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Abstract

Increasingly, the design of efficient computer networks and multi-processor configu-
rations are considered important applications of computer science. There are some
constraints in network design which are usually created by economic and physical
limitations. One constraint is the bounded degree, which is the limited number of
connections between one node to others. Another possible constraint is a bound on
the time that a message can afford to take during a “broadcast”. We present, for
the first time, a set of largest-known directed networks satisfied specified bounds on
node degree and broadcast time. We also presents a family of optimal (A, A + 1)
broadcast digraphs. That is, digraphs with a proven maximum number of nodes,
having maximum degree A and broadcast time at most A + 1.
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1 Introduction

Some fundamental design problems related with the topology of networks
have been widely studied. One facet of those design problems is the study of
network constructions under the constraint of a bound on the maximum node
degree imposed by economic and physical limitations. A lot of research has
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been done recently on the design of networks with the largest number of nodes
(order) satisfying this constraint on the number of direct neighbor connections
(see [1,2,4,6,9,12]).

An important feature characterizing the “quality” of an interconnection
network for parallel computing is the ability to effectively disseminate the
information among its processors. One of the main problems of information
dissemination is broadcasting, which is the process of sending a message orig-
inating at one node of a network to all other nodes. There exists two kinds of
network connection models: point-to-point model and multi-cast model. The
minimum time of broadcasting in the interconnection network for those two
different models may not be the same. With these two connection models, two
different basic design sub-problems occur satisfying the constraint of bounded
node degree [3]:

1. The Degree/Diameter Problem.

The degree/diameter problem is the design problem for finding a network
with the largest possible order satisfying the bounds on node degree and di-
ameter. The network connection model is the multi-cast connection model.
That is, each node can communicate with all of its neighbor nodes in one time
step. The diameter is the maximum time delay for broadcasting a message
throughout the whole network under this model.

2. The Degree/Broadcast-Time Problem.

The degree/broadcast-time problem asks for the construction of a largest
possible network satisfying the bounds on node degree and maximum broad-
cast time. The network connection model is the point-to-point connection
model. That is, each node can communicate with just one of its neighbor
nodes at one time step. Here, the broadcast time is the maximum time for
disseminate a message throughout the whole network under that model.
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Fig. 1. A comparison between (a) the diameter and (b) the broadcast time.

We illustrate the difference between the diameter and broadcast time in
Fig. 1 with originating node A. Good survey papers about the general broad-
casting problem are given in [13,14].
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Generally a network’s (minimum) broadcast time is larger than its diame-
ter since there are more constraints on message routing. Also computing the
broadcast time of the network is harder than computing the diameter when
the topology of the network becomes more complicated.

The original broadcast design problem was introduced by Farley in [8]. It
is slightly different from what we discuss in this paper. This is the problem
of finding graphs for a given order with the least number of edges that one
can broadcast from each vertex in minimum time. The minimum time for
broadcasting in a network of order n is [log, n], because the number of vertices
receiving the message at most doubles at each time step on the broadcasting
schedule. Recent results for Farley’s minimum broadcast problem is presented
in [7] and [10]. A bounded-degree version of Farley’s model is given in [15].

For our degree/broadcast-time problem, we constrain both the degree A
and broadcast time T while maximizing the order of the network instead of
fixing the order and minimizing the number of edges. Specially, for this paper,
we will focus on the directed broadcast network, as defined in the next section.

Some good results have been presented by using group-theoretic methods
for designing large “efficient” networks. For the undirected case, a table of
largest-known degree/diameter graphs is given in [5] using Cayley graphs. For
the directed case, Faber and Moore in [9] study families of digraphs on permu-
tations and give a table of largest-known vertex symmetric digraphs for the
degree/diameter problem. Other more-recent results of finding large digraphs
of small diameter are presented in [1] and [12]. A table of the largest-known
(undirected) broadcast graphs of bounded degree may be found in the paper
[6]. There is no such (published) result for the directed degree/broadcast-time
problem until now.

In this paper we establish the first table of largest-known (A, T’) broad-
cast digraphs. We will give some upper and lower bounds on the directed
degree/broadcast-time problem in Section 3.1. Many of the lower bounds
were obtained by searching through random Cayley digraphs based on the
semi-product group of cyclic groups?, as explained in Section 3.2. The most
important result of this paper is the presentation of an easily constructed in-
finite family of optimal (A, A + 1) broadcast digraphs, which is presented in
Section 4.

