the above rules. Furthermore any point on the screen will be surrounded by
zero or more squares. (If the point is on the border of a square, it is considered
to be surrounded by that square). Thus if the size of the largest square is given
as 15, then the following pattern would be produced.

i
i

-
i

S

5

o
b1

(]
T

5l [
SeThe Lo

Write a program that will read in a value of k and the coordinates of a
point, and will determine how many squares surround the point,

NZ Contest, 1992, Division I 12

Input will consist of a series of lines. Each line will consist of a value of k
and the coordinates of a point. The file will be terminated by a line consisting

of three zeroes (0 0 0).
Output will consist of a series of lines, one for each line of the input. Each

line will consist of the number of squares containing the specified point, right
justified in a field of width 3.

Sample input

B0 113 941

000

Sample output
5

New Zealand Programming Contest 1992 . Division II — Problem S

Problem S Amazing

One of the apparently intelligent tricks that enthusiastic psychologists persuade mice to perform
is solving a maze. There is still some controversy as to the exact strategies employed by the
mice when engaged in such a task, but it has been claimed that the animal keepers eaves-
dropping on conversations between the mice have heard them say things like “I have finally got
Dr Schmidt trained. Every time I get through the maze he gives me food”.

Thus when autonomous robots were first being built, it was decided that solving such mazes
would be a good test of the ‘intelligence’ built into such machines by their designers. However,
to their chagrin, the first contest was won by a robot that sped through the maze maintaining
contact with the right hand wall at all times. This led to a change in the design of the mazes, and
also to interest in the behaviour of such robots. To test this behaviour the mazes were modified
to become closed boxes with internal walls, The robot was placed in the south west corner and
set off pointing east, The robot then moved through the maze keeping a wall on its right at all
times. If it cannot proceed it will turn left until it can proceed. All turns are exact right angles,
The robot stops when it returns to the starting square. The mazes were always set up so that the
robot could move to at least one other square before returning. The researchers then determined
how many squares were not visited, and how many were visited once, twice, thrice and four
times.. A square is visited if a robot moves into and out of it. Thus for the following maze, the
values (in order) are: 2, 3, 5, 1, 0.

Write a program to simulate the behaviour of such a robot and collect the desired vatues.

Input will be from a file called PROBLEMS,DAT and will consist of a series of maze descript-
ions. Each maze description will start with a line containing two integers representing the size
of the maze (b and w). This will be followed by b lines, each consisting of w characters, either
“0” or “1”. Ones represent closed squares, zeroes represent open squares. Since the maze is
enclosed, the outer wall is not specified. The file will be terminated by a line containing two
ZET0es.

Output will consist of a series of lines, one for each maze. Each line will consist of 5 integers
representing the desired values, each value right justified in a field of width 3.

Example
INPUT
35
01010
01010
00000
00

OUTPUT
2 3 5 1 0

New Zealand Programming Contest 1992 Division I — Problem T

Problem T Minary Encoding

The speed of the standard binary multiplication algorithm depends on the number of non-zero
bits in the multiplier. If we introduce a ‘negative’ bit, then strings of 2 or more ‘1’ bits can be
replaced by a ‘1’ bit, a string of ‘0’ bits and a ‘negative’ bit. If we represent the ‘negative’ bit
by ‘#’, then the string ‘01111’ can be replaced by *1000#°, This string has only two non-zero
bits as opposed to 4 in the original formulation. We call the resultant string a ‘minary’ string.

Write a program that will read in a series of strings, in either binary or minary notation and will
convert them to the other notation. Note that on input, all binary strings will start with ‘0°, and
all minary strings will start with ‘1’, This will not necessarily be true of the output,

Input will be from a file called PROBLEMT.DAT and will consist of a series of lines, each line
consisting of either a binary number (starting with ‘0’) or a minary number (starting with ‘1°).
The file will be terminated by a line consisting of a single #.

Output will consist of a series of lines, one for each line of the input. Each line will consist of a
converted string, i.e. binary numbers are represented in minary, and vice versa.

