
Discovering the Membrane Topology of
Hyperdag P Systems

Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

{radu,mjd}@cs.auckland.ac.nz, tkim021@aucklanduni.ac.nz

Abstract. In an earlier paper, we presented an extension to the fami-
lies of P systems, called hyperdag P systems (hP systems), by propos-
ing a new underlying topological structure based on the hierarchical dag
structure (instead of trees or digraphs). In this paper, we develop building-
block membrane algorithms for discovery of the global topological struc-
ture from the local cell point of view. In doing so, we propose more
convenient operational modes and transfer modes, that depend only on
each of the individual cell rules.

Finally, by extending our initial work on the visualization of hP sys-
tem membranes with interconnections based on dag structures without
transitive arcs, we propose several ways to represent structural relation-
ships, that may include transitive arcs, by simple-closed planar regions,
which are folded (and possibly twisted) in three dimensional space.

1 Introduction

In this paper we continue our study [8]. Specifically, we are interested to validate
the adequacy of our hyperdag P system (hP system) model for describing several
fundamental distributed algorithms that present relevance to networking.

For Algorithms 1 and 5 below, we extend to dags the approach pioneered by
Ciobanu et al. in [4,3]. We also provide explicit rewriting and transfer rules, as a
replacement for pseudo-code. In this process, we identify areas where our initial
model was not versatile enough and we propose corresponding adjustments, that
can also be retrofitted to other models of the P family, such as the refinement of
the rewriting and transfer modes. We also advocate the weak policy for priority
rules [10], which we believe is closer to the actual task scheduling in operating
systems.

This paper focuses on basic building blocks that are relevant for network
discovery (see also [7]): broadcast, convergecast, flooding, and a simple synchro-
nization solution, that highlights the versatility of the dag structure underlying
hP systems.

We have earlier proposed an algorithm to visually represent hP systems, where
the underlying cell structure was restricted to a canonical dag (i.e., without tran-
sitive arcs) [8]. Nodes were represented as simple closed regions on the plane

G. Păun et al. (Eds.): WMC 2009, LNCS 5957, pp. 410–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Discovering the Membrane Topology of Hyperdag P Systems 411

(with possible nesting or overlaps) and channels by direct containment rela-
tionships of the regions. In this paper, we extend this planar representation by
presenting several plausible solutions that enable us to visualize any hP system,
modelled as an arbitrary dag, in the plane. Additionally, for these solutions,
we discuss their advantages and limitations. Finally, in Section 6, we describe
a new algorithm for representing general hP systems, where transitive arcs are
not excluded.

2 Preliminaries

We assume that the reader is familiar with the basic terminology and notations
[8]: relations, graphs, nodes (vertices), arcs, directed graphs, directed acyclic
graphs (dags), canonical dags (dags without transitive arcs), trees, node height
(number of arcs on the longest path to a descendant), topological order, set or
multiset based hypergraphs, simple closed curves (Jordan curves), alphabets,
strings and multisets over an alphabet.

We also assume familiarity with transition P systems and their planar repre-
sentation [10] and with hP systems [8].

Without giving all functional details, we recall here the basic notations and
the definition of hP systems. Given a set of objects O, we define the following sets
of tagged objects: O↑ = {o↑ | o ∈ O}, O↓ = {o↓ | o ∈ O}, O↔ = {o↔ | o ∈ O},
Ogo = {ogo | o ∈ O}, Oout = {oout | o ∈ O}. Intuitively, the ↑, ↓, ↔ tags indicate
objects that will be transferred to parents, children, siblings, respectively; the
go tags indicate transfer to all neighbors (parents, children and siblings); the out

tags indicate transfer to the environment.

