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ABSTRACT

The design of computer networks and parallel processor configurations
is a topic of increasing importance. Network designs which efficiently
support communications between nodes are crucial for many applica-
tions. Cost and physical limitations generally prevent the nodes in a
network from having more than a fixed number of hardware connec-
tions to other nodes (that is, the nodes must have bounded degree).
This fundamental constraint makes the design problem nontrivial. The
topic of this thesis is an explanation of ways in which group theory can
be used to design bounded-degree communication-efficient networks.
Our methods have yielded a number of network designs that are the
largest known for networks satisfying specified bounds on node degree
and either diameter or broadcast time, for values of these parameters
that are in the range of potential engineering significance.
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Chapter 1

Introduction

This thesis explores uses of group theory in the design of interconnection networks
and multi-processor configurations. The progress of VLSI technology provides the
hardware platform for ever-larger connected systems. Several fundamental design
problems that deal with the topology of networks have emerged. A variety of design
methodologies that address these problems have been studied [ABR, AHK, BE, BDQ,
Wi|. The techniques developed in this thesis provide many of the presently best-
known constructions for these design problems.

A basic constraint in many network design problems is a bound on the maximum
node degree that is imposed by cost and fundamental engineering limitations. That
is, network nodes can have at most a fixed number of communication lines connected
to other nodes. At the same time, efficient network communications are crucial for
many applications. We develop group-theoretic methods for designing large networks
satisfying these practical constraints. Two basic design problems for which we provide

record-breaking constructions are the following.

1. The Degree/Diameter Problem. Provide constructions of the largest possible
networks satisfying bounds on maximum node degree and diameter. The diam-
eter measures the maximum communication delay between any two nodes in a
network. If each node can communicate simultaneously with all of its neigh-
bors then the diameter also gives the maximum time needed to flood a message

throughout the network.

2. The Degree/Broadcast-Time Problem. Provide constructions of the largest pos-
sible networks satisfying bounds on maximum node degree and broadcast time.

In these networks a node can communicate with only one of its neighbors at a



time. Under this restriction the broadcast time is the maximum time needed

for any node to disseminate a message throughout the network.

Generally a network’s diameter is smaller than its broadcast time. This is intu-
itively clear since communications are one to many (for diameter) verses one to one
(for broadcast time). Figure 1.1 shows the distinction between these two concepts in

a simple ring architecture.

¥ iy

Figure 1.1: A comparison between (a) diameter and (b) broadcast time.

There are many advantages of using group theory in the design of connected
systems. For one thing, our approach yields networks with the nice property of node
symmetry. This allows message routing schemes to be node independent. For massive
parallel-processors symmetry is a valuable, natural and useful organizational tool for
meeting the difficult challenges of coordinating large number of computational units.
Many of the developed (or proposed) parallel processors are node symmetric. In
addition, most (!) node symmetric connected systems are (implicitly) based on Cayley
(group) graphs. We will explore some of these group-theoretic descriptions. Other
advantages of networks designed using group theory may include: (1) line symmetry,
(2) hierarchical structure, and/or (3) high fault tolerance.

We view multi-processor configurations and interconnection networks in terms of
graph theory where the vertices represent processors or nodes, and the edges represent
connecting wires or communication lines. The Degree/Diameter problem for both

directed and undirected networks is discussed in the next two chapters, and the



Degree/Broadcast-Time problem is investigated in Chapter 4. The last chapter briefly
describes our algorithm for finding efficient networks based on groups. The remainder

of this chapter reviews some basic concepts of algebra and graph theory.

1.1 Graph Theoretic Preliminaries

For convenience, we review several key concepts of graph theory that are useful in
the sequel. Most of our definitions follow those in [CL]. See also [Ha].

Definition: A graph G' = (V, E) is a finite nonempty set V" of objects called vertices
(the singular is vertex) together with a (possibly empty) set E of unordered pairs of
distinct vertices of G called edges.

Definition: A digraph G = (V, E) is a finite nonempty set V' of vertices together
with a (possibly empty) set E of ordered pairs of distinct vertices of G called arcs.

Definition: The order of a graph (digraph) G = (V, E) is |V, sometimes denoted
by |G|, and the size of this graph is |E|.

Definition: A walk in a graph (digraph) G is a sequence of vertices vgv; . .. v, such
that for all 0 < i < n (v;,v;41) is an edge (arc) in G. The length of the vyv,-walk is

the number n. A path is a walk in which no vertex is repeated.

Definition: A graph G is connected if there is a path between vertices u and v for
all v and v in G. A digraph G is strongly connected if there is a path from vertex

u to vertex v for all v and v in G.

In this thesis we are concerned only with connected graphs and strongly connected
digraphs. Henceforth, we only use the terms connected and strongly connected when

emphasis is needed.



Definition: In a graph, the degree of a vertex v, denoted by deg(v), is the number
of edges incident to v. For digraphs, the out-degree of a vertex v is the number of
arcs incident from v and the in-degree of vertex v is the number of arcs incident to

V.

Definition: The diameter of a connected graph (strongly connected digraph) G =
(V, E) is the least integer D such that for all vertices u and v in G' we have d(u,v) < D,
where d(u,v) denotes the distance from u to v in G, that is, the length of a shortest

uv-path.

Definition: A (A, D) graph is a graph G = (V, E) such that: (1) deg(v) < A for
all vertices v in V' and (2) graph G has diameter less than or equal to D. A (A, D)
digraph is similarly defined; in this case, all in-degrees and out-degrees must be
bounded by A. A (A, D) graph (digraph) is optimal if it has the maximum order
possible for (A, D) graphs (digraphs).

In Chapter 4 we will similarly define (A, T) graphs for another graph invariant,
the broadcast time 7.
Definition: A graph (digraph) G = (V, E) is vertex symmetric (or vertex transi-
tive) if for each pair of vertices u and v in G there exist a bijection # : V' — V such
that: (1) #(u) = v and (2) (a,b) € E implies (0(a),0(b)) € E, that is, 6 preserves
adjacencies. In other words, there is an automorphism of G taking u to v.

For an extensive annotated bibliography on the subject of symmetries in graphs
see [FK].

1.2 Algebraic Preliminaries

This section presents the necessary background in algebra. The books [Fr, Ro, Sc]
are standard references for the subject.
Definition: A group (G, *) is a set G, together with a binary operation * on G,

such that the following axioms are satisfied:

1. The binary operation x is associative. That is, for all elements z,y, and z in G

we have (z *y) x 2z = x % (y * 2).

2. There is an element e in GG such that e x x = 2 * e = x for all elements z in G.

(This element e is an identity element for x on G.)



3. For each z in G, there is an element 2! in G with the property that 2 ! 2z =

z*xx ' =e. (The element 27! is an inverse of x with respect to x.)

A group G is abelian if it is also commutative, that is x * y = y * x for all elements

x and y in G.

Definition: An element x of a group G with identity e has order r > 0 if 2" = ¢
and no smaller positive power of x is the identity. Further, if » = 2 then the element

x is an involution. The group G is cyclic if some element (generator) has order |G|.

Definition: A group (H, *) is a subgroup of a group (G, %) if H C G and the binary
operator x for H is induced from G. The index of a subgroup H of a finite group G
is |G|/|H|.

Definition: A (commutative) ring (R, +, %) is a set R together with two binary
operations + and *, which we call addition and multiplication, defined on R such

that the following axioms are satisfied:
1. (R,+) is an abelian group.
2. Multiplication is associative (and commutative).

3. For all elements z,y, and z in R, we have z(y+z2) = (zy) + (zz) and (x +y)z =
(22) + (y2).

A multiplicative identity in a ring is an unity element.

Definition: Let R be a ring with unity. An element v in R is a unit of R if it has
a multiplicative inverse in R. A field (F, +, %) is a commutative ring with unity and

every non-identity element, F'\ {e}, of F' is a unit.

Definition: The units of a ring R form the group of units of R under multiplication
and we denote this group by U(R). If a generator exists for the group U(R) then it

is called a primitive root.

The network constructions described in this thesis use only a few types of groups.
These finite groups are next described.
Definition: Given a finite field, I = GF(p’), the n x n nonsingular (invertible)

matrices form the general linear group, GL[n, F], under matrix multiplication.



Definition: The symmetric group S5, is the collection of permutations of the set

{0,1,...,n—1} where group multiplication is defined by composition of permutations.

The next group construction is useful in designing efficient networks.
Definition: Let (A,-) and (B, o) be groups, and suppose there exists a homomor-
phism o : A — Aut(B) of A into the group of automorphisms of B. The set of all
ordered pairs {(a,b) : a € A,b € B} can be made into a group if we define products
by

(a1,b1) * (ag, by) = (a1 - ag, by o (0(ay))(be))

This group is called the semi-direct product of A and B, relative to the homomor-
phism o, and denoted A x, B.

Note that o(a), for all a in A, is a bijective function from B into itself and if o is
the trivial homomorphism then we obtain the usual direct (Cartesian) product.

The following definition is the key to building graphs from groups. This construc-
tion was first given by Cayley in 1878 in [Cal] and [Ca2] (also see [Ko, CL, Ha, Wh]).
Definition: Given a group A and a set S of generators for A the Cayley digraph
G = (V, E), denoted by < A, S >, is constructed as follows: (1) the elements of the
group A are the vertices V' of digraph G and (2) an edge (a,b) is in E if and only if
ag = b for some generator ¢ in S. If we also require S = SUS™! then G is a Cayley
graph.



