NEW ZEALAND Programming Contest 1991 Division I
Problem A Bandwidth

Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an ordering
on the elements in V, then the bandwidth of a node v is defined as the maximum distance in
the ordering between v and any node to which it is connected in the graph. The bandwidth of
the ordering is then defined as the maximum of the individual bandwidths. For example,

consider the following graph:
/A /F
"
d !E

C——-D

This can be ordered in many ways, two of which are illustrated below:

| f [ 1 |
A=-B-C=D-E-H~F-C A-B=C~D-G~F-H-E
| ] |

g

For these orderings, the bandwidths of the nodes (in order) are 6, 6, 1, 4, 1, 1, 6, 6 giving an
ordering bandwidth of 6, and 5, 3, 1, 4, 3, 5, 1, 4 giving an ordering bandwidth of 5.

Write a program that will find the ordering of a graph that minimises the bandwidth.

Input will be from a file called PROBLEMA.DAT, and will consist of a series of graphs. Each
graph will appear on a line by itself. The entire file will be terminated by a line consisting of a
single #. For each graph, the input will consist of a series of records separated by ‘;’. Each
record will consist of a node name (a single upper case character in the the range ‘A’ to ‘Z°),
followed by a :” and at least one of its neighbours. The graph will contain no more than 8

nodes,

Output will consist of one line for each graph, listing the ordering of the nodes followed by an
arrow (->) and the bandwidth for that ordering. All items must be separated from their
neighbours by exactly one space. If more than one ordering produces the same bandwidith, then
choose the smallest in lexicographic ordering, i.¢. the one that would appear first in an
alphabetic listing, '

Example

INPUT
A:FB;B:GC;D:GC;F:AGH; E:HD
#

UTPUT
ABCFGDHE -> 3



NEW ZEALAND Programming Contest 1991 Division 1

Problem B The Spot Game

The game of Spot is played on an NxN board as shown below for N = 4. During the game,
alternate players may either place a black counter (spot) in an empty square or remove one from
the board, thus producing a variety of patterns. If a board pattern (or its rotation by 90° or 180°)
is repeated during a game, the player producing that pattern loses and the other player wins,
The game terminates in a draw after 2N moves if no duplicate pattern is produced before then,

Consider the following patterns:

If the first pattern had been produced earlier, then any of the following three patterns (plus one
other not shown) would terminate the game, whereas the last one would not.

Input will be from a file called PROBLEMB.DAT, and will consist of a series of games, each
consisting of the size of the board, N (2 < N < 50) followed, on separate lines, by 2N moves,
whether they are all necessary or not. Each move will consist of the coordinates of a square
(integers in the range 1..N) followed by a blank and a character ‘+ or *-’ indicating the
addition or removal of a spot respectively. You may assume that all moves are legal, i.e. there
will never be an attempt to place a spot on an occupied square, nor to remove a non-existent
spot. The entire file will be terminated by a zero (0).

Qutput will consist of one line for each game indicating which player won and on which move,
or that the game ended in a draw,

Example
INPUT

NN MNP
+ 1+ 4+

I+ o+ o+

O MNRFRFNEFENENNRE N
RN

OUTPUT
Player 2 wins on move 3
Draw



NEW ZEALAND Programming Contest 1991 Division I

Problem C Mouse Clicks

A typical windowing system on a computer will provide a number of icons on the screen as
well as some defined regions. When the mouse button is clicked, the system has to determine
where the cursor is and what is being selected. For this problem we assume that a mouse click
in (or on the border of) a region selects that region, otherwise it selects the closest visible icon
(or icons in the case of a tie).

Consider the following screen:

A U ©) b

A mouse click at ‘a’ will select region A. A mouse click at ‘b’ will select icon 1. A mouse click
at ‘¢’ will select icons 6 and 7. A mouse click at ‘d’ is ambiguous. The ambiguity is resolved
by assuming that one region is in front of another. In the data files, later regions can be
assumed to be in front of earlier regions. Since regions are labelled in order of appearance (see
later) ‘d’ will select C. Note that regions always overlap icons so that obscured icons need not
be considered and that the origin (0,0) is at the top left corner.