Definition 1 (Hyperdag P systems). An hP system of order m is a system
Π = (O, σ1, . . . , σm, δ, Iout), where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:

• Qi is a finite set of states;
• si,0 ∈ Qi is the initial state;
• wi,0 ∈ O∗ is the initial multiset of objects;
• Pi is a finite set of multiset rewriting rules of the form sx → s′x′u↑v↓w↔

ygozout, where s, s′ ∈ Qi, x, x′ ∈ O∗, u↑ ∈ O∗
↑, v↓ ∈ O∗

↓, w↔ ∈ O∗
↔,

ygo ∈ O∗
go and zout ∈ O∗

out, with the restriction that zout = λ for all
i ∈ {1, . . . , m}\Iout;

3. δ is a set of dag parent-child arcs on {1, . . . , m}, i.e., δ ⊆ {1, . . . , m} ×
{1, . . . , m}, representing duplex channels between cells;

4. Iout ⊆ {1, . . . , m} indicates the output cells, the only cells allowed to send
objects to the “environment”.

The dynamic operations of hP systems, i.e., the configuration changes via object
rewriting and object transfer, are a natural extension of similar operations used
by transition and neural P systems. Our earlier paper, [8], describes the dynamic
behavior of hP systems, in more detail.

412 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

We measure the runtime complexity of a P system in terms of P-steps, where a
P-step corresponds to a transition on a parallel P machine. If no more transitions
are possible, the hP system halts. For halted hP systems, the computational
result is the multiset of objects emitted out (to the “environment”), over all
the time steps, from the output cells Iout. The numerical result is the set of
vectors consisting of the object multiplicities in the multiset result. Within the
family of P systems, two systems are functionally equivalent if they yield the
same computational result.

Example 2. Figure 1 shows the structure of an hP system that models a com-
puter network. Four computers are connected to “Ethernet Bus 1”, the other
four computers are connected to “Ethernet Bus 2”, while two of the first group
and two of the second group are at the same time connected to a wireless cell.
In this figure we also suggest that “Ethernet Bus 1” and “Ethernet Bus 2”
are themselves connected to a higher level communication hub, in a generalized
hypergraph.

We have already shown, [8], that our hP systems can simulate all transition P sys-
tems [10] and all symmetric neural P systems [9], with the same number of steps
and object transfers. To keep the arguments simple, we have only considered
systems without additional features, such as dissolving membranes, priorities or

Ethernet Bus 1 Ethernet Bus 2

Wireless Bus

Ethernet Bus 1 Ethernet Bus 2

a b c d e f g h

a b c d e f g h

Wireless Bus

Fig. 1. A computer network and its corresponding hypergraph representation

Discovering the Membrane Topology of Hyperdag P Systems 413

polarities. However, our definition of hP systems can also be extended, as needed,
with additional features, in a straightforward manner, and we do so in this
paper.

Model Refinements

• As initially defined [8], the rules are applied according to the current cell
state s, in the rewriting mode α(s) ∈ {min, par, max}, and the objects
are sent out in the transfer mode β(s) ∈ {one, spread, repl}. In this paper,
we propose a refinement to these modes and allow that the rewriting and
transfer modes to depend on the rule used (instead of the state), as long as
there are no conflicting requirements. We will highlight the cases where this
mode extension is essential.

• We also consider rules with priorities, in their weak interpretation [10]. In
the current paper, lower numbers (i.e., first enumerated) indicate higher
priorities. In the weak interpretation of the priority, rules are applied in
decreasing order of their priorities—where a lower priority rule can only be
applied after all higher priority rules have been applied (as required by the
rewriting modes). In contrast, in the strong interpretation, a lower priority
rule cannot be applied at all, if a higher priority rule was applied. We will
highlight the cases where the weak interpretation is required.

3 Basic Algorithms for Network Discovery–Without IDs

In this section and the following, we study several basic distributed algorithms
for network discovery, adapted to hP systems. Essentially, all cells start in the
same state and with the same or similar (set of) rules, but there are several
different scenarios:

1. Initially, cells know nothing about the structure in which they are linked,
and must even discover their local neighborhood (i.e., their parents, chil-
dren, siblings), as well as some global model topology characteristics (such
as various dag measures or shortest paths).

2. As above, but each cell has its own ID (identifier) and is allowed to have
custom rules for this ID.

3. As above, each cell has its own ID and also knows the details of its immediate
neighbors (parents, children and, optionally, siblings).