2 Some Formal Definitions

We are ready to give some standard definitions and notations.

Definition 2.1 A digraph G = (V, E) consists of two finite sets V' and E.
The elements of V' are called the vertices (or nodes), and the elements of £
are called edges (or arcs). Each edge (u,v) € F, u # v, is an ordered pair of

3 This construction technique was first applied in [4] and later utilized in [5,12,6].
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vertices u € V and v € V. If (u,v) € F implies (v,u) € E then we call G an
(undirected) graph.

The degree of a vertex u, denoted by deg(u), is the number of edges
(u,v) € E, where v € V. The diameter of a graph is the maximum of the
shortest distances d(u,v) between each pair of u and v of V.

Definition 2.2 A (A, D) graph is a graph G = (V, E) satisfying: (1) deg(v)
< A for all vertices v € V' and (2) diameter of G is less than or equal to D.
A (A, D) digraph is defined similarly; in this case, each in-degree and out-
degree must be bounded by A.

A (A, D) graph (digraph) is optimal if it has the maximum order possible
for a (A, D) graph (digraph).

Definition 2.3 A broadcast protocol (scheme) for a vertex v (called
the originator) for a graph G = (V, E) may be presented as a sequence Vj
={v}, E1, Vi, E3, Va,..., E;, Vi, =V such that each V; C V' each E; C E,
and for 1 <1 <'t,

(i) Each edge in E; has exactly one vertex in V;_;.

(ii) No two edges in F; share a common vertex.
(iii) Vi=Viy U{w | (u,w) € E;}.

The (minimum) broadcast time B(G,v) for a graph G = (V, E) and
originator v is the size of the minimum length broadcast protocol, where the
length is defined to be ¢, as given in Definition 2.3. The broadcast time of
a graph B(G) is the maximum broadcast time over all B(G,v), v € V.

Definition 2.4 A (A, T') broadcast graph is a graph G = (V, E) satisfying:
(1) deg(v) < A for all vertices v € V and (2) broadcast time B(G) < T.

A (A, T) broadcast digraph is defined similarly; in this case, all in-degree
and out-degree must be bounded by A.

A (A, T) graph (digraph) is optimal if it has the maximum order possible
for any (A, T') broadcast graph (digraph).

Finally we define a standard algebraic method for producing nice vertex-
symmetric graphs to act as a model for our communication networks.

Definition 2.5 Given a finite group A and a set S of generators for A the
Cayley digraph G = (V, E), denoted by (A, S), is constructed as follows:

(i) The elements of the group A are the vertices V' of the digraph G.
(ii) An edge (a,b) is in E if and only if ag = b for some generator ¢ in S.
If we also requires S = S U S™! then G is a Cayley graph.
4
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Table 1
Some (A, T') broadcast digraph upper bounds.

AT |[2[3]|4|5]6] 7] 8] 9 10
4171220 |33| 54 | 88 | 143 | 232
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3 Efficient Directed Broadcast Network Constructions

In this section, we present the largest-known broadcast directed networks sat-
isfying the bounds on maximum vertex degree and broadcast time.

The main purpose of the degree/broadcast-time problem is to provide con-
structions of the largest possible (A, T') broadcast graphs (digraphs). In this
section we calculate some upper bounds on these orders so that we know
how close to optimal are the currently-known large broadcast digraphs (which
provide our lower bounds).

3.1  Upper Bounds and Lower Bounds

A simple recurrence relation is available on the upper bound of the maximum
order of broadcast directed networks. Let f(A,T) be the branch-out upper
bound of the maximum order with out-degree A and broadcast time T of a
rooted directed tree.

£(A,0)=1
FA,T) = S f(A,T i) +1

From the above recurrence relation, we get Table 1 of some (A, T) broad-
cast digraph upper bounds.

For a given (A, T) broadcast digraph, a lower bound for the order of other
larger (A’, T') broadcast digraphs can be obtained from the following theorem.
The proof of this theorem is similar to that of the theorem for the undirected
networks (see [6]).
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Table 2
The largest-known (A, T") broadcast digraphs.