Example
INPUT

01110
0111101111
10040101004
#

OUTPUT
10040
1000#10004
01110100111

New Zealand Programming Contest 1992 . Division H -~ Problem U

Problem U Keeping Dry

Most of us have faced the problem of walking home in the rain. The problem is simply that we
don't know when we are going to be hit by a falling raindrop — if we knew when the drops
were coming, and were agile enough (and thin enough), we could dodge the rain and avoid
getting wet even in heavy showers. The Engineering Department at Waikikamukau Polytech
believe they have found the solution, however. They have developed a radar detector to spot
raindrops at a height of 5 metres. This information is fed into a computer, which calculates a
strategy for avoiding the drops. To test their strategy, they have developed a one-dimensional
model, for an experimental track of length 10 metres. The person is simulated by a rectangle of
height 2 metres and width 0.5 metres.

Write a program to test their experimental drop-dodging strategy. Your program will read in
successive positions of the ‘person’, together with the positions (x-coordinates) of all the
raindrops at a height of 5 metres above the ground at that timme, and determine how many
raindrops ultimately hit the person, Raindrops fall at a constant rate of 1 metre per second.

P S— ——

| i | | | i 1 |] !
1 2 3 4 5 6 7 8 9 10

Input will be from a file called PROBLEMU.DAT and will consist of a series of scenarios, each
scenario consisting of a series of lines. Each line will give the data at one second intervals. The
first value on a line gives the position of the front of the ‘person’ along the track, the remaining
values give the positions of the new raindrops which have been detected at the 5m height, Two
drops will never have the same height and position. All positions are given to the nearest cm
(0.01 m), Each line is terminated by the number —1.00. You can assume all drops are at the Sm
height at the start of the second when they are first detected, and fall at 1m per second. Each
scenario will be terminated by a line containing the single value 10.00, indicating that the
‘person’ has reached the end of the track. The entire file will be terminated by -1.00.

Output will consist of a series of lines, one for each scenario, each containing the number of
raindrops that hit the ‘person’.

Example

INPUT

0.00 1.05 3.06 5,81 7.93 9.91 -1.00

2.10 1.87 4.21 6.83 8.76 -1.00

1.63 2.44 6.17 8.13 9.45 -1.00

8.25 2.83 3.61 4.77 5.56 7.31 8.11 9.23 9.84 -1.00
10.00

-1.00

OUTPUT
2

New Zealand Programming Conlest 1992 Division I — Problem V

Problem V Power Crisis

During the power crisis in New Zealand this winter (caused by a shortage of rain and hence
low levels in the hydro dams), a contingency scheme was developed to turn off the power to
areas of the country in a systematic, totally fair, manner. The country was divided up into N
regions (Auckland was region number 1, and Wellington number 13). A number, m, would be
picked ‘at random’, and the power would first be turned off in region 1 (clearly the fairest
starting point) and then in every m'th region after that, wrapping around to 1 after N, and
ignoring regions already turned off. For example, if N = 17 and m = 5, power would be turned
off to the regions in the order: 1,6,11,16,5,12,2,9,17,10,4,15,14,3,8,13,7.

The problem is that it is clearly fairest to turn off Wellington last (after all, that is where the
Electricity headquarters are), so for a given N, the ‘random’ number m needs to be carefully
chosen so that region 13 is the last region selected.

Write a program that will read in the number of regions and then determine the smallest number
m that will ensure that Wellington (region 13) can function while the rest of the country is
blacked out.

Input will be from a file called PROBLEMY .DAT and will consist of a series of lines, each line
containing the number of regions (N) with 13 < N < 100. The file will be terminated by a line
consisting of a single 0.