Algorithm 1: Broadcast to all descendants.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. All cells start in state s0, with the same rules. The initiating cell
has an additional object a, that is not present in any other cell.

414 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

1

2 3

4 5 6

7

8

9

Fig. 2. Sample dag for illustrating our algorithms

Postcondition: All descendant cells are eventually visited and enter state s1.

Rules:

1. s0a → s1a↓, with α = min, β = repl.
2. s1a → s1, with α = par.

Proof. This is a deterministic algorithm. Rule 1 is applied exactly once, when a
cell is in state s0 and it contains an a. This a is consumed, the cell enters state
s1 and another a is sent to all the children, replicated as necessary. Additional
a’s may appear in a cell, because, in a dag structure, a cell may have more than
one parent. Rule 2 is applicable in state s1 and silently discards any additional
a’s, without changing the state and without interacting with other cells. All a’s
will eventually disappear from the system—however, cells themselves may never
know that the algorithm has completed and no other a’s will come from their
parents. By induction, all descendants will receive an a and enter state s1. &'

Remarks 3.

• This broadcast algorithm can be initiated anywhere in the dag. However, it
is probably most useful when initiated on a dag source, or on all sources at
the same time (using the same object a or a different object for each source).

• This algorithm completes after h + 1 P-steps, where h is the height of the
initiating node.

• State s1 may be reached before the algorithm completes and cannot be used
as a termination indicator.

• Several other broadcasting algorithms can be built in a similar manner, such
as broadcast to all ancestors or broadcast to all reachable cells (ancestors and
descendants).

• This algorithm family follows the approach used by Ciobanu et al. [4,3],
for tree based algorithms, called skin membrane broadcast and generalized
broadcast.

Discovering the Membrane Topology of Hyperdag P Systems 415

Example 4. We illustrate the algorithm for broadcasting to all descendants, for
the hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0

1 s1 s0a s0a s0 s0 s0 s0 s0 s0

2 s1 s1 s1 s0a s0aa s0a s0 s0 s0

3 s1 s1 s1 s1 s1a s1 s0a s0a s0

4 s1 s1 s1 s1 s1 s1 s1 s1a s0

5 s1 s1 s1 s1 s1 s1 s1 s1 s0

Algorithm 2: Counting all paths from a given ancestor.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. All cells start in state s0 and with the same rules. The initiating cell
has an additional object a, not present in any other cell.

Postcondition: All descendant cells are eventually visited, enter state s1 and
will have a number of b’s equal to the number of distinct paths from the initiating
cell.

Rules:

1. s0a → s1ba↓, with α = par, β = repl.
2. s1a → s1ba↓, with α = par, β = repl.

Proof. This is a deterministic algorithm. Rule 1 is applied when the cell is in
state s0 and an a is available. This a is consumed, the cell enters state s1, a
b is generated and another a is sent to all its children, replicated as necessary.
Additional a’s may appear in a cell, because, in a dag structure, a cell may
have more than one parent. Rule 2 is similar to rule 1. State s1 is similar to
state s0 and is not essential here, it appears here only to mark visited cells. The
number of generated b’s is equal to the number of received a’s, which eventually
will be equal to the number of distinct paths from the initiating cell. All a’s
will eventually disappear from the system—however, cells themselves may never
know that the algorithm has completed, that no other a’s will come from their
parents and all paths have been counted. A more rigorous proof will proceed by
induction. &'

Remarks 5.

• This algorithm completes after h + 1 P-steps, where h is the height of the
initiating node.

• State s1 may be reached before the algorithm completes and cannot be used
as a termination indicator.

• Several other path counting algorithms can be built in a similar manner,
such as the number of paths to a given descendant.

416 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

Example 6. We illustrate the algorithm for counting all paths from a given an-
cestor, for the hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0

1 s1b s0a s0a s0 s0 s0 s0 s0 s0

2 s1b s1b s1b s0a s0aa s0a s0 s0 s0

3 s1b s1b s1b s1b s1bb s1b s0a s0aa s0

4 s1b s1b s1b s1b s1bb s1b s1b s1abb s0

5 s1b s1b s1b s1b s1bb s1b s1b s1bbb s0

Algorithm 3: Counting the children of a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. The initiating cell and its children start in state s0 and with the same
rules. The initiating cell has an additional object a, not present in any other
cell.