Chapter 2

Efficient Undirected Networks

Only a few undirected networks of maximum degree A and diameter D are known to
be optimal (that is, largest possible number of vertices). One is the Petersen graph,
Figure 2.1, with A = 3, D = 2 and order 10. Another is the Hoffman—Singleton graph
with A = 7, D = 2 and order 50, see [HS] and [CL]. Three other optimal constructions
of (3,3), (4,2), and (5, 2) graphs with orders 20, 15, and 24, respectively, are described
in [El]. The tree bound given in Section 2.2 provides (essentially) the only known
upper bound on the order of optimal (A, D) graphs This bound is probably not tight.
This chapter addresses the following design problem. We examine several con-
struction techniques for solving this problem.
e The Degree/Diameter Problem (undirected case). Provide constructions of the

largest possible (A, D) graphs.

Group theory plays an important role in our constructions. For an overview of
our results see Table 2.1. This table shows the orders of the largest graphs presently
known for given values of degree and diameter. The entries in italics correspond to
our Cayley graphs constructions employing semi-direct product groups (Section 3.1)
and the bold entries indicate our Cayley graphs based on general linear groups (see
[9a]). Some of the constructions for the degree four entries were first described in
[CCD]. For references concerning the other entries in Table 2.1, the reader should

consult the up-to-date report available from J-C. Bermond [Be].



Figure 2.1: The Petersen graph.

The next section describes some advantages of Cayley graphs as designs for inter-
connection networks. Section 2.2 presents some upper bounds for the degree/diameter
problem and, at the same time, indicates why we explored the groups listed in the
introduction (semi-direct product groups, general linear groups, etc.). The last two

sections give construction methods for finding large (A, D) graphs.

2.1 Advantages of Cayley Graphs

There are many properties of Cayley graphs that are useful. The most visible property
possessed by Cayley graphs is that every Cayley graph is regular, all vertices have
the same degree.

Many graph properties of a Cayley graph are easily inferred from its group gen-
erators. Walks in a Cayley graph < A,S > correspond to words over the alphabet
S applied to some group element x by group multiplication. A path from vertex
x to vertex y corresponds (by translation) to a path from vertex e to vertex x ly.
Any word of generators equivalent to the identity element e describes closed walks or
circuits in the graph. A closed path is a cycle. It is conjectured that every Cayley
graph < A, S > is Hamiltonian, that is, there exists a cycle containing all the ver-
tices of the graph (i.e., a word over S equivalent to identity element e of length |A]
yielding a cycle) [Mal].

We are mainly interested in the vertex symmetry property of Cayley graphs.

Cayley graphs provide a vertex symmetric structure for any defining group, see [GT]
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and [Sa]. From the engineer’s point of view, an advantage of vertex symmetry in a
network is that the same routing algorithms can be used by each node. In terms of
hardware, vertex symmetric architectures are often cheaper to build since the same
processor can be replicated throughout. That Cayley graphs are vertex symmetric

has a fairly short and elegant proof, coming up next.

Theorem 1 FEvery Cayley graph < A, S > is verter symmetric.
Proof. Let a and b be any two elements from the group A. We must show there is

an adjacency-preserving automorphism ¢ of A mapping a to b. Define ¢(z) = (ba 1)z
for all x € A. Clearly ¢ maps a to b since

¢(a) = (ba™")a = b(a""a) = be = b (associativity).
The map ¢ is injective since if ¢(x) = ¢(y) then (ba ')z = (ba~')y and so
= (ba™") " (ba ")z = (ba") " (ba™")y = y (inverses).

Similarly ¢ is surjective since for any z in A, ¢(ab 'z) = (ba 1) (ab 'z) = z. So ¢ is

a bijection. Finally, ¢ maps vertices adjacent to a to vertices adjacent to b.

d(ag;) = (ba *)(ag;) = bg; for all g; € S

O

Note that the above proof uses all of the group axioms. This indicates that
other Cayley-like graphs (e.g., based on semi-groups or monoids) might not have
enough structure for vertex symmetry. For instance, a commutative monoid (set
with an associative binary operator and an identity element) may yield a digraph
that is not even regular. A concrete example is the < ({0, 1,2}, max), {2} > monoid
digraph. Here, ({0,1,2}, maz) is the monoid with mazimum as the binary operator

over {0,1,2} and the integer 2 is the generator for this digraph.



Can every vertex symmetric graph can be represented as a Cayley graph? The
answer is no. The Petersen graph, Figure 2.1, is vertex symmetric but is not a Cayley
graph. However, from the work of Sabidussi every vertex symmetric graph can be
represented as a Cayley coset graph [Sa]. We will give the formal definition of Cayley
coset graphs when they are used in the next chapter.

Similar to vertex symmetric graphs, edge symmetric graphs are desirable. That
is, there exists a graph automorphism mapping any edge onto any other edge. This
property guarantees that the load over communication links is distributed [AK2].
Akers and Krishnamurthy show that Cayley graphs are edge symmetric in certain
instances [AK3]. Recall that every finite group can be represented as a subgroup of

some permutation group S,.

Theorem 2 Let G be a Cayley graph defined on S,, by a set of generators S. Then
G s edge symmetric if and only if for every pair of generators g; and g; there exists
a permutation of the n symbols that maps the set of generators into themselves, and,

in particular, maps g; into g;.

In addition to being symmetric, some Cayley graphs possess a recursive decom-
position property. For instance, the well-known n-cubes @, (hypercubes) consist of

2 copies of (n — 1)-cubes. Also the n-pancake graph, the Cayley graph
<Su (00 2 ) (0 ) (W s s )

can be broken down into n copies of (n—1)-pancake graphs. In [AK3] a Cayley graph
< A {g1,99,.-.,94} > is defined to be hierarchical if the generators can be ordered
g1, 92, - - -, ga, so that for each ¢, 1 < i < d, g; is outside the subgroup generated by
the first © — 1 generators. All Cayley graphs which are hierarchical have a recursive
decomposition structure. Any hierarchical graph also has high fault tolerance (i.e.,
a graph that requires a large number of vertices to be removed before the graph
becomes disconnected) [AK1].



Table 2.2: The Moore bound for the undirected (A, D) problem.

A\D[ 2] 3] 4 5 6 7 8
3| 10 22| 46| 94 190 382 766
4 17| 53| 161 | 485| 1457 4373 13121
5| 26106 | 426 | 1706 | 6826| 27306 | 109226
6| 37|187| 937 | 4687 | 23437 | 117187 | 585937
7| 50 [ 302 | 1814 | 10886 | 65318 | 391910 | 2351462
8 | 65| 457 | 3201 | 22409 | 156865 | 1098057 | 7686401
9 | 82658 | 5266 | 42130 | 337042 | 2696338 | 21570706
10 | 101 | 911 | 8201 | 73811 | 664301 | 5978711 | 53808401

2.2 The Moore and Abelian Bounds

The tree or Moore bound m(A, D) on the order of the largest possible (A, D) graphs

is easily calculated as follows.

m(A,D) = 1+A+AA-1)+---A(A-1)P7!
A(A-1)P -2
A—2

To satisfy the reader’s curiosity, a few values of m(A, D) are calculated in Table 2.2.
It is interesting to compare these numbers with the orders of our constructions given
in Table 2.1. (Best known (A, D) graphs are quite smaller than the current upper
bounds.)

What groups yield the largest (A, D) graphs? Oddly, abelian groups, which are
the easiest to use and most well-known, are the ones to avoid. The use of abelian
groups for Cayley graphs imposes a stronger limit than the Moore bound on the
maximum order of a (A, D) graph. The only place that these two bounds coincide
is the (3,2) graph bound (achieved by the Petersen graph with 10 vertices). Given

an abelian group with A generators the maximum order of a Cayley digraph G with

S Ny

Comparing these abelian Moore bounds given in Table 2.3 for small A and D with

diameter D is

our current list of largest graphs, Table 2.1, we see that none of these bounds is as large



Table 2.3: An abelian Moore bound for directed Cayley graphs.

A\D[ 2] 3] 4] 5] 6 7 8
310 20 35| 56| 84| 120 165
A 15| 35| 70| 126| 210 330 495
5 21| 56| 126| 252 | 462 | 792 | 1287
6| 28| 84| 210 | 462 924 | 1716 | 3003
7136120 330 7921716 | 3432 | 6435
8| 45 [ 165 | 495 | 1287 | 3003 | 6435 | 12870
9 | 55 [ 220 | 715 | 2002 | 5005 | 11440 | 24310
10 || 66 | 286 | 1001 | 3003 | 8008 | 19448 | 43758

as any of the currently known (A, D) graph constructions, with 3 exceptions indicated
in bold. A nonabelian group can provide better results, since for two generators g;
and g the products g;¢g» and g2g; may be distinct. Thus it is theoretically possible to
come closer to the Moore bound when nonabelian groups are used as the underlying

algebraic structure.

2.3 Cayley Graph Constructions

This section describes our main group construction for finding large (A, D) Cayley
graphs. These graphs, listed in Appendix A, were created using semi-direct products
of groups.

Given two cyclic groups, Z,, and Z,, one may form a semi-direct product group
G = Zy, X4 Zy by defining an appropriate homomorphism o : Z,, — Aut(Z,). View
Z, as a commutative ring with a group of units U(Z,,). Let an element r be chosen
from U(Z,). Define a mapping o’(k) = (r¢)F = r* where c is chosen so that r°™ = 1.

The group G has its multiplication table defined by
(ag, a1) *4 (bo, b1) = (ag + bg mod m, ay + o'(ag) - by mod n).

We see that (o(a))(b) = o'(a)-b, for a in Z,, and b in Z,, is a suitable homomorphism.
Note that (0,0) is the group identity for a semi-direct product group constructed as
above and that (—ag, o'(ap)™ " - (—ay)) = (—ag, o'(—ap) - (—ay)) is the inverse of
element (ag, a;).

An example of a the above construction is given in Figure 2.2. This is a (4, 2)



Cayley graph with 12 vertices based on the group Z, x, Zg. A vertex of the graph
is labeled 6a + b if the corresponding group element is [a b], a € Zy and b € Z.
The use of the first generator (and inverse), second generator, and last generator is
represented by bold, hashed, and normal edges, respectively.