Write a program that will read in a file of region and icon definitions followed by a series of
mouse clicks and return the selected items. Coordinates will be given as pairs of integers in the
range 0..499 and you can assume that all icons and regions lie wholly within the screen. Your
program must number all icons (even invisible ones) in the order of arrival starting from 1 and
label regions alphabetically in the order of arrival starting from ‘A’.

Input will be from a file called PROBLEMC.DAT, and will consist of a series of lines, Each
line will identify the type of data: I for icon, R for region and M for mouse click. There will be
no separation between the specification part and the event part, however no icon or region
specifications will follow the first mouse click. An I will be followed by the coordinates of the
centre of the icon, R will be followed by the coordinates of the top left andf bottom right
corners respectively and M will be followed by the coordinates of the cursor at the time of the
click. There will always be at least one visible icon and never more than 25 regions and 50
icons. The entire file will be terminated by a line consisting of a single #.

Please Turn Over



NEW ZEALAND Programming Contest 1991

Division I

Output will consist of one line for each mouse click, containing the selection(s) for that click.
Regions will be identified by their single character identifier, icon numbers will be written out
right justified in a field of width 3.

Example
INPUT
216
22
40
96
36
305
191
387
266
419
170
50
236
403
330

FHE R EZE T T o b S

28
19
150
138
193
13
184
200
63
134
102
50
30
167
83

170

425

370

102

103

140

Please Turn Over



NEW ZEALAND Programming Coniest 1991 Division 1

Problem D Orchard Trees

An Orchardist has planted an orchard in a rectangle with trees uniformly spaced in both
directions. Thus the trees form a rectangular grid and we can consider the trees to have integer
coordinates, The origin of the coordinate system is at the bottom left of the following diagram:

Consider that we now overlay a series of triangles on to this grid. The vertices of the triangle
can have any real coordinates in the range 0.0 to 100.0, thus trees can have coordinates in the
range 1 to 99. Two possible triangles are shown.

Write a program that will determine how many trees are contained within a given triangle. For
the purposes of this problem, you may assume that the trees are of point size, and that any tree
{point) lying exactly on the border of a triangle is considered to be in the triangle.

Input will be from a file called PROBLEMD.DAT, and will consist of a series of lines. Each
line will contain 6 real numbers in the range 0.00 to 100.00 representing the coordinates of a
triangle. The entire file will be terminated by a line containing 6 zeroes (000 0 0 0).

QOutput will consist of one line for each triangle, containing the number of trees for that wiangle
right justified in a field of width 4.

Example
INPUT
1.5 1.5 1.5 6.8 6.8
10.7 6.9 8.5 1.5 14



NEW ZEALAND Programming Contest 1991 Division [
Problem E Student Grants

The Government of Impecunia has decided to discourage tertiary students by making the
payments of tertiary grants a long and time-consuming process, Each student is issued a
student ID card which has a magnetically encoded strip on the back which records the payment
of the student grant. This is initially set to zero. The grant has been set at $40 per year and is
paid to the student on the working day nearest to his birthday. (Impecunian society is still
somewhat medieval and only males continue with tertiary education.) Thus on any given
working day up to 25 students will appear at the nearest office of the Department of Student
Subsidies to collect their grant.

The grant is paid by an Automatic Teller Machine which is driven by a reprogrammed 8085%
chip originally designed to run the state slot machine. The ATM was built in the State Work-
shops and is designed to be difficult to rob. It consists of an interior vault where it holds a large
stock of $1 coins and an output store from which these coins are dispensed. To limit possible
losses it will only move coins from the vault to the output store when that is empty. When the
machine is switched on in the morning, with an empty output store, it immediately moves 1
coin into the output store, When that has been dispensed it will then move 2 coins, then 3, and
so on until it reaches some preset limit k. It then recycles back to 1, then 2 and so on.

The students form a queue at this machine and, in turn, each student inserts his card. The
machine dispenses what it has in its output store and updates the amount paid to that student by
writing the new total on the card. If the student has not received his full grant, he removes his
card and rejoins the queue at the end. If the amount in the store plus what the student has
already received is more than $40, the machine only pays out enough to make the total up to
$40. Since this fact is recorded on the card, it is pointless for the student to continue quening
and he leaves. The amount remaining in the store is then available for the next student,

Write a program that will read in values of N (the number of students, 1 <N < 25) and k (the
limit for that machine, 1 <k < 40) and calculate the order in which the students leave the queue.