Output will consist of a series of lines, one for each line of the input. Each line will consist of
the number m according to the above scheme,

Example
INPUT
17

0

OUTPUT
7

New Zealand Programming Contest 1992 Division IT Problem W

Problem W Recycling

Kerbside recycling has come to New Zealand, and every city from Auckland to Invercargill has
leapt on to the band wagon. The bins come in 5 different colours — red, orange, yellow, green
and blue -— and 5 wastes have been identified for recycling — Plastic, Glass, Aluminium,
Steel, and Newspaper. Obviously there has been no coordination between cities, so each city
has allocated wastes to bins in an arbitrary fashion. Now that the government has solved the
minor problems of today (such as reorganising Health, Welfare and Education), they are
looking around for further challenges. The Minister for Environmental Doodads wishes to
introduce the “Regularisation of Allocation of Solid Waste to Bin Colour Bill” to Parliament,
but in order to do so needs to determine an allocation of his own. Being a firm believer in
democracy (well some of the time anyway), he surveys all the cities that are using this recycling
method. From these data he wishes to determine the city whose allocation scheme (if imposed
on the rest of the country) would cause the least impact, i.e. would cause the smallest number
of changes in the allocations of the other cities. Note that the sizes of the cities is not an issue,
after all this is a democracy with the slogan “One City, One Vote”,

Write a program that will read in a series of allocations of waste to bins and determine which
city’s allocation scheme should be chosen. Note that there will always be a clear winner.

Input will be from a file called PROBLEMW.DAT and will consist of a series of blocks. Each
block will consist of a series of lines and each line will contain a series of allocations in the
form shown in the example. There may be up to 100 cities in a block. Each block will be
terminated by a line starting with ‘e’. The entire file will be terminated by a line consisting of a
single #,

Output will consist of a series of lines, one for each block in the input. Each line will consist of
the number of the city that should be adopted as a national example.

Example

INPUT
r/P,0/G,vy/S,g/A,b/N
r/G,o/P,v/S,g9/A,b/N
r/P,y/S,0/G,g/N,b/A
r/P,0/S,y/A,g/G,b/N
e
x/G,0/P,y/S,q/A,b/N
r/P,vy/5,0/G,g/N,b/A
r/P,o/S,v/A,g/G,b/N
r/P,0/G,y/S,9/A,b/N
ecclesiastical

#

OUTPUT
1
4

New Zealand Programming Contest 1992 Division I — Problem X

Problem X Bridge Hands

Many games, such as Bridge, involve dealing a standard deck of 52 cards to 4 players, so that
each receives 13 cards. Good players can then play with the hand as it is dealt, but most
ordinary players will need to sort it, firstly by suit, and then by rank within suit. There is no
fixed ranking of the suits for this purpose, but it is useful to alternate the colours, so we will
presume the following ordering: & < ¢ < 4 < v, (Note that because most character sets do not
recognise these symbols, from now on we will use the more conventional C, D, S, H). Within
a suit, Ace is high, so the ordering is2 <3 <4 <5<6<7<8<9<T<J<Q<K <A,

The players are usunally designated North, South, East and West, and they sit at the points of
the compass they name. One player is designated the dealer and she deals one card to each
player starting with the player on her left and proceeding clockwise until she deals the last card
to herself,

N

S

Write a program that will read in a representation of a deck of cards, deal them, sort them, and
then display the 4 sorted hands in the format shown below,

Input will be from a file called PROBLEMX.DAT and will consist of a series of deals. Each
deal will consist of the letter representing the dealer (N, E, S, W) followed by two lines
representing the deck as shown below. The file will be terminated by a line consisting of a
single #.

Output will consist of a series of sets of four lines, one set for each deal. Each set will consist
of four lines displaying the sorted hands, in the order and format shown below. Sets must
follow each other immediately, with no blank line between them.

Example

INPUT

N
CODTCAD8STHTDAHTD2S3D6C6S6D9S4SADT7H2CKHSD3CTS8COH3C3
DQS9SODJIHB8HAS2SKDA4HAS5CT7SIC8DKC5C2CAHQCISTHAHKHODSHT

#

OUTPUT

S: C3 C5 C7 CT CJ D9 DT DJ S3 SK H2 H9 HT
W: C2 C4 CK D4 D5 D6 DQ DA S4 S8 ST SJ HS8
N: Co6 C8 C9 CA D8 S9 SA H4 H5 H6 H7 HJ HA
E: CQ DZ D3 D7 DK S2 S5 S6 S7 SQ H3 HQ HK

New Zealand Programming Contest 1992 Division Il — Problem Y

Problem Y All Squares

Geometrically, any square has a unique, well-defined centre point. On a grid this is only true if
the sides of the square are an odd number of points long. Since any odd number can be written
in the form 2k+1, we can characterise any such square by specifying k, i.e. we can say that a

square whose sides are of length 2k+1 has size k. Now define a pattern of squares as follows.