(A, D) | Order | Group Generators | Inverses | cenceator
4,2) | 12 [ Zox,Zs|[01] [05] 6
o(1)=5 |[10] 2
[13] 2

Figure 2.2: A (4,2) Cayley graph with 12 vertices.



Our search for constructions showed empirically that if ged(m, |U(Z,)|) = ged(m,
$(n)) is large, then the more likely one finds larger (A, D) graphs. Recall that if n is
a prime then |U(Z,)| = n — 1. In this situation, we get several of the entries listed in
the appendices. Further, if both m and n are prime (that is, using two fields) then we

use a similar semi-direct product construction. See Section 3.4.2 for more specifics.

2.4 Other Undirected Network Constructions

This section reviews other current techniques for building interconnection networks
which may or may not use Cayley graphs. The first few constructions are special
cases of our general Cayley graph approach. These all use group theory in the design
of symmetric interconnection networks. The last subsection describes a very recent
method for creating large (A, D) graphs that is competitive with our group-theoretic
approach.

2.4.1 Generalized cube-connected cycles

The first systematic use of Cayley graphs for the degree/diameter problem was due to
Carlsson, Cruthirds, Sexton and Wright [CCSW]. The cube-connected cycles given
in [PV] were shown to be Cayley graphs by these authors. These graphs are a special
case of their generalized cube-connected cycles, a special class of Cayley graphs.

The cube-connected cycles, n-CCC, are similar to the n-cubes. The vertices are
given as pairs (4, V') where i ranges between 0 and n — 1 and V' is a bit vector of
length n. For edges, vertex (i,V') is connected to vertex (i', V') if and only if i = ¢
and V' differs in only the ¢*" bit from V, or |i —¢'| = 1 and V = V'. See Figure 2.3
for an example where n = 3.

Showing that a n-CCC is a Cayley graph follows from the algebraic specification
of generalized cube-connected cycles, GCC. The groups used for these Cayley graphs
are semi-direct products. Recalling the definition of semi-direct product groups, let
A=17, and B = (Zg)k. The homomorphism ¢ will be defined in terms of linear
transformations of the elements, viewed as bit vectors, of B. Let matrix M be some
k x k matrix over the field GF(2) such that M™ = I (identity matrix). We can now

define group multiplication in Z,, X, (ZQ)k as

(i07%) * (Zh‘/l) = (ZU + il;% + Mlo‘/l)



Figure 2.3: The 3-CCC presented as a Cayley graph.

We have all the ingredients needed to define GCCs; see [CCSW] for more information.

Definition: Let G(m, k, M) be the group described above using Zy, X ,(Z»)" and a k x
k matrix M (of 0’s and 1’s), where M™ is the identity matrix. Then the Generalized

Cube-connected Cycles is the connected component containing (0, (0,...,0)) of
any Cayley graph < G(m, k, M), S >.

The n-CCC is formed with m =k = n,

0 - 0 1
10 0
01 0

M =

.0 -
(00 0 -~ 10

and generators S = {(1, (0,...,0)), (n —1,(0,...,0)),(0,(1,0,...,0))}.
Carlsson et. al. comment that several of their constructed graphs are competitive
with the best known (A, D) graphs, A < 6 [CCSW]. The results of this early paper
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have been surpassed by new developments and/or more computer time.

2.4.2 Star graphs

A relatively new type of interconnection network is given by Akers and krishnamurthy
[AK2, AK3]. These star graphs described in this section do not give any of the largest
(A, D) graphs, but they have nice algebraic structure and share or improve upon many
of the properties that the n-cubes have.

Before describing how star graphs are constructed, we present Akers and Krish-
namurhy’s definition of Cayley graphs from transposition trees. A transposition
is a permutation that leaves all the symbols but two fixed, and maps each of these
onto the other. A tree is any connected graph without cycles. Now given a tree with
n vertices labeled {0,1,...,n — 1}, we can view the edges as transpositions in the
group S,,. These transpositions are the generators for some Cayley graph.

Many nice properties hold for a Cayley graph, G, built from some transposition

tree.
1. G has maximum degree A =n — 1.
2. G has n! vertices.
3. GG has maximal fault tolerance, n — 1.
4. @ is bipartite (see [CL] for definition).
5. G is a hierarchical Cayley graph.

These hierarchical Cayley graphs can be represented as n identical copies of a Cayley
graph of a transposition tree of order n — 1. Further, many properties of the Cayley
graph with n! vertices can be inferred by analyzing the transposition tree with n
vertices. If the tree with n vertices is a star, all but one vertex has degree 1, then
the resulting Cayley graph is called a n-star graph.

The diameter of the n-star graph is L@J, see [AK3]. This compares favorably
with the n-cubes (see Table 2.4). Routing algorithms for the n-star may be found in

the references [AK2] and [AK3].



Table 2.4: A comparison between n-star graphs and n-cubes.

n-star graph n-cube

Degree | Diameter | Order || Degree | Diameter | Order
3 4 24 4 4 16
4 6 120 5 5 32
5 7 720 6 6 64
6 9 5040 7 7 128
7 10 | 40320 8 8 256
8 12 | 362880 9 9 512
10 10 | 1024

11 11 ] 2048

12 12 | 4096

2.4.3 Connections between two cycles

Motivated by the structure of the Petersen graph, Figure 2.1, Bar-Yehuda and Etzion
developed a method that takes two cycles of the same length n as a backbone for
building large (A, D) graphs [BE]. A periodic scheme of length s where s|n was used
to connect the two cycles with cross edges. More formally, a graph G = (V, E) with
degree A and order 2n is created with a set F' of A — 2 functions on the integers
0,1,...,s — 1. For each function F;, 1 <i < A — 2, it is required that

F;(0) mod s, F;(1) +1mod s, F;(2)+2mods,..., Fi(s—1)+(s—1) mod s

is a permutation of the integers 0,1,...,s — 1. The vertices of GG are labeled V =
{(,0) |0 <i<n—1}U{(i,1) | 0 <i <n—1}. The edge set E contains the subsets
E, 0<i<A-2

Ey = {[(4),(((+ 1) modn,j)]|[0<i<n—1,j=0,1}
E; = {[(7,0),((j + F;(j mod s)) modn,1)] |0<j<n—1}for1 <i<A—-2.

The edges Ey form the two cycles of length n while the edges E; form a period of
length s joining the (z,0) vertices to the (y, 1) vertices.

In checking the diameter of these connected-two-cycle graphs, it suffices to check
each distance from 2s vertices to all other vertices. Computer searches where used

to find the diameter of these graphs. A small example of this technique is their (7, 3)



graph with order 136 that is presented in Table 2.5.

Table 2.5: A (7,3) graph with order 136 formed by connections between 2 cycles.

Fi(3) | Fy(i) | F3(i) | Fu(i) | F5(4)
65 48 0 29 5)
37 40 12 17 1
57 4 48 45 61
65 40 20 53 13

W DN = O .




Chapter 3

Efficient Directed Networks

Related to the undirected network problem of the last chapter is a directed network
problem. In this instance, communication lines can transmit messages in only one
direction. In terms of graph theory, this problem can be stated as finding large
digraphs that have diameter D while the in-degree and out-degree of each vertex is
less than or equal to A.

e The Degree/Diameter Problem (directed case). Provide constructions of the

largest possible (A, D) digraphs.
There are several constructions that share the same largest orders for (A, D) di-

graphs [K2, I, FMY]. Thus it may be reasonable to conjecture that these construc-
tions are optimal. In this chapter we address the specific problem of finding efficient
vertex-symmetric (A, D) digraphs. Cayley digraphs and Cayley coset digraphs (ex-
plained later) are useful for the symmetric case. This chapter will present some of

our vertex-symmetric results along with the other classic approaches.

3.1 Large Vertex Symmetric (A, D) Digraphs

This section will discuss the current status on the largest known vertex symmetric
(A, D) digraphs. Table 3.1 summarizes the best known maximum orders.

Appendix B contains Cayley digraph descriptions for some of these newly discov-
ered largest-known digraphs. Table B.1 lists our (A, D) digraphs built from general
linear groups (bold in Table 3.1) and Table B.2 lists our (A, D) digraphs built from
semi-direct products of groups (italics in Table 3.1). Our class of largest known
diameter two digraphs (Section 3.4.2) is also based on semi-direct products of groups.

Two largest known digraphs corresponding to the (2,6) and (2,7) entries in Table

20
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3.1 were found by Comellas and Fiol [Co]. The (2,7) digraph is the line digraph of the
edge-symmetric (2,6) Cayley digraph < S, {( . ) : ( O A )} >.
Construction techniques for the other entries in Table 3.1 will be discussed in the
next two sections.
Figure 3.1 shows one of the largest known digraphs that was built from general
linear groups. This is our (2,4) Cayley digraph with 20 vertices formed by taking a
0 4

subgroup of GL(2,5) generated by the two generators [ - } and [ > ] The arcs
of this digraph can be partitioned into two disjoint Hamiltonian cycles.

Figure 3.1: Largest known vertex symmetric (2,4) digraph.

Figure 3.2 shows one of the largest known digraphs that was built from semi-direct

product of groups. This is our (2,5) Cayley digraph with 27 vertices.

3.2 Cayley Coset Constructions

The main emphasis of this chapter is the use of group theory (cosets) to specify large

symmetric digraphs. The digraphs mentioned in this section are the results of Faber



Figure 3.2: Largest known vertex symmetric (2,5) digraph.

and Moore [FM]. These Cayley coset digraphs have the largest known orders for the
majority of (A, D) digraph values exhibited in Table 3.1. Cayley coset digraphs are

defined as follows.



Definition: Let G be a group, H a subgroup of G, and S a subset of G such that:
1. S is a set of distinct non-identity coset representatives of H in G.
2. HSH C SH (for well-defined arcs).

then we can form the Cayley coset digraph < G, S, H > with vertices {gH | g € G}
and an arc (g1 H, goH) whenever goH = g;0H for some ¢ € S.