Input will be from a file called PROBLEME.DAT., It will consist of a series of lines each
containing a value for N and k as integers. The list will be terminated by two zeroes (0 0).

Qutput will consist of a line for each line of input and will contain the list of students in the
order in which they leave the queue. Students are ordered according to their position in the
queue at the start of the day. All numbers must be right justified in a field of width 3,

Example

INPUT
53

1 3 5 2 4



NEW ZEALAND Programming Contest 1991 Division I

Problem F Gondwanaland Telecom

Gondwanaland Telecom makes charges for calls according to distance and time of day. The
basis of the charging is contained in the following schedule, where the charging step is related

to the distance;

Charging Step Day Rate Evening Rate Night Rate
(distance) Bamto6pm  6pmto 10pm  10pm to 8am
A 0.10 0.06 0.02
B 0.25 0.15 0.05
C 0.53 0.33 0.13
D 0.87 0.47 0.17
E 1.44 0.80 0.30

All charges are in dollars per minute of the call. Calls which straddle a rate boundary are
charged according to the time spent in each section. Thus a call starting at 5:58 pm and
terminating at 6:04 pm will be charged for 2 minutes at the day rate and for 4 minutes at the
evening rate. Calls less than a minute are not recorded and no call may last more than 24 hours.

Write & program that reads call details and calculates the corresponding charges.

Input will be from a file called PROBLEMF.DAT. Each line of data will consist of the charging
step (upper case letter 'A’ .. 'E"), the number called (a string of 7 digits and a hyphen in the
approved format) and the start and end times of the call, all separated by exactly one blank.
Times are recorded as hours and minutes in the 24 hour clock, separated by one blank and with
two digits for each number. Input will be terminated by a line consisting of a single #,

Qutput will consist of the called number, the time the call spent in each of the charge categories,
the charging step and the total cost in the format shown below.

Example
INPUT
A 183-5724 17 58 18 04
#
QUTPUT
g le 22 28 3 33
183-5724 2 4 0 A 0.44



NEW ZEALAND Programming Contest 1991 Division 1

Problem G ID Codes

It is 2084 and the year of Big Brother has finally arrived, albeit a century late. In order to
exercise greater control over its citizens and thereby to counter a chronic breakdown in law and
order, the Government decides on a radical measure — all citizens are to have a tiny
microcomputer surgically implanted in their left wrists, This computer will contains all sorts of
personal information as well as a transmitter which will allow people’s movements to be logged
and monitored by a central computer, (A desirable side effect of this process is that it will
shorten the dole queue for plastic surgeons.)

An essential component of each computer will be a unique identification code, consisting of up
to 50 characters drawn from the 26 lower case letters. The set of characters for any given code
is chosen somewhat haphazardly. The complicated way in which the code is imprinted into the
chip makes it much easier for the manufacturer to produce codes which are rearrangements of
other codes than to produce new codes with a different selection of letters. Thus, once a set of
letters has been chosen all possible codes derivable from it are used before changing the set.

For example, suppose it is decided that a code will contain exactly 3 occurrences of ‘a’, 2 of ‘b
and 1 of ‘c’, then three of the allowable 60 codes under these conditions are:

abaabc

abaach

ababac

These three codes are listed from top to bottom in alphabetic order. Among all codes generated
with this set of characters, these codes appear consecutively in this order.

Write a program to assist in the issuing of these identification codes. Your program will accept
a sequence of no more than 50 lower case letters (which may contain repeated characters) and
print the successor code if one exists or the message ‘No Successor’ if the given code is the last
in the sequence for that set of characters.

Input will be from a file called PROBLEMG.DAT, and will consist of a series of lines each
containing a string representing a code. The entire file will be terminated by a line consisting of
a single #,

Output will consist of one line for each code read containing the successor code or the words
‘No Successor’.

Example
INPUT
abaacb
cbbaa
#

OUTPUT
ababac
No Successor



NEW ZEALAND Programming Conicst 1991 Division I

Problem H Dollars

New Zealand currency consists of $100, $50, $20, $10, and $5 notes and $2, $1, 50c, 20c,
10¢ and 5S¢ coins. Write a program that will determine, for any given amount, in how many
ways that amount may be made up. Changing the order of listing does not increase the count.
Thus 20c may be made up in 4 ways: 1x20c, 2x10c, 10¢+2x5¢c, and 4x5c.