Postcondition: The initiating cell ends in state s1 and will contain a number
of c’s equal to its child count. The child cells end in state s1. As a side effect,
other parents (if any) of these children will receive superfluous c’s—however,
these c’s can be discarded, if needed (rules not shown here).

Rules:

1. s0a → s1p↓, with α = min, β = repl.
2. s0p → s1c↑, with α = min, β = repl.

Proof. This is a deterministic algorithm with a straightforward proof, not given
here. &'

Remarks 7.

• This algorithm completes after two P-steps.
• Several other algorithms that enumerate the immediate neighborhood can

be built in a similar manner, such as counting parents, counting siblings,
counting neighbors.

Algorithm 4: Broadcast for counting all children.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. All cells start in state s0 and with the same rules. The initiating cell
has an additional object a, not present in any other cell.

Discovering the Membrane Topology of Hyperdag P Systems 417

Postcondition: Each descendant cell enters state s1 and, eventually, will con-
tain a number of c’s equal to its child count.

Rules:

0. For state s0:
1) s0a → s1p↓, with α = min, β = repl.
2) s0p → s1p↓c↑, with α = min, β = repl.

1. For state s1:
1) s1p → s1, with α = par.

Proof. This is a deterministic algorithm: the proof combines those from the
broadcast algorithm (Algorithm 1) and the child counting algorithm
(Algorithm 3). &'

Remarks 8.

• This algorithm runs in h + 1 P-steps, where h is the height of the initiating
cell.

• State s1 may be reached before the algorithm completes its cleanup phase
and cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant
of the initiating node will receive superfluous c’s.

• Several other algorithms that broadcast a request to count the immediate
neighborhood can be built in a similar manner, such as broadcast for count-
ing all parents, broadcast for counting all siblings, broadcast for counting all
neighbors.

Example 9. We illustrate the algorithm for counting all children via broadcast-
ing, for the hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0

1 s1 s0p s0p s0 s0 s0 s0 s0 s0

2 s1cc s1 s1 s0p s0pp s0p s0 s0 s0

3 s1cc s1cc s1cc s1 s1p s1 s0p s0p s0c
4 s1cc s1cc s1cc s1 s1c s1c s1c s1p s0c
5 s1cc s1cc s1cc s1 s1c s1c s1c s1 s0c

Algorithm 5: Counting heights by flooding.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. All cells start in state s0, with the same rules and have no initial
object.

418 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

Postcondition: All cells end in state s2. The number of t’s in each cell equals
the distance from a furthest descendant.

Rules:

0. For state s0:

1) s0 → s1ac↑, α = min, β = repl.

1. For state s1, the rules will run under the following priorities, under the weak
interpretation:

1) s1ac → s1atc↑, α = max, β = repl.
2) s1c → s1, α = max.
3) s1a → s2, α = min.

Proof. Each cell emits a single object c to each of its parents in the first step.
During successive active steps, a cell either: (a) uses rule 1.3 to enter the termi-
nating state s2 or (b) continues via rule 1.1 to forward one c up to each of its
parents. In the latter case, since we have α = max, and as enabled by the weak
interpretation of priorities, rule 1.2 is further used to remove all remaining c’s
(if any), in the same step. The cell safely enters the end state s2 when no more
c’s appear. Induction shows that the set of times that c’s appear is consecutive:
if a cell at k > 1 links away emitted a c, then there must be another cell at k−1
links away emitting another c. Finally, the number of times rule 1.1 is applied is
the number of times a cell receives at least one new c from below. These steps
are tallied by occurrences of the object t. &'

Remarks 10.

• This algorithm, like other distributed flooding based algorithms, requires
that all cells start at the same time. Achieving this synchronization is a
nontrivial task—in Section 5, we suggest a simple and fast algorithm that
achieves this synchronization.