A couple of remarks should be made about the above definition. The first condition
implies that G = < SU H > (i.e., G is generated by S and H), and the second
condition implies that the arcs are well-defined.

The proof that Cayley coset digraphs are vertex symmetric is similar to the argu-
ment given for Theorem 1. This important property of Cayley coset digraphs is the
heart of the next result.

Theorem 3 For each A > D, there exists a vertex symmetric digraph with degree

A, diameter D, and % vertices.

Faber and Moore’s construction is now presented [FM]. Given the symmetric
group Sa.1, let the subgroup H C Say; be the set of elements {h | h € Sa11, h(i) =
i for all 0 < i < D—1}. The set of generators (or coset representatives) S = {g; | 1 <
i < A} is chosen for each i so that

9:(0) = i

—1 forl1<j <y
gi(j):{j_ Or,_‘?_l}iflgjgz)_1
J fOI"]>7,

We can denote the cosets of H in Say1 by the k-tuples (ag, a1,...,ap 1) with all a;
distinct, since each coset aH is completely determined by its action on {0,1,..., D —
1}. Thus, the total number of cosets is %
most D steps using the generators as needed (finding in order {D — 1,D —2,...,0}

. Given any (ag,ay,...,ap 1) in at

by applying appropriate generators from S) the new representative becomes our coset
identity (0,1,...,D — 1). Hence, the diameter is D as claimed.



3.3 Composition of Cayley Coset Graphs

In order to find large symmetric digraphs with the diameter larger than the degree,
Comellas and Fiol in [CF] have developed a method for constructing specific families
of (A, D) digraphs using the Cayley coset digraphs described in Section 3.2. Their
constructions require digraphs satisfying the following property.

Definition: A digraph G = (V, E) is k-reachable if there exist a uv-path of length
k for all u,v € V.

Faber and Moore’s (A, D) digraphs are D-reachable for D > 3 so the new version
of Conway and Guy’s theorem, [CG], given by Comellas and Fiol can be applied.

Theorem 4 If there is a verter-symmetric A-reqular k-reachable digraph with N
vertices then, for all n and m = n, there exists a vertex-symmetric A-reqular digraph

with mN™ vertices and diameter kn +m — 1.

We present here only the construction which yields this theorem. Let G = (V| E) be
a vertex-symmetric (A, D) digraph. A new digraph G’ = (V', E’) is built as follows.
The vertex set V' is this set of (n + 1)-tuples, («, po, p1,-..,Pn_1) With a in Z,, and
each p; from V. The arc set is determined by (c, po, ..., Da,--.,Pn_1) being adjacent
to (a+1,po,.-.,Ga,--.,Pn 1) Whenever p, is adjacent to ¢, in the digraph G. In this
construction the indices of the vertices p; are always considered modulo n.

Using this theorem, Comellas and Fiol showed that the (A, 3) digraphs, A > 3,

can be used to construct large vertex symmetric digraphs. These are the (A,7)

N2 . . 1\ 3
digraphs with order 2 - (Eﬁf;;,) and the (A, 11) digraphs with order 3 - (Eﬁf;;.) .

Further, using the (A, 4) digraphs, A > 4, they obtain the (A, 9) digraphs with order

2 ()"

Another technique that not only increases the diameter but increases the degree

is given in [CF]. This method is a corollary of the next theorem.



Theorem 5 If there is a verter-symmetric A-reqular k-reachable digraph with N
vertices then, for all n,m,b € Z* there exists a vertex-symmetric (A + 1)-reqular
digraph with mN™ vertices and diameter kn + d with d being the diameter of a fized
2-step digraph with m vertices and steps 1 and b, see [FYAV].

The design of these digraphs is similar to the previous theorem. With this construc-

tion vertex-symmetric (A, 10) digraphs with order 3 - (ﬁ)g can be created from
(A —1,3) Cayley coset digraphs.

The digraphs in this section and Section 3.2 give the majority of the entries listed
in Table 3.1. However, the technique presented in this section is only useful for
building large symmetric (A, D) digraphs with relatively large degree and diameter.
Our use of Cayley digraphs from general linear groups and semi-direct products of
cyclic groups, see Appendix B, yields larger (A, D) digraphs for some of the smaller

cases.

3.4 Other Directed Network Techniques

This section gives a summary of other known (A, D) digraph constructions. Vertex
symmetry was not a design requirement for most of the following approaches. Con-
sequently, most of these methods give larger digraphs. Table 3.2 shows a few of the
largest known (A, D) digraphs for this general degree/diameter problem.

3.4.1 [Iterations of line digraphs

Fiol, Yebra, and De Miquel found that the following well-known technique of taking
line digraphs also constructs large (A, D) digraphs. Line digraphs are created as
follows. The vertices of a line digraph L(G) are the arcs of the digraph G and there
is an arc in L(G) for each walk of length 2 in G. This generalizes to the k' iterative
construction where the vertices of a line digraph L¥(G) are the walks of length k in
the digraph G and the arcs of L*(G) are the walks of length k + 1 in G.

The base case of Fiol, Yebra, and De Miquel’s construction is the complete digraph
K, which is the (A, 1) digraph. Since taking the line digraph L(G) of a digraph G
preserves the regularity of G we know that L(G) has the same maximum degree A.
Also from the definition, the diameter of L(G) is only one greater than the diamter
of G. An illustration of how the (2,3) digraph is created from the (2,2) digraph is
shown in Figures 3.3 and 3.4.
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Using this line digraph iteration technique one can see that the order of each
(A, D) digraph is AP + AP~ [FMY]. The difference between this amount and the
directed Moore bound is

AD+1 -1 D D1 ADfl -1
A—1 —(AT+AT) = A—1

It is known that the directed Moore bound, except for A =1 or D = 1, can not be
achieved [BT].

Figure 3.3: An optimal (2, 2) directed network.



Figure 3.4: A line digraph iteration showing a (2, 3) digraph of order 12.

3.4.2 Semi-direct products

This subsection shows an alternate construction for diameter 2 digraphs based on
semi-direct products of groups. Since these constructions are Cayley digraphs, they
will immediately be vertex symmetric. Some of the other digraphs of Section 3.4 are
known not to be vertex symmetry.

Using our definition of semi-direct product groups, we now formally describe a
class of groups for this subsection (and the appendices). Let group A be GF*(¢)
and group B be GF*(¢) for fields with compatible orders ¢; and ¢y (compatible in
the sense that the following homomorphism is definable). Let r; and ry be primitive
roots for these fields. Define the mapping o : GF*(q;) — Aut(GF*(g)) in terms of

ki
o'(r]) = r§] ?f ¢ —1=k(g —1)
ry g —1=k(g—1)

as (0(a))(b) = o'(a) - b. This mapping is a group action of A on B by multiplication
in GF(qs).



We next describe some Cayley digraphs with diameter 2 based on the above semi-
direct product groups. The following (A,2) digraphs also have the largest known

order.

Theorem 6 If the degree A is equal to ¢ — 1, where q is a power of a prime, then
there ezists a diameter 2 Cayley digraph of order A(A+1) constructed from the group
GF*(q) x, GF(q).

Proof. Let the A generators for the group be g; = (i,1) where i is from GF*(q).
Since the digraph is vertex symmetric, we only need to check for paths of length two
or less from the identity element e = (1,0). The neighborhood of e is the set of
vertices at a distance of exactly one from e. These vertices are simply e x g; = g;,
the generators of the group. The products g; * g; = (ij,7 + 1) for all 7,7 € GF*(q)
are the vertices at distance at most two from e. To see that all of the elements in
the group have been reached, fix ¢ in GF*(q) and run j through GF*(¢q). The set
S; = {(ij,i+1) | j € GF*(q)} has ¢ — 1 = A distinct elements since ij is unique
for all distinct j. Notice that g; ¢ US; for all generators g¢; since ¢ + 1 # 1 for all
i € GF*(q). Thus the total number of distinct elements reached at diameter 2 is
(¢g—1)(g—1)+(¢—1) = (¢ — 1)g. This is also the order of the group. Therefore, we
have a (A, 2) digraph with order A(A + 1). O

From the theorem, we easily get the following collection, Table 3.3, of digraphs

with diameter two.



3.4.3 The method of Imase and Itoh

Imase and Itoh’s construction of digraphs is also easy to specify [II]. designing other
efficient networks. Their digraphs are identical to those created by line digraph iter-
ations and to the Kautz digraphs presented in Section 3.4.4.

For their digraph construction, let A be the degree and D be the diameter of a
requested (A, D) digraph. A digraph with order n = AP + AP~ will be created. Let
the vertices be labeled 0,1,2,...,n — 1 and the arcs defined from vertex i to vertex
j whenever

j=—id—q (modn), ¢=1,2,...,d.

After some extensive analysis of paths of length k£ from each node and several tricks

one will see that the diameter is D (see [II]).

3.4.4 Kautz digraphs

The earliest known large (A, D) digraphs were discovered by Kautz [K1, K2]. These
(A, D) digraphs have the same order of AP + AP~ Again, it is of interest to see
different constructions for these large digraphs. Further, these various constructions
give us a strong impression that these digraphs achieve the maximum possible order.
It was shown that the diameter 2 digraphs are optimal.

The simple construction of the Kautz (A, D) digraphs follows. The vertices are
labeled with words aqas...ap where the a; is any one of A + 1 symbols except that
a; # a;4q for 1 < ¢ < D. The arcs from vertex ajasy...ap are directed to the A
vertices asas...apapyi, where ap,, is different from ap. Figure 3.5 demonstrates
this construction for the Kautz (3,2) digraph. Notice how the Kautz (2,2) digraph
is embedded within the (3,2) digraph.



Figure 3.5: The Kautz (3,2) digraph with 12 vertices.