Input will be from a file called PROBLEMH.DAT, and will consist of a series of real numbers
no greater than $50.00 each on a separate line. Each amount will be valid, i.e. will be a multiple
of 5¢. The file will be terminated by a line containing zero (0.00).

Output will consist of a line for each of the amounts in the input, each line consisting of the
amount of money (with two decimal places and right justified in a field of width 5), followed
by the number of ways in which that amount may be made up, right justified in a field of 12

places.

Example
INPUT
0.20
2.00
0.00

OUTPUT
2 11
0.20 4
2.00 293



Problem I T

One way of determining 1 is to use the arctan power series :

2 X X

arctan(x) = x ——+-——"—+..,
0 3 5 7

together with the fact that n/4 = arctan(1). This method is improved considerably by
trigonometric relationships like :

/4 = 4 arctan(1/5) - arctan(1/239)

Use these two formulae to find 7 to 1,000,000 decimal places.



Programming Contest Trial 1991 Division 11

Problem P Scrambling Words

A very simple code, which has been used successfully for ages, is to simply scramble the
words in a document. You may think that this would be easy to decode (surely 'giD rednu
eht esor hsub' can't hide its secret for too long), but this assumes you know what language
it is written in. Choosing an unfamiliar language, and scrambling the words, is quite a
powerful encoding technique. But with the advent of computers, it is easy to automatically
produce all possible unscramblings, and leave it to a human being to sort out what the

correct text is.

Write a program which will read in a line of text, and produce lines which correspond to re-
arrangements of the letters in each word. The first line of your output should give the text,
with the letters in each word reversed (so 'buttons' becomes 'snottub’). The next line
should give the text, with all adjacent pairs of letters swapped (so 'buttons’ becomes
'ubttnos' - any letters left over are left unchanged), The next five lines contains the text,
with all possible rearrangements of three adjacent letters (so 'buttons' becomes ‘ubtotns’,
then ‘tubnots', then 'btutnos', then 'tbuntos’, then 'utbonts’).

Input will be a single line typed in from the keyboard. Words will be separated by one or
more spaces. OQutput will be seven lines, with the letters in each word rearranged as
described above, and the words separated by the same number of blanks as the original

text.

Example
INPUT
giD rednu eht esor hsub

OUTPUT

Dig under the rose bush
igD erndu het sero shbu
igD erdnu het seor shub
Dig dernu the oser ushb
gDi rdenu eth eosr husb
Dgi drenu teh oesr uhsb
iDg edmu hte soer suhb



Programming Contest Trial 1991 Division II

Problem Q Ramanujan Numbers

P
H

Ramanujan was an Indian mathematician who lived in the beginning of this century. He
failed the English examination for University Entrance, and was too poor to buy
mathematics books, but he worked it all out by himself, and started producing important
mathematical theorems of his own! He was particularly interested in number theory, and it
was said that 'every positive integer was his personal friend’. There is a story about the
mathematician Hardy who went to see him once, and who commented that the number of
the cab he had travelled in was an uninteresting number, 1729. “"On the contrary", replied
Ramanujan, "that is a most interesting number; it is the smallest number that can be
expressed as the sum of two cubes in two different ways"

1729=123 + 13 =103 + 93

Write a program which will calculate all the numbers less than 1,000,000 which have this
property (they can be expressed as the sum of the cubes of two positive integers in two
different ways). There are 43 of them. Your program must print them out in increasing
order (the first is 1729) and must take less than 2 minutes to run.

There is no input. Output is a list of 43 numbers in increasing order, one on each line,
right justified in a field of width 7.



Programming Contest Trial 1991 Division 11

Problem R Writing Numbers

When a cheque is written, the amount must be expressed in words as well as digits.to make
it valid. This is a problem for computers, and cheques are usually printed on special
stationary which makes this task easy. Unfortunately, if inflation reamains high, we will
shortly be writing cheques for billions, trillions etc of dollars, and this method will no

longer work.

Write a program which will produce the 'word’ version of any number which is given to it
(up to 21 digits long), correctly formatted. For example, 132450618100000041101 is

written as :

one hundred and thirty two quintillion four hundred and fifty
quadrilliion six hundred and eighteen trillion one hundred billion
forty one thousand one hundred and one.