• The time complexity of this quick algorithm is h + 2 P-steps, where h is the
height of the dag. The two extra P-steps correspond to the initial step and
the step to detect no more c’s.

• This algorithm follows the approach by Ciobanu et al. [4,3], for the tree based
algorithm called convergecast. Here we prefer to use the term flooding, and
use the term convergecast for a result accumulation triggered by an initial
broadcast.

• This algorithm makes critical use of the weak interpretation for priorities.

Example 11. We illustrate the algorithm for counting heights by flooding, for
the hP system shown in Figure 2.

Discovering the Membrane Topology of Hyperdag P Systems 419

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0 s0 s0 s0 s0 s0 s0 s0 s0

1 s1acc s1acc s1acc s1a s1ac s1ac s1ac s1a s1ac
2 s1acct s1act s1acct s2 s1at s1act s1at s2 s1act
3 s1acctt s1att s1actt s2 s2t s1att s2t s2 s1actt
4 s1act3 s2tt s1at3 s2 s2t s2tt s2t s2 s1at3

5 s1at4 s2tt s2t3 s2 s2t s2tt s2t s2 s2t3

6 s2t4 s2tt s2t3 s2 s2t s2tt s2t s2 s2t3

Algorithm 6: Counting nodes in a single-source dag.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. All cells start in state s0, with the same rules. The initiating cell
is the source of a single-source dag and has an additional object a, not present
in any other cell.

Postcondition: Eventually, the initiating cell will contain a number of c’s equal
to the number of all its descendants, including itself, which is also the required
node count.

Rules:

0. For state s0:
1) s0a → s3p↓c, with α = min, β = repl.
2) s0p → s1p↓, with α = min, β = repl.

1. For state s1:
1) s1 → s2c↑, with α = min, β = one.

2. For state s2:
1) s2c → s2c↑, with α = max, β = one.
2) s2p → s2, with α = max.

Proof. We prove that the source will eventually contain k copies of object c,
where k is the order of the single-source dag. The source cell will produce a copy
of c following rule 0.1. A non-source cell σi will send one c to a parent σj , where
j ∈ δ−1(i), because a node is at state s1 during at most one P-step, by rule
1.1. A cell σi will forward up, using rule 2.1, additional c’s to one of its parents,
which will eventually arrive at the source. &'

Remarks 12.

• This algorithm takes up to 2h P-steps, where h is the height of the initiating
cell.

• The end state s3 is not halting, may be reached before the algorithm com-
pletes and cannot be used as a termination indicator.

420 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

Example 13. We illustrate the algorithm for counting nodes in a single-source
dag via convergecast, for the hP system shown in Figure 2, after removing node 9.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0a s0 s0 s0 s0 s0 s0 s0

1 s3c s0p s0p s0 s0 s0 s0 s0

2 s3c s1 s1 s0p s0pp s0p s0 s0

3 s3c3 s2 s2 s1 s1p s1 s0p s0p
4 s3c3 s2c s2cc s2 s2p s2 s1 s1p
5 s3c6 s2 s2 s2 s2 s2c s2c s2p
6 s3c6 s2 s2c s2 s2 s2c s2 s2

7 s3c7 s2 s2c s2 s2 s2 s2 s2

8 s3c8 s2 s2 s2 s2 s2 s2 s2

4 Basic Algorithms for Network Discovery–With IDs

In this section we assume each cell has an unique ID and the cells only know
their own ID. Objects may be tagged with IDs to aid in communication.

Algorithm 7: Counting descendants by convergecast—with cell IDs.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. For each cell with index i, 1 ≤ i ≤ m, the alphabet includes special
ID objects ci and c̄i. All cells start in state s0 and have the same rules, except
several similar, but custom specific, rules to process the IDs. The initiating cell
has an additional object a, not present in any other cell.

Postcondition: All visited cells enter state s1 and, eventually, each cell will
contain exactly one c̄i for each descendant cell with index i, including itself: the
number of these objects is the descendant count.