Table 3.2: The largest known digraphs for degree A and diameter D.

A\ 2] 3] 4 5 6 7 8
6| 12| 24| 48 96 192 384
12| 36| 108| 324] 972| 2916 8748

20| 80| 320 | 1280 5120 20480 81920
30 | 150 | 750 | 3750 | 18750 93750 468750
421252 | 1512 | 9072 | 54432 | 326592 | 1959552
56 | 392 | 2744 | 19208 | 134456 | 941192 | 6588344
72 | 576 | 4608 | 36864 | 294912 | 2359296 | 18874368
90 | 810 | 7290 | 65610 | 590490 | 5314410 | 47829690
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Table 3.3: Some simple vertex-symmetric (A, 2) digraphs.

A [2]3 46 |7 |8 10 |12
q 22 (5 |7 |2° 32|11 |13
IG[ [ 6[12]20 4256 | 72| 110 | 156

w




Chapter 4

Efficient Broadcast Networks

This chapter presents the largest known broadcast networks satisfying bounds of
maximum node degree and broadcast time. Broadcasting concerns the dissemination
of a message originating at one node of a network to all other nodes with the restriction
that each node can only forward the message to one of its neighbors at a time.

We now state a few definitions in preparation for our broadcast network construc-
tions.
Definition: For a graph G = (V, E) and vertex v in V', let broadcast(v) denote the
minimum time needed to broadcast a message originating at vertex v. The broadcast
time T of the graph G is maz{broadcast(v) | v € V'}.

A broadcast (routing) scheme for vertex v with 7' = broadcast(v) may be
represented as a sequence Vo = {v}, E1, V4, Es, ..., E, Vp such that each V; C V|
each E; C E, Vp =V, and, for 1 < i < T, (1) each edge in E; has exactly one
endpoint in V; 1, (2) no two edges in E; share a common endpoint, and (3) V; =
VioiU{v | (u,v) € E;}.

Definition: A (A,T) broadcast graph is a graph G = (V, E) such that: (1)
deg(v) < A for all vertices v in V' and (2) G has broadcast time less than or equal to
T.

33



The broadcast network design problem is now expressed in terms of these defini-

tions.
e The Degree/Broadcast-Time Problem. Provide constructions of the largest

possible (A, T) broadcast graphs.
As with the network design problems considered in the previous chapters, our

objective in designing (A, T) broadcast graphs is to maximize the number of nodes
for fixed constraints of maximum vertex degree A and broadcast time 7. Our problem
is slightly different than those studied in [LP1] and [BHLP2] where the number of
vertices were fixed and the goal was to minimize the number of edges so that the
broadcast time 7' = [log, |G]].

Table 4.1 shows the current largest known broadcast graphs while Table 4.2 shows
an upper bound. For the reader’s convenience the bold entries in Table 4.1 show where
upper bounds have been achieved. The asteriks in the table denote where computer
searches were used. We call any (A, T) broadcast graph that is as large as possible
an optimal broadcast graph (network). The following sections contain an upper
bound analogous to the Moore bound and give group theoretic techniques for finding

broadcast graphs.

Table 4.1: The largest known (A, T') broadcast networks.

A\NT| 23| 4] 5| 6 7 8 9 10
21146 8|10 12 14 16 18 20
3 8114|2440 | 60" | 84" | 126" | 156
4 16 | 30 | 56 | 90" | 148" | 253" | 272"
5 3262|108 | 186" | 336 206
6 64 | 126 | 220" | 390" | 750"
7 128 | 254 | 440 | 816
8 256 | 510 | 880"
9 512 | 1022

4.1 Bounds on the Maximum Order of Broadcast

Networks

This section presents a recurrence relation for an upper bound on the maximum
number of nodes in a (A, T') broadcast graph. Let f(A,T) be the branch-out bound



Table 4.2: Some (A, T) broadcast network upper bounds.

A\NT|2|3]| 4| 5] 6 7 8 9 10
21416 8|10|12| 14| 16| 18 20
3148|1424 40| 66| 108 | 176 | 286
41141816 |30 |56 | 104|192 | 354 | 652
o4 8|16 |32|62]| 120|232 | 448 | 864
64816 |32|64]| 126 | 248 | 488 | 960
74816 |32|64]| 128|254 | 504 | 1000
814|816 |32|64]| 128|256 | 510 | 1016
9148|1632 |64 128|256 | 512 | 1022

10 | 4181632 |64 | 128|256 | 512 | 1024

with out-degree A and depth T of a directed tree.

f(A0) = 1
FAT) = SEAD A T —4)+1

The broadcast bound b(A,T) for broadcast graphs easily follows from the above.

bA,T) = A A1, T—d)+1
= 2. f(A-1,T—1)

Closed form expressions for this bound are somewhat complicated. The broadcast

bound for maximum degree equal to 3 is shown below.

5—&@>(L—%3T+<5+&@>(1+¢5

T
b@ﬂ:( : 5 : 5 >—21mmT>o

In general one can obtain a closed formula for the broadcast bound for fixed degree
by looking, for example, at generating functions [WI1].
Once we have a broadcast network of degree A and broadcast time 7T a lower

bound for larger broadcast networks can be obtained from the following observation.

Theorem 7 Given a (A, T) broadcast graph G then the order of the largest (A +

1, T + 1) broadcast graph is greater than or equal to 2 - |G|.
Proof. Take two copies of the (A, T) broadcast graph and take the Cartesian

product. That is, add an edge between each vertex v and v’ in two identical graphs



G and G'. Now, routing is done by using one of the (v,v’) edges during the first
broadcast time. The remaining A broadcasts stay localized in the individual graphs
G and G'. By our assumption of G being a (A, T') broadcast graph, the new graph is
a (A+ 1,7+ 1) broadcast graph with twice as many vertices. O

One should note that if the original graph was a Cayley graph using the group A
then the constructed (A + 1,7 + 1) broadcast graph is simply a Cayley graph on the
direct product Z; x A. The generators for this new graph are (1,0) and {(0, g;) | ¢;
is a generator for A}. This theorem is believed to be sharp only when the maximum

degree is less than or equal to the broadcast time.

4.2 Algebraic Construction Techniques

This section explains what broadcast graphs correspond to the various entries listed
in Table 4.1. The entries below the diagonal are omitted since, as will be seen, they
trivially follow from the (A, A) broadcast graphs.

There are no known Cayley graph constructions for two of the optimal (A, T)
broadcast graphs. Both the (3,6) broadcast graph with order 40 and the (4, 6) broad-
cast graph with order 56 were taken from [BHLP1]. After a little investigation, we
found that these two broadcast graphs do satisfy our definition of (A, T") broadcast
graphs. The (3,6) broadcast graph is presented in Figure 4.1.

All of the remaining entries in Table 4.1 are based on Cayley graphs. As mentioned
earlier, we found the entries flagged with an asterisk by computer searches (see Section
5.2). These graphs are based on semi-direct product of cyclic groups (see Appendix
C). To obtain the largest known (5,10) and (7,9) broadcast graphs we applied Theorem
7 to our constructed (4,9) and (6,8) broadcast graphs, respectively.

The remaining optimal broadcast graphs are covered by the following theorems.

Theorem 8 The ring network with 2T vertices, the cycle Cor, is an optimal (2,T)

broadcast graph.
Proof. Given Cyy, route by simply broadcasting to a neighbor that has not seen

a message, that is, forward messages in the opposite direction of previous senders.
Since at each time step two more vertices will receive a message, the required time

constraint 1" easily follows. O

It is trivially seen that < Zyp, {1, —1} > is a Cayley graph representing Cyp. For
a particular originating vertex, there are exactly two broadcast schemes depending
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Figure 4.1: A (3,6) broadcast graph of 40 vertices.

on what generator is used first. The graph Cyr is one instance where the broadcast
time 7" equals the diameter D. However, this property does not hold for the graph
Copy1 (recall Figure 1.1).

We now describe some more elaborate Cayley graph constructions which give rise
to efficient broadcast graphs. The next well-known theorem (folklore) follows from
using the complete graph K> on two vertices along with Theorem 7. The proof given

below, however, explicitly features a Cayley graph construction.

Theorem 9 The hypercube Qa is an optimal (A, A) broadcast graph.
Proof. The hypercubes (), can be represented as a Cayley graph using the abelian

i1 n—i
group (Z3)" with generators {e; | 1 <i < n} wheree; = (0,...,0,1,0,...,0). Since
Cayley graphs are vertex symmetric, it suffices to show that broadcast((0,...,0)) =
n. For the routing scheme, all vertices with the broadcast message route by using
generator e; at time i. The first message is sent to vertex (0,...,0)+e; = (1,0,...,0).

After the i*" broadcast time all of the following vertices will have seen the message.

0
{(z1,29,...,240,...,0) |xj:{ . } for 1 <j <i}

At time n every vertex in the hypercube will have received the message. Hence, the



broadcast time is equal to the degree. Since 2" is the order of ), and also equals
the upper bound for vertices in a broadcast network, the hypercube @), is an optimal

broadcast graph. O

Corollary 10 There ezists an optimal (A, T) broadcast graph for all T < A.
Proof. The upper bound for a (A, T) broadcast graph for all T' < A is 2. Since

the hypercubes of Theorem 9 give broadcast graphs of same order with less maximum
degree, the hypercube Qr is also an optimal (A, T) broadcast graph. O

The above corollary indicates that broadcast graphs with a smaller time constraint
than maximum degree are not very interesting. In this case, a better problem might
be to minimize the number of edges while still obtaining an optimal (A, T') broadcast
graph.

Some progress above the diagonal in our (A, T') broadcast graph table has been
made. The following theorem by the author in collaboration with Faber shows that
optimal broadcast graphs exist where the broadcast time is one greater than the

maximum degree.