D\T|2|3| 4|5 |6 ]| 7| 8 | 9 | 10
2 |4|7|12° |20 |27 | 42° | 64 | 84* | 126*
3 8| 15 |28 | 48" | 80* | 110 | 220* | 328*
4 16 | 31 | 56* | 96* | 165* | 300" | 506*
5 32 | 63 | 116 | 210 | 390 | 686
6 64 | 127 | 234 | 440 | 840
7 128 | 255 | 486 | 952
8 256 | 511 | 1000
9 512 | 1023
10 1024

Theorem 3.1 If B(A,T) denotes the order of the largest (A,T) broadcast
digraph, then B(A+1,T+1) > 2- B(A,T).

Similarly, we have a more general result as follows:
Corollary 3.2 B(A+n,T +n) >2"-B(A,T), n> 2.

Table 2 shows the current largest-known broadcast digraphs. For the
reader’s convenience the bold entries in Table 2 show where the upper bounds
have been achieved. The asterisks in the table denote where our random
search algorithm has been used. The other plain entries show the results that
have been achieved in [6] for the undirected case, which implicitly give lower
bounds for the directed case.

3.2 Cayley Digraph Construction

In this section, we will describe our main Cayley digraph construction tech-
nique for finding large (A, T) broadcast digraphs. The digraphs, which cor-
respond to the starred entries in Table 2, were created by using semi-direct
products of cyclic groups*. The other bold (optimal) entries of the table are
discussed later in Section 4.

As explained in [5], when given two cyclic groups Z,, and Z,, a semi-
direct product group G = Z,, X, Z, is formed by defining an appropriate
homomorphism o : Z,, — Aut(Z,). We define a mapping o’(k) = (r¢)F = r°
where r belongs to Aut(Z,) and c is chosen so that 7™ = 1. The multiplication

4 The reader may see the digraph specifications in Appendix A of [17].
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Fig. 2. An optimal (2, 4) broadcast digraph.

table of the semi-direct product group G is defined by
(ag, a1) *4 (bo, b1) = (ag + by mod m, (a; + o'(ag) - b1) mod n).

For a € Z,, and b € Z,, (0(a))b= o'(a) - b is a suitable homomorphism. Note
that (0,0) is the group identity for the semi-direct product group.

In Fig. 2, we give an example of the above construction. The digraph is a
largest possible (2, 4) broadcast digraph with 12 vertices based on the group
Zy X, Z3. Fora € Zy and b € Z3, a vertex of the digraph whose corresponding
group element is (a,b) and is labeled 4a + b. The normal edge presents the
use of the first generator (2,2) while the dashed edges represent the second
generator (3,1). Another example is the optimal (2, 5) broadcast digraph,
given in Fig. 3, based on the group Z4 x, Zs.

4 Optimal Families of (A,7T) Broadcast Digraphs

We will now continue to describe the broadcast digraphs corresponding to the
entries listed in Table 2. We can omit the entries below the diagonal (i.e.,
A > T) since those entries follow from the A = T cases.

We now focus on two theorems that yield optimal broadcast digraphs (the
main diagonal and off diagonal of Table 2). The first theorem, follows from
the undirected (A, T’) broadcast network problem (see, e.g., [6]). The second
theorem is analogous to the (undirected) dihedral broadcast family of [4],
where the broadcast time 7 is one greater than the maximum degree A.

7



Fig. 3. An optimal (2, 5) broadcast digraph.

Theorem 4.1 The directed hypercube Qa is an optimal (A, A) broadcast
digraph.

The following construction is the main result of this paper.

Theorem 4.2 The Cayley digraph from the cyclic group Zon_1 with genera-
tors {g1,92,...,gn_1} where g1 = 1,90 =3,93 =17,..., and g,y = 2" 1 — 1
forms an optimal (n — 1, n) broadcast digraph, denoted by A,_1.

Proof. Before proving the general version of this theorem, we illustrate it by
building a simple (2, 3) broadcast digraph A, in Fig. 4. The bold edges in
Fig. 4 denote the routing scheme from node 0. For this graph, the generators
are 1 and 3. Let V;={ v | vertex v has received the message by time ¢ }. We
start the broadcasting at the identity V5 = {0}. Using 1 as the first generator
yields V; = Vo U {1} = {0,1}. Then, using 1 as the generator for node 1 and
using 3 as another generator for node 0 so that

Vo=ViU{1+4+1,0+3}={0,1} u{2,3} ={0,1,2,3}.
Finally, using 3 as the third generator, the final broadcast time yields
Vs=V,U{0+3,1+3,24+3,34+3}={0,1,2,3,4,5,6} = Z.
This shows that the broadcast time for A, is at most 3, which is the best
possible.