Rules:

0. For state s0 and cell σi (these are custom rules, specific for each cell):
1) s0a → s1p↓c̄i, with α = min, β = repl.
2) s0p → s1p↓ci↑c̄i, with α = min, β = repl.

1. For state s1, the rules will run under the following priorities:
1) s1cj c̄j → s1c̄j , for 1 ≤ j ≤ m, with α = max.
2) s1cj → s1cj↑c̄j , for 1 ≤ j ≤ m, with α = max, β = repl.
3) s1p → s1, with α = max.

Proof. Assume that δ is the underlying dag relation. For each cell σi, consider
the sets Ci = {cj | j ∈ δ∗(i)}, C̄i = {c̄j | j ∈ δ∗(i)}, which consist of ID objects

Discovering the Membrane Topology of Hyperdag P Systems 421

matching σi’s children. By induction on the dag height, we prove that each
visited cell σi will eventually contain the set C̄i, and, if it is not the initiating
cell, will also send up all elements of the set Ci, possibly with some duplicates
(up to all its parents). The base case, height h = 0, is satisfied by rule 0.1, if σi is
the initiator, or by rule 0.2, otherwise. For cell σi at height h + 1, by induction,
each child cell σk sends up Ck, possibly with some duplicates. By rules 0.1 and
0.2, cell σi further acquires one c̄i and, if not the initiator, sends up one ci. From
its children, cell σi acquires the multiset C′

i, consisting of all the elements of the
set

⋃
k∈δ(i) Ck = Ci \ ci, possibly with some duplications. Rule 1.3 sends up one

copy of each element of multiset C′
i and records a barred copy of it. Rule 1.2

halves the number of duplicates in multiset C′
i. Rule 1.1 filters out duplicates in

multiset C′
i, if a barred copy already exists. Rule 1.4 clears all p’s, which are not

needed anymore. &'

Remarks 14.

• Other counting algorithms can be built in a similar manner, such as counting
ancestors, counting siblings, counting sources or counting sinks.

• The end state s1 is not halting, it may be reached before the algorithm
completes and cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant
of the initiating node may receive superfluous ci’s.

• This algorithm works under both strong and weak interpretation of
priorities.

Example 15. We illustrate the algorithm for counting descendants via converge-
cast using cell IDs, for the hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0

1 s1c1 s0p s0p s0 s0 s0 s0 s0 s0

2 s1c2c3 s1 s1 s0p s0pp s0p s0 s0 s0

c̄1 c̄2 c̄3

3 s1 s1c4c5 s1c5c6 s1 s1p s1 s0p s0p s0c6

c̄1c̄2c̄3 c̄2 c̄3 c̄4 c̄5 c̄6

4 s1c4c5c5c6 s1 s1 s1 s1c8 s1c7 s1c8 s1p s0c6

c̄1c̄2c̄3 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5 c̄6 c̄7 c̄8

5 s1 s1c8 s1c7c8 s1 s1 s1c8 s1 s1 s0c6c7

c̄1c̄2c̄3c̄4c̄5c̄5c̄6 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5c̄8 c̄6c̄7 c̄7c̄8 c̄8

6 s1c7c8c8 s1 s1c8 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8

7 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8

8 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8

422 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

Algorithm 8: Shortest paths from a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network
topology. For each cells with indices i, j, 1 ≤ i, j ≤ m, the alphabet includes
special ID objects: pi, p̄i, c̄i, xij . All cells start in state s0 and have the same
rules, except several similar but custom specific rules to process the IDs. The
initiating cell has an additional object a, not present in any other cell.

Postcondition: This algorithm builds a shortest paths spanning tree, that is a
breadth-first tree rooted at the initiating cell and preserving this dag’s relation
δ. Each visited cell σi, except the initiating cell, will contain one p̄k, indicating
its parent σk in the spanning tree. Each visited cell σi will also contain one c̄j for
each σj that is a child of σi in the spanning tree, i.e., it will contain all elements
of the set {c̄j | (i, j) ∈ δ, σj contains p̄i}.