Figure 4.2: Tllustrating the (2,3) broadcast graph construction.
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Theorem 11 The Cayley graphs from the dihedral groups D, (na = 2% — 1) with
generators w,wx', wa®, ..., wr where w? = e,wrw™' = 7! and x = e,

form optimal (A, A + 1) broadcast graphs.
Proof. First note that each of the generators are involutions since

(wz')? = (wr')(wa') = (wr'w)s' = 2 '2" = e.

So these generators do indeed form an undirected Cayley graph. The routing for
these Cayley graphs will be done by using generator ¢ modulo A at time i, starting
with w as the first generator (i = 0).

Before proving the general version of this theorem we illustrate it by building the
simple (2,3) broadcast graph (Figure 4.2). For this graph, the generators are w and
wx. Let V; = {v | vertex v has seen message at time i }. Start broadcasting at the
identity, Vo = {e = w°® = 2°}. Using w as the first generator yields V; = Vo U {w} =

{e,w}. Using wz as the second generator gives
Vo = Vi U{wr, v’z = 2} = {e,w, v, wx}.
Finally reusing the generator w for the third and final broadcast time yields
Vi =VoU{wzw =2 ' = 2* 2w = wz ' = w2’} = Ds.

This shows that the broadcast time is 3.



Now the complete theorem is proved. Start with a Cayley graph D, , with the

generators {wz? 1 | 0 < i < A —1}. With resemblance to the above Cayley graph

D,,,, we can determine each V; for ¢ < A. These are represented in the usual group

notation.

Vo
Vi
Va
Vs

Vi

Va

{e =w® =2}

Vo U{w}

Vi U{wa!, 2"}

Vo U {wad, 23, wa=1+3, 2= 143}

mo{wa’, 2"}

k—1
Vit UV - wa? 1
k—2_ . _ . _ X
U?:g Hwat, 21} U {wak I*I*l,ﬁk 1*1*’}

Uz, w2}

A-1_
VA—l U VA—l . wx2 1
2A—1_1 i i
im0 qwz',x'}

Finally our Cayley graph has one extra time to route. Reusing the generator w, the

last accumulation set

Vat1

is

Vau(Va\W)-w
Uy Hwat, 2’} UUE] ~Hwatw, 2w}
U Hwa', 2’y UUE, ~ {wama™ amai)

A . .
?:0 Hwat, 2t} = D,,..

After A + 1 broadcasts all the vertices have seen the message.

These broadcast networks are optimal since

is the upper bound.

D, | =2(2% —1) =25T1 2



The above theorem gives a new infinite class of optimal broadcast networks. Di-
hedral groups are a special case of semi-direct products, (D,, ~ Zy X, Z,). Setting the
group action o'(1) = —1 (see Section 2.3) in our computer program was a contributing
factor for the authors’ arrival at this theorem.

One may wonder if these same dihedral groups can be used for other broadcast
graphs. The answer is yes and one graph is illustrated in Figure 4.3. The corre-
sponding routing scheme for this figure is listed in Table 4.3. In both Table 4.3 and
Figure 4.3 the group elements are assigned an unique number for readability purposes
(mainly for the figure where an element [a b] is mapped to 12a + b). At this time no
complete classification of optimal (A, A + 2) broadcast graphs is known.

Figure 4.3: An optimal (3,5) broadcast network.



Table 4.3: One routing scheme for our (3,5) broadcast network.

Cayley group graph: Zs X, Z19 >~ D1y

Generators Unique Label
(1 7] 19
[111] 23
(1 0] 12

Routing scheme from identity element 0.
0— 12 Ist broadcast: |V;| =2
0— 23
12— 11 2nd broadcast: || =4
0— 19
11 — 13
12 =7
23 =1 3rd broadcast: |V3| =8
1—22
7T— 17
11— 20
13 — 10
19 =5
23 =+ 8 4th broadcast: |Vy| =14
1—18
o— 14
7— 16
8 — 15
10 — 21
13 — 6
17 — 2
19 — 4
20— 3
22 -9 5th broadcast: |Vs| = 24




4.3 Further Remarks

We have shown that group theory is useful in designing broadcast networks. To avoid
becoming too biased, we now give an example of an optimal non-vertex-symmetric
broadcast graph. Figure 4.4 contains a (3,4) broadcast graph with 12 vertices that
requires 3 different routing schemes. For comparison our (3,4) broadcast graph (di-
hedral group D7 of Theorem 11) is given in Figure 4.5. The reader may recognize
this broadcast graph as the well-known Heawood graph.

Research on broadcast networks is relatively new compared to the other network
problems given in Chapters 2-3. Cayley graphs yielded the largest known graphs in all
our network problems. Another possible use of Cayley graphs would be in designing
directed broadcast networks. A similar directed graph problem is given in [LP2] with
the object to minimize arcs. In Liestman and Peters’ paper only standard graph
constructions were exhibited. With our success with Cayley graphs, some type of a

group theoretical investigation might be useful.

Figure 4.4: A non-symmetric (3, 4) broadcast network.



Figure 4.5: The vertex-symmetric Heawood graph is a (3,4) broadcast network.



Chapter 5
A Brief Description of Programs

This chapter describes how our computer search for efficient networks was conducted.
Only the basic algorithms will be discussed. Section 5.1 contains the principle algo-
rithm we used for calculating the diameter of Cayley graphs. Section 5.2 concludes

with some of our heuristics used for finding Cayley broadcast graphs.

5.1 Calculating the Diameter of Cayley Graphs

An algorithm for finding the diameter of our undirected and directed networks is
presented. Since our networks are based on a group structure, one would like to avoid
representing these graphs explicitly (e.g., adjacency matrices). In [9a, AK2, CCD,
Chl, BDV] and other papers the diameter of a Cayley graph < G,S > is shown to
be

max(min{g, gi, - gi, = @ | gin € S}).

The diameter of a Cayley graph can be determined in O(|G|) time while also
using a linear amount of memory. The diameter equals the longest path from any
root in a breadth-first search tree of a Cayley graph. A feasible algorithm to compute
the diameter of a Cayley graph is shown in Figure 5.1. In our program the group
identity is taken as the originating root vertex. The vertices at the current depth of
the breadth-first spanning tree are stored in a queue while a list of all reached vertices
is kept in a bit vector. The algorithm stops when no new nodes can be added to the
accumulating bit vector.

For the majority of our computer searches we use both linked lists and hash tables

as depicted in Figure 5.1. In some cases, to conserve space, the use of linked lists
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Input: Group A and generator set S.
Output: Diameter of Cayley graph < A, S >

1. Set up data structures.

(a) Algebraic data type for group A.
(b) Group element bitmap.
(c) Group element linked list (queue).

2. Start in initial state.

(a) Add_to_queue(identity e).
(b) Diameter < 0.

) Prev_nodes <« 1.

)

(c

(d) New_nodes < 0.
3. While (Prev_nodes > 0) do the following.

(a) Get_from_queue(element z).
(b) Decrement Prev_nodes.
(c) For all generators g; in S do the following.

i. Element y < x - g;.

ii. If (not In_bitmap?(y)) then do the following.
A. Add_to_queue(y).
B. Add_to_bitmap(y).
C. Increment New_nodes.

4. If (New_nodes > 0) then do the following.

a) Increment Diameter.

(a)
(b)
()
(d) Go back to step 3.

Prev_nodes < New_nodes.

New_nodes « 0.

5. Clean up and exit with Diameter.

Figure 5.1: An algorithm for computing diameter of a Cayley graph.



al

was replaced by hash tables in our implementation. One instance was for our (14,8)
graph with 30 million vertices. In this case, the memory available on a non-virtual
16-Mbyte Cray X-MP was scrutinized by allowing only two bits of work space for
each of the vertices.

Our fast algorithm has the luxury of working with vertex-symmetric Cayley graphs.
For comparison, the diameter of non-vertex-symmetric graphs can be computed in
O(n?) time by Floyd’s algorithm. However, for large graphs this amount of computer
resource may be infeasible.

5.2 Finding Broadcast Times of Cayley Graphs

There is no known easy way to determine the broadcast time of a Cayley graph.
In fact for arbitrary bounded-degree graphs (A > 3), the problem of finding the
broadcast time is NP-complete, [Di]. To speed up our search time we chose some
heuristics to find upper bounds on the broadcast time of Cayley graphs. The graphs
given in Table 4.1 are guaranteed to have the listed broadcast times. However, some
of the large graphs may have smaller broadcast times for some undiscovered routing
scheme. Three different methods were used to find broadcast Cayley graphs. These
heuristics are next presented.

Suppose < A, S > is a Cayley graph with generators S = {go, g1,...,9x1}. The
simplest broadcasting method is based on an indexed order of the generators. Calls
are placed to neighboring vertices using generator ¢+ modulo k at time 7. To determine
an upper bound on the broadcast time simply simulate the broadcast scheme with
a message originating at the identity element. This assumes that the group A has
an easily computable multiplication. The broadcast proceeds until all elements of
the group have been generated or until a predetermined maximum broadcast time
constraint has been reached.



It is beneficial to separate generators and their inverses in the above index scheme.
If not, every call at some broadcasting time will send a message back to a previous
sender. (Hence, a wasted call will exist.) Another remedy to this generator ordering
problem is to pick generators that are involutions. Our (A, A + 1) broadcast graphs
used this approach.

Our second method is to choose a set of permutations {m; | i = 0,1,...,t} of
the generator set S. A vertex receiving the message at time ¢ places calls to its
neighbors in the order given (by multiplication) by the sequence of generators in 7;.
Like the previous routing scheme, we determine by simulation an upper bound on the
broadcast time.