1 The largest square is of size k (i.. sides are of length 2k+1) and is centred in a grid of size
1024 (i.e. the grid sides are of length 2049),

2 The smallest permissible square is of size 1 and the largest is of size 512, thus 1 <k <512,

3 All squares of size k > 1 have a square of size k div 2 centred on each of their 4 comners.
(Div implies integer division, thus 9 div 2 = 4).

4 The top left corer of the screen has coordinates (0,0), the bottom right has coordinates
(2048, 2048).

Hence, given a value of k, we can draw a unique pattern of squares according to the above
rules, Furthermore any point on the screen will be surrounded by zero or more squares. (If the
point is on the border of a square, it is considered to be surrounded by that square). Thus if the
size of the largest square is given as 15, then the following pattern would be produced.

[B & &
_!D [

L]

(A
=

=1
F1
B
2l 5

h1
]
h]
=T
(]
]
bl

[
[5
=
A
5]

[—h]
&l
Fignil
&l

[
E
[
H
[

hl
E]
b
&l
Gl
]

=
O—1 OB+ [&—f1 Ot

Write a program that will read in a value of k and the coordinates of a point, and will determine
how many squares surround the point.

Input will be from a file called PROBLEMY.DAT and will consist of a series of lines. Each line
will consist of a value of k and the coordinates of a point. The file will be terminated by a line
consisting of three zeroes (0 0 0).

Output will consist of a series of lines, one for each line of the input. Each line will consist of
the number of squares containing the specified point, right justified in a field of width 3.

b1

Example
INPUT

500 113 941
000

OuTPUT
5

New Zealand Programming Contest 1992 . Division I — Problem Z

Problem Z Ticket Pricing

With the current hard times, many impresarios are rethinking their ticket pricing policies. One
startegy is as follows; “Currently I am selling 100 tickets at $30:00 each. If I dropped the price
by 50¢ I would sell 15 more, However, our costs are currently $10.00 per head, and these
would increase by 20c per head. Thus at the moment I sell 100 tickets at $30.00 giving $3000,
less 100 times $10.00 giving a profit of $2000. If I cut the price I would sell 115 tickets at
$29.50 giving $3392.50 less 115 times $10.20 giving a profit of $2219.50. Wow, I wonder
how much further I can go?”. If he extends this example, he could produce a table similar to the
following:

Price($) Ticket Sales Overheads($) Profit(3)
30.00 100 10.00 3000.00
29.50 115 10.20 2219.50
29.00 130 10.40 2418.00
24.50 265 12.20 3259.50 *

24.00 280 12.40 3248.00

This is an example of a break-even chart. It is characterised by 6 numbers: the current selling
price, number of tickets sold and overheads together with the projected changes in these
quantities, The line marked * gives rise to the maximum profit, and the price on that line is
called the optimum selling price.

Write a program that will read in a series of ticket pricing situations and determine for each the
optimum selling price and the expected profit at that price. If there is more than one price that
produces a maximum profit, choose the lowest — you never know, you may sell more tickets
that way. Prices must always be greater than zero (you are not a charity). The mood of the
public is such that price rises are not even contemplated — if the current selling price is better
than anything lower, well so be it. It is possible that different price reductions may produce a
better overall profit (in the above case a price drop of about 47.5 cents is better), but your brain
(and that of your accountant) is not able to handle such subtleties.

Input will be from a file called PROBLEMZ.DAT and will consist of a series of lines, each line
consisting of 6 values as outlined above, Note that all numbers will be strictly positive (> 0)
although the difference in price must be taken as a reduction. The file will be terminated by a
line consisting of 6 zeroes (00000 0).

Qutput will consist of a series of lines, one for each line of the input. Each line will consist of
the optimum ticket price and the expected profit at that price. There must be at least one (1)
space between the two values,

Example

INPUT

30.00 100 10.00 0.50 15 0.20
0 00O0O0O0

OUTPUT
24,50 3259.50