Input will be a single string of up to 21 digits typed in from the keyboard. Output will be
lines giving the number in words correctly formatted. Make sure no more than seventy
characters are on each line, and no word is broken across two lines.

Example
INPUT
111001200

QUTPUT

one hundred and eleven million one thousand two hundred



NEW ZEALAND Programming Contest 1991 Division 11
Problem S Runs and Flushes

Write a program that will read in a representation of a deck of cards and then determine the
longest flush and the longest run present in the deck. A flush is a series of cards all of the
same suit and a run is a series of cards that follow one another in ascending numerical
sequence, with Ace following King and preceding Two. Thus 42 A5 AK A3 AA forms a

flush of length 5, #9 ¢10 &J AQ vK #A ¢2 forms a run of length 7 and v2 v3 v4 v5 v6
forms both a flush and a run of length 5.

Input will be from a file called PROBLLEMS.DAT, and will consist of a series of decks of
cards, each deck occupying two lines. The input will be terminated by a line consisting of a
single #, Each card will be represented by a two character string — the suit (S, H, D, C) and
the value (A for Ace, 2 — 9 for two through nine, T for ten, J for Jack, Q for Queen and K for
King). There will be 26 cards per line.

Output will consist of one line for each deck and will contain the length of the longest flush
followed by the length of the longest run, each right justified in a field of width 6.

Example

INPUT
CODTCAD8STHTDAHTD2S3D6C6S6DO9SASAD7TH2CKHSD3CTS8CSH3C3
DQOS9SODJH8HAS2SKD4HAS5CT7SJCB8DKC5C2CAHQCISTHOHKHODSHT

#

OUTPUT
6 12
3 2



NEW ZEALAND Programming Contest 1991 Division 11

Problem T Family Concepts

An interesting partour game is known as ‘Family Concepts’. One person thinks of a concept
that defines a class of word and then describes a family as liking instances of the concept and
not liking non-instances of the concept. When a member of the party guesses the concept, she
can assist in describing this mythical family. As more and more participants guess the concept
they too enter the game, and the descriptions usually get more and more outrageous, until every
one has guessed the concept and joined in the fun,

A typical concept is ‘the word contains a double letter’ in which case the family would:

like sheep and cattle but neither pigs nor horses,
eat sweets but not chocolates,

live in a village, but not in a town or city

etc.

Write a program that will determine whether a given word fits this concept, i.e. has a double
fetter, or not.

Input will be from a file called PROBLEMT.DAT, and will consist of a series of lines, each
containing a word consisting of up to 20 lower case letters only, The file will be terminated by
a line consisting of a single #,

Output will consist of a series of lines, one for each line in the input file. Each line will consist
of the word starting in column 1 and then, ending in column 24, one of the words ‘yes’ or ‘no’
depending on whether the word has at least two adjacent letters the same,

Example

INPUT

street

village

chocolates

abcdefghi jklmnopqgrst

OUTPUT

1 24
street yes
village yes
chocolates no
abcdefghijklmnopgrst no



NEW ZEALAND Programming Contest 1991 Division 1

Problem U Russell Soundex Coding

In many situations itis desirable that surnames that sound similar should occur together, for
instance all the variants of Smith (Smit, Smythe) should appear together in a telephone
directory. One system of encoding names to assist in this is known as the Russell Soundex

encoding.
The rules for encoding are as follows:

1. The code consists of the initial letter of the surname followed by 3 digits derived from
subsequent letters in the name.

2 The letters A, E, H, 1, 0,U, W, Y are pseudo-vowels and do not form pari of the code
 the remaining letters are called codable letters. Hyphens, quotes, etc are ignored.

3. Initially all codable letters in the surname (including the first) are encoded according to
the following table, although they may not all be used.

1 B,EF, P,V

2 GG LKSXZ
3 D,T

4 L

3 M, N

6 R

4. The encoding is then scanned for sequences of repeated digits. All but the first of these
are discarded unless the letters they were derived from are separated by a pseudo-vowel.

5. The first three remaining digits are used as the code. If there are less than three digits,
the code is padded with zeroes to the right.

Some examples follow to illustrate the workings of the various rules.