Our last method does not yield easy routing schemes based on orderings of gener-
ators but it does find a broadcast tree for the identity element. Since Cayley graphs
are vertex symmetric this broadcast scheme can be translated and used for any orig-
inating vertex. In building this tree a vertex with a message simply picks a random
generator from S and uses this generator to broadcast to a neighbor. Each vertex
knows which neighbors it has sent a message, so future picked generators can be
restricted. Like above, the broadcast simulation proceeds until all elements of the
group have been generated or until a maximum broadcast time constraint has been

reached. Most of the large broadcast graphs in Table 4.1 used this technique.
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Appendix A

Undirected (A,D) graph Results

Table A.1: Some new largest known (A, D) Cayley graphs.

Order of

(A, D) | Order | Group Generators | Inverses | Generator
(4,7) | 1081 | Zos %o Zsz | [939] (14 4] 23
o'(1)=25 |[614] [1741] | 23
(4,8) | 2943 | Zay % Z1go | [ 6 21 ] [2131] 9
o'(1)=97 | [1744] [[1019] | 27
(4,9) | 7439 | Zus o Zirs | [ 3372] | [10145]] 43
o'(1)=16 | [3938] |[4140] | 43
(4,10) | 15657 | Zs1 Xy Zsor | [1198] | [40109]| 51
o'(1)=275 |[3691] |[151] 17
(A, D) | Order | Group Generators | Inverses | cenerator
(5.7) | 4380 | Zoo %o Zr3 [3860] |[2242] | 30
o'(1)=3 [2047] | [3168] | 60
(300] 2
(5,8) 12246 Z78 X 2157 [ 22 39 ] [ 96 10 ] 39
o'(1)=25 [4272] |[3643] | 13
(390] 2
(5,9) 44310 Z70 X Z633 [ 50 617 ] [ 20 280 ] 21
o'(1)=2 [28167] |[4243] | 15
(350] 2
(5,10) | 123092 | GF*(89) x, GF(1409) | [ 50 1287 ] | [ 73375 ]| 22
[46723] |[60955]| 88
[880] 2

23




Order of

(A, D) | Order | Group Generators | Inverses | cenerator
6,4) | 335 | Zs %o Zn1 |4 17] [15] 5
o'(1)=54 [16] [463] 5
[214] [354] 5
(6,5) | 1088 | Zos %o Z17 | |33 1] [3111] | 64
o'(1)=3 [3014] |[3410] | 32
[ 5710 | [79] 64
(6,6) | 14878 | Zss xo Zir3 | [ 385 ] [48103]] 43
o'(1)=4 [223] [8431] | 43
[49162] |[3728] | 86
(6,8) | 53368 | Zss xo Zoss | [ 35226] |[21304]| 8
o' (1)=86 [31865] |[25661]| 56
(44853 ] |[12662]| 14
(6,9) | 221100 | Zi3s %o Z1grs | | 128 598 ] | [4 1202 ] | 825
o' (1)=2 [71483] |[12519]| 132
(871278 | [45579]| 44
(A, D) | Order | Group Generators | Inverses Gonerator
(7,4) 506 ZQQ X 223 [ 413 ] [ 18 14 ] 11
o'(1)=5 [810] [14 8] 11
[1017] |[1216] 11
[110] 2
(75) | 2460 | Zoo Xy Zu1 | [5435] | [624] 10
o'(1)=36 (13 9] [47 16 ] 60
[32] [571] 20
(300] 2
(7,7) | 41024 | Zox %o Zonn | [ 36 235] | [28555] | 16
o' (1)=77 [50198] |[5249] 64
[45478] |[19220] | 64
(320] 2
(7.8) | 150150 | Ziso %o Zioor | [ 95 870] | [55615] | 330
o'(1)=2 [28365] |[122166]| 75
[23665] |[127525] | 150
[750] 2




Order of

(A, D) | Order | Group Generators | Inverses Generator

(8,3) | 203 | Zr xo Zoy | [421] [3 27] 7
o'(1)=16 [ 120 ] [66 ] 7

(3 7] [428] 7

[36] [424] 7

(8,4) 915 Zl5 X ZGI [ 2 22 ] [ 13 49 ] 15
o'(1)=16 [6 46 ] (916 ] 5

[245] [1342] 15

[714] [856 ] 15

(85) | 4108 | Zss %y Z1y | [3 15 ] [49 58 ] 52
o' (1)=27 [4766] | [543] 52

[24 28 ] [28 49 ] 13

[3123] | [2150] 52

(8,7) | 104808 | Zogs Xy Zgor | |3 177] | [261257] | <8
o'(1)=125 |[116325] |[148262] | 66

[93161] |[17136] 88

(1693731 | [95374] 264

(8,8) | 481179 | Zso Xy Zias | [ 137 795] | [184978] | 321
o'(1)=1204 | [134 1164 ]| [187 1123 ]| 321

[11639] |[310348] | 321

[154938] |[167836] | 321




(A, D) | Order | Group Generators | Inverses Gonerator

(9,4) 1254 | Subgroup of [101 6 ] [ 67 4] 66
GF*(199) x, GF(19) | [147 8] (8812 ] 66

with index 3 [191 16 | [174 17 | 66

(117 2] (1825 ] 33

[198 0] 2

9,5) | 6890 | Ziso Xo Zs3 [12841] |[233] 65
o'(1)=4 (89 42] [41 36 ] 130

(16 35 | (114 8] 65
[11945] | [1126] 130

[650] 2
9.7) | 217622 | Zugs %o Zuor [201202] | [175 154 ] 166
o'(1)=2 [178219] | [ 288 208 ] 233
(422 463] | [ 44 160 ] 233
[246 326] | [ 220 352 ] 233

[2330] 2
(9,9) | 4965098 | Subgroup of [16 2739 ] | [ 1950 2893 ] | 557
GF*(4457) x, GF(4457) | [ 2519 1897 ] | [ 3337 3108 ] | 557
with index 4 (31384366 ] | [ 1970 990] | 557
[651922] | [480 39 ] 557

[ 4456 0 | 2

(A, D) | Order | Group Generators | Inverses Genorator

(10,7) | 490052 | Subgroup of [212 13 ] [ 658 1150 | 101
GF*(1213) x, GF(1213) | [ 118 487 | [ 257 993 | 202

with index 3 [ 1121 1009 | | [ 857 156 ] 404

[343738] | [6791080] | 101

[1042104] | [986561] | 101

(10,8) | 2399049 | Zizn Xo Zizso [1254 942 ] | [ 87 81 ] 147
o'(1)=1296 [331151] | [1308130] | 447

[59313] | [1282230]| 1341

[1331715] |[101725] | 1341

(91559 | [426435] | 447




Il

Order of

(A, D) | Order | Group Generators | Inverses Generator
(11,5) | 16578 | Zss X0 Zsor [20230] | [ 34 165 ] 57
o'(1)=139 [191] [35 53] 54
[16167] | [38270] 27
[2551 ] [29 208 ] 54
[17306] | [37139] 54
[270] 2
(11,7) | 914414 | GF*(479) x, GF(1913) | [ 395 430] | [268 609] | 478
[35095] | [45374] 239
[19755] | [353555] | 478
(2051783 ] | [ 164 1746 ] | 478
[437183] | [57 559 ] 478
[478 0 ] 2
(A, D) | Order | Group Generators | Inverses Gonerator
(12,5) 26268 2132 X Zlgg [ 92 173 ] [ 40 9 ] 33
o'(1)=27 (8555 | [47 137] 132
(82105] | [5032] 66
[21 56 ] [111196] | 44
[90 98 ] [42 191 ] 22
[2006] | [112117] | 33
(12,7) | 1732514 | Zass X Zoozs | | 170 11841 | [479 2385 ] | 658
o'(1)=81 [456 1224 ]| [202 2151 ]| 329
[237670] | [4211665]| 658
(256941 ] | [402725] | 329
[111605] |[5471433]| 658
[206 2179 ] | [452692] | 329
(A, D) | Order | Group Generators | Inverses Genorator
(13,5) 33354 Z306 X Zl()g [ 195 13 ] [ 111 40 ] 102
o'(1)=4 [20254] | [10433] 153
[(20391] | [1379] 306
(8852 ] [218 40 ] 153
(1939 ] (11349 ] 306
[250 22 ] [56 84 ] 153
(1530 ] 2
(13.8) | 13689528 | GF*(2617) x, GF(5233) | | 1821 1151 ] | [240 832] | 2616
[315448] | [2500 2181 ] | 1308
(5263285 ] | [4034717] | 2616
[1880 3472 ] | [ 10122219 ] | 2616
[1373 3811 ] | [ 2333 4607 ] | 872
[2572 3406 ] | [ 756 1935] | 2616
[2616 0 ] 2




Order of

(A, D) | Order | Group Generators | Inverses Generator
(14,5) | 51302 | Zozs Xo Zomt (175 173] | [51 190 ] 226
o' (1)=2 [132207] |[9439] 113
[165 12 ] [6171] 226
[ 76 184 ] [150 33 ] 113
[38 168 | (188192 ] 113
[ 205 41 ] [21 55 ] 226
[210 24 | (1619 ] 113
(14,8) | 29992052 | GF*(5477) x, GF(5477) | [ 271 2654 ] | [ 384 5063 | 2738
[915 3003 ] | [2107 4091 ]| 1369
[1730 724 ] | [687 1019] | 5476
[ 1335 2648 | | [ 3598 2476 ] | 5476
[ 4524 4652 ] | [ 4977 3752 ] | 5476
[4103 1442 ] | [ 4612 4051 ] | 2738
[ 3574 4723 | | [ 1865 4098 | | 1369




Appendix B

Symmetric (A,D) digraph Results

Table B.1: Largest known symmetric (A, D) digraphs built from linear groups.