Rules:

0. For state s0 and cell σi (custom rules, specific for cell σi):
1) s0a → s1pi↓, with α = min, β = repl.
2) s0pj → s1p̄jpi↓xji↑, for 1 ≤ j ≤ m, with α = min, β = repl.
3) s0xkj → s0, for 1 ≤ k, j ≤ m, k)= i, with α = max.

1. For state s1 and cell σi (custom rules, specific for cell σi):
1) s1xij → s1c̄j , for 1 ≤ j ≤ m, with α = max.
2) s1pj → s1, for 1 ≤ j ≤ m, with α = max.
3) s1xkj → s1, for 1 ≤ k, j ≤ m, k)= i, with α = max.

Proof. It is clear that every visited cell σi, except the initiating cell, contains one
p̄k where k ∈ δ−1(i) from rule 0.2. By a node’s height, we prove that a cell σi

will contain the set Ci = {c̄j | (i, j) ∈ δ, σj contains p̄i}. For height 0, Ci = ∅ is
true since a sink σi does not have any children to receive an xji—see rule 0.2.
For a cell σi of height greater than 0, first observe that rule 1.1 is only applied
if rule 0.2 has been applied for a child cell σj . Thus, Ci contains all c̄j such that
(i, j) is in the spanning tree. Those xkj ’s are removed by rule 0.3, and xij ’s that
are not converted to c̄j are removed by rule 1.3. &'

Remarks 16.

• For this algorithm, cells need additional symbols, see the precondition.
• This algorithm takes h + 1 P-steps, where h is the height of the initiating

cell.
• The end state s1 is not halting, it may be reached before the algorithm

completes and cannot be used as a termination indicator.
• As a side effect, any parent of the visited children that is not a descendant

of the initiating node will receive superfluous xij ’s, but they are removed by
rule 0.3.

Discovering the Membrane Topology of Hyperdag P Systems 423

• The rules for state s0 make effective use of our rewriting mode refinement:
rules 0.1 and 0.2 use α = min, while rule 0.3 uses α = max.

• Provided that arcs are associated with weights, this algorithm can be ex-
tended into a distributed version of the Bellman-Ford algorithm [7].

Example 17. We illustrate the algorithm for counting nodes in a single-source
dag via convergecast, for the hP system shown in Figure 2. The thick arrows in
Figure 3 show the resulting spanning tree.

1

2 3

4 5 6

7

8

9

Fig. 3. A spanning tree created by the shortest paths algorithm (Algorithm 8)

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0

1 s1 s0p1 s0p1 s0 s0 s0 s0 s0 s0

2 s1x12x13 s1p̄1 s1p̄1 s0p2 s0p2p3 s0p3 s0 s0 s0

3 s1c̄2c̄3 s1p̄1x24x25 s1p̄1x25x36 s1p̄2 s1p3p̄2 s1p̄3 s0p6 s0p5 s0x36

4 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2x58 s1p̄3x67 s1p̄6x58 s1p7p̄5 s0

5 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2c̄8 s1p̄3c̄7 s1p̄6 s1p̄5 s0

5 The Firing-Squad-Synchronization-Problem (FSSP)

More sophisticated network algorithms can be built on the fundamental building
blocks discussed in the previous sections.

For a given hP system, with cells σ1, . . . , σm, we now consider the problem
of synchronizing a subset of cells F ⊆ {σ1, . . . , σm}, where all cells in the set
F synchronize by entering a designated firing state, simultaneously and for the
first time. The commander cell σc sends one or more orders, to one or more of
its neighbors, to start and control the synchronization process; the commander
itself may or may not be part of the firing squad. At startup, all cells start in
the initial state s0. The commander and the squad cells may contain specific
objects, but all other cells are empty. Initially, all cells, except the commander,

424 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

are idle, and will remain idle until they receive a message. Notifications may be
further relayed to all cells, as necessary.

There are several ways to solve this problem. Here we assume that we can
dynamically extend the dag structure of the initial hP system. Unlike the tree
structures, which allow only limited extensions, the dag structures allow ex-
tensions that greatly simplify the solution to this problem and other similar
problems, to the point that they may appear “trivial”. We take this as an ad-
ditional argument supporting the introduction of dag structures in the context
of P systems. In our related paper [5], we propose a mechanism for dynamical
extensions based on mobile channels. Here, we only describe a partial solution,
which assumes that all required extensions have been “magically” completed.