IRVINE = I RVIDNE
161 * 5 * = 1615 coding
133232 rules used
SMITHSON = SMITHSON
g 5 x 3 % 2 %x * = 5532 coding
1 3232325 rules used
LLEWELLYN = LLEWELLYN
L****4**5=L450 coding
1422234272 (5) rules used

Write a program that will accept surnames and determine their codes.
Input will be from a file called PROBLEMU.DAT and will consist of a series of Surnames, one

.

per line. Each surname will be a siring containing no more than 20 characiers. All letters will be
in upper case. The input will be terminated by a line consisting of a single #.

Qutput will consist of a series of lines containing the given surname and the encoding for that
name, in the format shown below.

Example
INPUT

IRVINE
LLEWELLYN
#

OUTPUT

1
IRVINE I615
LLEWELLYN L450




NEW ZEALAND Programming Contest 1991 Division II

Problem V | Caesar Cypher

One of the earliest encrypting systems is attributed to Julius Caesar: if the letter to be encrypted
is the Nth letter in the alphabet, replace it with the (N+K)th where K is some fixed integer
(Caesar used K = 3), We usually treat a space as zero and all arithmetic is then done modulo
27. Thus for K = 1 the message ‘ATTACK AT DAWN’ becomes ‘BUUBDLABUAEBXO’.

Decrypting such a message is trivial since one only needs to try 26 different values of K. This
process is aided by knowledge of the language, since then one can determine when the
decrypted text forms recognisable words. If one does not know the language, then a dictionary
would be necessary.,

Write a program that will read in a diconary and some encrypted text, determine the value of K
that was used, and then decrypt the cyphertext to produce the original message. The original
message contained only letters and spaces and has been encrypted using the above method. The
most suitable value of K will be the one which produces the most matches with the words in

the dictionary.

Input will be from a file called PROBLEMYV.DAT. It will consist of a dictionary and the
encrypted text. The dictionary will consist of no more than 100 lines each containing a word in
upper case characters and not more than 20 characters in length. The dictionary portion will be
terminated by a line consisting of a single #. The encrypted text will follow immediately and
will consist of a single line containing no more than 250 characters. Note that the dictionary
will not necessarily contain all the words in the original text, although it will certainly contain a
large proportion of them. It may also contain words that are not in the original text, The
dictionary will not appear in any particular order.

Output will consist of the decrypted text. Lines should be as long as possible, but not
exceeding 60 characters and no word may cross a line break.

Example
INPUT
THIS
DAWN
THAT
THE
ZORRO
OTHER
AT
THING

#
BUUBDLA PSSPABUAEBXO

QUTPUT
ATTACK ZORRO AT DAWN



NEW ZEALAND Programming Contest 1991 Division 1I

Problem W Gondwanaland Telecom

Gondwanaland Telecom makes charges for calls according to distance and time of day. The
basis of the charging is contained in the following schedule, where the charging step is related

to the distance:

Charging Step Day Rate Evening Rate Night Rate
(distance) 8amto6pm  6pmto 10pm  10pm to §am
A 0.10 0.06 0.02
B 0.25 0.15 0.05
C 0.53 0.33 0.13
D 0.87 0.47 0.17
E 1.44 0.80 0.30

All charges are in dollars per minute of the call. Calls which straddle a rate boundary are
charged according to the time spent in each section. Thus a call starting at 5:58 pm and
terminating at 6:04 pm will be charged for 2 minutes at the day rate and for 4 minutes at the
evening rate. Calls less than a minute are not recorded and no call may last more than 24 hours.

Write a program that reads call details and calculates the corresponding charges.

Input will be from a file called PROBLEMW .DAT. Each line of data will consist of the charging
step (upper case letter ‘A’ .. 'E'), the number called (a string of 7 digits and a hyphen in the
approved format) and the start and end times of the call, all separated by exactly one blank.
Times are recorded as hours and minutes in the 24 hour clock, separated by exactly one space,
with two digits for each number. Input will be terminated by a line consisting of a single #.