‘ (A, D) ‘ Order ‘ Targort Order ‘ Group : Index ‘ Generators : Orders

(2,3)] 10 | 12 | GL[2,5]:2 |

(1 2] (4 4]

_01_:5’_01_:2

(2,4 ] 20 | 24 | GL[2,5]:1 |

(3 0] [ 2 4]

_04_:47_0 4_:4

(2,8) | 171 | 384 | GL[2,19]:2 |

(1 2 15
i o )
2,11) | 737 | 3072 [GL[2,67]:6 |

9 59]:11 l59 55]:11

~—~

0 1 101
2,12) | 1320 | 6144 [ GL[2,11]:10 |

(1 5 5 10
E 4].12’[5 8].11

—~

29



Non-symmetric

‘ (A, D) ‘ Order ‘ Largest Order | Group : Index ‘ Generators : Orders
(3,8 | 1751 | 8748 | GL[2,103]:1 |
[ 61 1 79 91 72 95
oo [P0 [2 %)
(3,9) | 3502 | 26244 | GL[2,103]:3 |
[ 100 80 66 34 22 101
0 1].17,l0 1].17,l0 1].34
(3,10) | 8736 | 78732 | GL[2,13]:3 |
(8 7 74 2 8
b [i]e 2]
(3,11) | 24360 | 236196 | GL[2,29]:14 |
[ 15 24 ] 23 20 0 13
26 3 7[ 1 11]'5,[20 21]'15
(3,12) | 61560 | 708588 | GL[2,19]:2 |
11 12 ] 0 4 17 4
8 11_'18, l18 14]'18, [10 3]'60




Non- tri
| (A, D) | Order | Tanaireii

Group : Index ‘ Generators : Orders

(4,49 ] 136 | 320 |GL[217:2 |

[ 15 13 ] (4 14 ] 13 13 9 13
A R RN
(4,8 | 9792 | 81920 | GL[2,17]:8 |

(11 11 ] 3 9] 10 5 (15 11
_30'8 128'8 91]36,_14 0116
(4, \32928\ 327680 \GL37] |

2 0 3 3 46 1 4 4 4
542]3 {365]:6{0 4]:14 {64
0 01 0 01 0 1 100
1 1

(4,10) [ 105456 | 1310720 | GL[3,13]: |

—_
DN

3
6
0
3
1 1 12 1 11 6 1 49 1 7
0 7 0 12 0 9 5 07 81:12 |0
0 0 00 3 L0 0
1 4

0 0 2
|

[ 3 31 36 28 15 8 3 6
14 35]'287l16 19]'40,[21 15]'407[0 35]'40

Non- tri
‘ (A, D) ‘ Order ‘ Largest order | Group : Index ‘ Generators : Orders

(5,8) | 50616 | 468750 | GL[2,37]:36 |

[ 76 3 68 68 49 11
E 45].787l53 37].137[57 10].2054

43 73 60 35
6 44]. 1040, l48 52]. 1040

Y

(31 32 12 3] [ 16 26 | (19 16 | [ 21 18 ]

| 14 30]'19,l11 9_'36,_26 3_'19,_33 22_'36,_20 26_'19
(5,10) | 688800 | 1178750 | GL[2,41]:4 |

(34 1 19 9 | (16 15 | [ 28 0 ] [ 17 16 ]
8 8] 35 l32 oq |60 | 99 28_'40,_28 17_'40,_21 15_'40
(5, 12) \6408480\ 573 50 \GL279]6 |




| (A, D) | Order | Tat¥&e | Group : Index | Generators : Orders
(6,8) | 151848 | 1959552 | GL[2,37:12 |

l34 21]:57 l? 10]:19 [7 14]:19

6 4 31 18 1 18
21 34 8 32 19 15
2[5 2] [ 5

‘ (A, D) ‘ Order ‘ Tarsen order | Group : Index ‘ Generators : Orders ‘
(7,8) | 410640 | 6588344 | GL[2,59]:29 |

[33 57]:58 [57 421:30 [34 171:58 [6 431:15

10 3 57 12 54 1 19 38
50 9 14 0 45 52
l28 44]‘587l9 21]‘587l27 5]‘60

‘ (A, D) ‘ Order ‘ Targest Order | Group : Index ‘ Generators : Orders ‘
(8,8) [ 680760 | 8°+8" | GL[2,61]:20 |

44 54 27 21 24 36 31 1
l5 30]'157l53 53]'30,l23 32]'31,l29 60]'207
2 31 55 20 42 23 24 52
l35 17]'93,l41 34]'366,l25 14]'60,[37 7]'93

| (A, D) | Order | TaU&we | Group : Index | Generators : Orders
(9,8) [ 1822176 [ 9% +9" | GL[2,37]:1 |

35 10]:36 l30 0]:36 [16 25]:36

(25 1 6 31 30 36
(6 8 35 9 36 27
4 29]'12,l13 28]'9,l23 17]'36,

18 18 17 3 717
5 28]'187[13 19]'187[17 20]'36




Table B.2: Largest known symmetric (A, D) digraphs built from semi-direct products

of cyclic groups.

Order of

(A, D) | Order | Group Generators | Generator

(2,5) 27 Z3 X Zg [ 01 ] 9
o(1)=2 |[12] 9

(3,3) 27 Z3 Xa Zg [ 11 ] 9
o(1)=2 |[01] 9

(18] 9

(35) | 155 | Zs %y Z51 | [216] 5
o(1)=3 | [118] 5

[213] 5

(3.6) | 333 | Zo Xy Z5r | [13] 9
o(1)=2  |[22] 9

[4922] 9

(4,5) 420 Zlg X Z35 [ 910 ] 28
o'(1)=2 |[714] 12

(319] 28

[10 12 ] 6

(4,6) | 1100 | Zao %o Zss | [ 2 42] 10
o(1)=2 |[316] 20

(185 ] 10

[1133] 20

(5,5) 889 Z7 X 2127 [ 613 ] 7
o(1)=3 |[2109] 7

[342] 7

[20] 7

[34] 7

(5,6) 3197 Zgg X Zlgg [ 18 90 ] 23
o'(1)=2 | [468] 23

[15 61 | 23

(2289 ] 23

[10126] | 23

(6,6) 7224 Z42 X 2172 [ 4 44 ] 21
o'(1)=3 |[1127] 42

[27 140 ] 14

[26 65 ] 84

[14 169 ] 12

[ 13 147 ] 42




Appendix C

Broadcast (A,D) graph Results

Table C.1: A collection of largest known (A, D) broadcast graphs.

A, D) | Order | Grou Generators | Inverses | Gomteatar
( ) ) b
BA) | 14 | Zox,Zr |[10] 2
o'(1)=6 | [11] 2
[13] 2
(3,5) 24 ZQ X 212 [ 10 ] 2
o(1)=11 |[11] 2
[13] 2
(3,7) 60 Zlg X Z5 [ 6 2 ] 2
o'(1)=2 [74] [52] 12
BR) | 84 | Zsxy Zus |[19] [511] | 6
o'(1)=3 [30] 2
(3.9) | 126 | Zisxo Z7 |[131] [52] 8
o'(1)=3 [90] 2
(3,10) 156 Zlg X Zlg [ 71 ] [ 57 ] 12
o(1)=2 [[60] 2

64



Order of

(A, D) | Order | Group Generators | Inverses | Generator

(4,5) 30 ZQ X ZIS [ 10 ] 2
o'(1)=14 [[11] 2

[13] 2

[17] 2

(4,7) | 90 | Zs %y Zss | [330] [315] | 6
o'(1)=4 |[013] [032] | 45

(4,8) 148 Zy X Z37 [ 120 ] [ 3 28 ] 4
o'(1)=31 |[227] 2

[20] 2

(1,9) | 253 | Z11 Xy Zog | [6 7] [56] 11
d(M)=2 |[97] [218] | 11

(1,10) | 272 | Zs %o Zss | [67] [56] 11
o'(1)=3 [715] [11] 8

(A, D) | Order | Group Generators | Inverses | cemcrator

(5,6) 62 ZQ X Z31 [ 10 ] 2
o'(1)=30 |[11] 2

[13] 2

[17] 2

[115] 2

(5,7) | 108 | Zs Xy Z1s | [49] [29] 6
o(1)=5 |[33] 2

[317] 2

[30] 2

(5.8) | 186 | Zo %y Zs1 | [ 2 14] [423] | 3
o'(1)=26 | [36] 2

[310] 2

[30] 2

(5.9) | 336 | Zs Xy Zss | [ 58] [132] | 6
o(1)=3 |[223] [441] | 24

[30] 2




Ord f
Order | Group Generators | Inverses | cenerator

126 | Zs %y Zgs | [10] 2
o'(1)=62 | [11] 2

[13] 2

[17] 2

[115] 2

[131] 2

920 | Zno %o Z1y | | 42] [164] | 5
o'(1)=2 |[176] [37] 20
[310] (177] | 20

390 | Zs %y Zos | | 4 47 ] [228] | 15
o'(1)=4 |[323] 2
[139] 53] | 6

[30] 2

750 | Zio %o Zs | [ 2 58 ] [862] | 75
o'(1)=4 |[148] [963] | 10
[951] [121] | 10

Order | Group Generators | Inverses | ceserator

254 | Zy Xy Zig7 | [10] 2
o'(1)=126 | [11] 2
[13] 2

[17] 2

[115] 2

[131] 2

[163] 2

120 | Zso Xo Z14 | | 17 3] [135] | 30
o'(1)=3 |[2012] |[[108] 3
[2410] |[64] 35

[150 ] 2

120 | Zig %o 251 | [ 1434] | [217] | 24
o'(1)=5 | [618] [1042]] 8
[526] [1120]| 16

180] 2




Order of

(A, D) | Order | Group Generators | Inverses | Generator
(8,9) 510 ZQ X 2255 [ ] 2
o'(1)=254 | [11] 2
[13] 2
[17] 2
[115] 2
[131] 2
[163] 2
[1127] 2
(8,10) | 880 | Zwo xo Zss | [ 1 23] [197] | 20
o(1)=3 |[235] [181] | 20
[1419] |[69] 20
[010] [034] | 22

O/