Fig. 4. An optimal (2, 3) broadcast digraph, As.

7

Fig. 5. A spanning broadcast tree of time 2 in the (1, 2) broadcast digraph A;.

2

We now give the complete proof of this theorem. First denote
fi = “a spanning broadcast tree of time 7 + 1 in A"
Proof by induction.

(i) When i=1, f; is given by Fig. 5.

In the figure, the message is originated from vertex 0. When the time
is 1, there exists an arc from vertex 0 to vertex 1 by using generators
1. When the time is 2, vertex 1 sends the message to vertex 2 by using
generator 1 again. The bold numbers in Fig. 5 denote the generator
being used. As we know, f; is a spanning broadcast tree of time 2 in
A;. Obviously, |f;|=3, which equals the upper bound of the order of an
optimal (1, 2) broadcast digraph.
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t=1

t=3 50 40

Fig. 6. A spanning broadcast tree of time 3 in the (2, 3) broadcast digraph A,.

(ii) When =2, We show f, in Fig. 6.

When the time is 1, the routing scheme is the same as that in f;. There
is a slight difference at time 2. We add one more arc from vertex 0 to
vertex 3 by using a new generator 3. When the time is 3, three arcs are
used from vertices 1, 2 and 3 to vertices 4, 5 and 6, respectively. Here,
we use generator go=3 again. Then | fo|=4+3=7. That is |A3|=7. So the
order of A, is equal to the upper bound for an optimal (2,3) broadcast
digraph.

(iii) When ¢ > 1, we do the following.

In Fig. 7, f; is the spanning broadcast tree of time i + 1 in A; while f;,; is
a new spanning broadcast tree of time i + 2 in A;,;. We construct f;,; from
fi- The routing scheme is designed by adding one more arc from vertex 0 to
vertex 2! — 1 by using the new generator 2¢*! — 1 when the time is i + 1.
Then, when time is 7 + 2, there are arcs from each vertex from f; (except 0)
to the new 27" — 1 vertices of f by using generator 2°** — 1. So we have

fi={1+2" —1 242" —1 .. 2 -1+ 2" -1)}
= {271 2 41, 22 9}
Then,
\firal =2|fl|+1=202"" —1)+1=2"" -1
After time 7 4 2, all vertices in A, have received the message. Because the

order of A; 1 equals to 2°t2 — 1 is the upper bound and i + 1 is the degree of
A;i1, each A, is optimal (A, A+1) broadcast digraph. O

We now give another example of an optimal broadcast digraph Aa. Fig. 8
shows an optimal (3,4) broadcast digraph A3 with 15 vertices. In that digraph,
the three generators are {1,3,7} and the broadcast time is 4.

10



Fig. 8. An optimal (3, 4) broadcast digraph, As.
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5 Conclusion

In this paper we have studied a natural network design problem of finding the
largest directed broadcast networks, with constraints of bounded degree A and
maximum broadcast time 7. In doing so, we have provided tables of upper
and lower bounds for 2 < AT < 10. We utilized Cayley digraphs (based on
semi-direct product of cyclic groups) as the model for trying to increase the
envelope on the lower bounds. From the theoretical front, we have proved a
new family of optimal (A,A+1) broadcast digraphs based on Cayley digraphs
from the cyclic groups Zyn_; with generators {1,3,7,...,2"71 — 1}.

An additional benefit of all of the network examples given in this paper is
the fact that they are vertex symmetric. That is, the broadcast time B(QG)
of a digraph G is equal to the minimum broadcast time B(G,v) from any
originator v. There is a lot of work still needed to be done in this area, such
as the following:

(i) Are there better upper bounds than the simple recurrence function we
used in Section 3.17

(ii) To compute the exact broadcast time, unlike the diameter, is often im-
possible to calculate as the order and degree increases. Better algorithms,
such as those presented in [16] and [11], need to surface.

(iii) Are there other simple families of optimal (A, 7’) broadcast digraphs?
(iv) What other types of network constructions can yield good bounded-

degree broadcast digraphs? For example, can the graph compounding
techniques (e.g. [7]) be of use here?
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