Output will be to the screen, although it may be redirected to a file or piped to another program.
It will consist of the called number, the time the call spent in each of the charge categories, the
charging step and the total cost in the format shown below.,

Example
INPUT
A 183-5724 17 58 18 04
#
QUTPUT
10 18 22 28 31 33
183-5724 2 4 0 A 0.44



NEW ZEALAND Programming Contest 1991 Division 1i
Problem X Student Grants

The Government of Impecunia has decided to discourage tertiary students by making the
payments of tertiary grants a long and time-consuming process. Each student is issued a
student ID card which has a magnetically encoded strip on the back which records the payment
of the student grant. This is initially set to zero. The grant has been set at $40 per year and is
paid to the student on the working day nearest to his birthday. (Impecunian society is still
somewhat medieval and only males continue with tertiary education.) Thus on any given
working day up to 25 students will appear at the nearest office of the Department of Student
Subsidies to collect their grant,

The grant is paid by an Automatic Teller Machine which is driven by a reprogrammed 8085%
chip originally designed to run the state slot machine. The ATM was built in the State Work-
shops and is designed to be difficult to rob. It consists of an interior vault where it holds a large
stock of $1 coins and an output store from which these coins are dispensed. To limit possible
losses it will only move coins from the vault to the output store when that is empty. When the
machine is switched on in the morning, with an empty output store, it immediately moves 1
coin into the output store. When that has been dispensed it will then move 2 coins, then 3, and
so on until it reaches some preset limit k. It then recycles back to 1, then 2 and so on.

The students form a queue at this machine and, in turn, each student inserts his card. The
machine dispenses what it has in its output store and updates the amount paid to that student by
writing the new total on the card. If the student has not received his full amount, he removes
his card and rejoins the queue at the back. If the amount in the store plus what the student has
already received comes to more than $40, the machine only pays out enough to make the total
up to $40. Since this fact is recorded on the card, it is pointless for the student to continue
queuing and he leaves. The amount remaining in the store is then available for the next student,

Write a program that will read in values of N (the number of students, 1 <N <25) and k (the
limit for that machine, 1 <k < 40) and calculate the order in which the students leave the queue.

Input will be from a file called PROBLEMX.DAT. It will consist of a series of lines each
containing a value for N and k as integers. The list will be terminated by two zeroes (0 0).

Output will consist of a single line for each sitvation and will contain the list of students in the
order in which they leave the queue. Students are ordered according to their position in the
queue at the start of the day. All numbers must be right justified in a field of width 3.

Example
INPUT
5,3

0 0

OUTPUT:
1 3 5 2 4



NEW ZEALAND Programming Contest 1991 Division 11

Problem Y Amicable Numbers

The factor sum of a number is the sum of all its factors, including 1 but excluding itself. Thus
the factor sumof 8is 1 + 2 + 4 =7, the factor sum of 25 is 1 + 5 = 6. (Note that a factor of a

number divides it exactly). '

We define amicable pairs as numbers where each member of the pair is the factor sum of the
other, ¢.g. 284 and 220.

Factorsumof284is 1 +2+4+71 + 142 =220
Factor sumof 220is 1 +2+4+5+ 10+ 11 +20+22 +44 + 55+ 110 = 284

Write a program that will read in pairs of numbers and determine whether or not they form an
amicable pair.

Input will be from a file called PROBLEMY .DAT. Each line of data will consist of a pair of
integers less than 10,000. Input will be terminated by a line containing a pair of zeroes (0 0).

Qutput will consist of a series of lines, one for each line of the input, containing the numbers
right justified in a field of width S and, starting in colurnn 12, one of the words ‘yes’ or ‘no’,
depending on whether the numbers form an amicable pair or not.

Example

INPUT

284 220
1280 1786
00

OUTPUT
5 10 12
284 220 yes
1280 1786 no



NEW ZEALAND Programming Contest 1991 Division 11

Problem Z String Transformations

Write a program that will accept strings of up to 60 characters and transform them according to
the following rules.

Transform all uppercase letters to the equivalent lower case characters, similarly transform alt
lower case characters to uppercase characters. All blanks are to be transformed to '#' and all
other characters become 7',

Input will be from a file called PROBLEMZ.DAT. Each line of data will consist of a string to
be transformed. Input will be terminated by a line consisting of a single #.

Output will consist of the transformed strings, one per line.
Example
INPUT

This, believe it (or not) is a String//!
SO IS THIS
#

QUTPUT
tHIS?#BELIEVE#IT#?0RINOT?#IS#A#sTRING??2?

soffisf#this