Assume that the initial hP system was extended by an external cell, called
sergeant, and additional channels from the sergeant to all cells in the set F . The
commander initiates the synchronization process by sending a “notification” to
the sergeant. When the sergeant receives this notification, the sergeant sends a
“command” to all cells in the set F , which prompts the cells to synchronize by
entering the firing state. The algorithm below does not consider the sergeant as
part of the firing squad. However, with a simple extension (not shown here), we
can also cover the case when the sergeant is also part of the firing squad.

Algorithm 9: Synchronizing a dag.

Precondition: We are given an hP system with m cells σ1, . . . , σm, a squad
subset F ⊆ {σ1, . . . , σm}, and a commander cell σc ∈ F . We assume that the
underlying dag structure was already extended with a new sergeant cell σm+1

and additional channels from σm+1, as parent, to σi, as child, for each i ∈ F ⊆ X .
All cells start in state s0 and have the same rules. State s1 is here the desig-

nated firing state. Initially, the sergeant σm+1 has an object c, the commander
σc has an object a, and all other cells have no object.

Postcondition: All cells in the set F enter state s1, simultaneously and for the
first time, after three P-steps.

Rules:

0. For state s0, the rules will run under the following priorities (either the weak
or strong interpretation will work):
1) s0a → s0b↑, with α = min, β = repl.
2) s0bc → s0f↓, with α = min, β = repl.
3) s0b → s0, with α = min.
4) s0f → s1 with α = min.

Proof. At step 1, the commander sends a b notifier to all its parents, including
the newly created sergeant, via rule 0.1. At step 2, the sergeant sends the firing
command f to all squad cells, using rule 0.2. All other commander’s parents

Discovering the Membrane Topology of Hyperdag P Systems 425

clear their b notifiers at step 2, using rule 0.3. At step 3, all squad cells enter the
firing state s1, using rule 0.4. &'

Example 18. We illustrate the algorithm for synchronizing the hP system shown
in Figure 4. This hP system consists of seven cells {σ1, . . . , σ7}, F = {σ1, . . . , σ5}
and σ3 is the commander. The actual system structure is irrelevant in this case
and was replaced by a blob that circumscribes the cells σ1, . . . , σ7. In the dia-
gram, this structure has already been extended by the sergeant cell σ8 and the
required channels.

σ2 σ3

σ1 σ7 σ4

σ6 σ5

σ8

Fig. 4. An hP system for the synchronization algorithm (Algorithm 9), extended by
the sergeant cell σ8 and the required channels

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0 s0 s0a s0 s0 s0 s0 s0c
1 s0 s0 s0 s0 s0 s0 s0 s0bc
2 s0f s0f s0f s0f s0f s0 s0 s0

3 s1 s1 s1 s1 s1 s0 s0 s0

In a related paper, [5], we propose a dynamic extension mechanism, which we
believe is compatible with the existing P system framework, and will complete
the whole algorithm, including the creation of all required extensions, in ec+5 P-
steps, where ec is the eccentricity of the commander in the underlying dag. In [5],
we also provide a more constrained solution, which covers both hP and symmetric
neural P systems, without requiring structural extensions. This solution applies
traditional rules, under the weak priority scheme, and takes 6ec + 7 P-steps.

Previously known FSSP solutions only covered tree-based P systems. Bernar-
dini et al. present a deterministic solution for tree-based P systems with polar-
izations and priorities [2], which works in time 4N +2H , where N and H are the
number of tree nodes and tree height, respectively. Alhazov et al. present another
deterministic solution for tree-based P systems with promoters and inhibitors
[1], which works in time 3H .

426 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

6 Planar Representation

We define a simple region as the interior of a simple closed curve (Jordan curve).
By default, all our regions will be delimited by simple closed curves that are also
smooth, with the possible exception of a finite number of points. This additional
assumption is not strictly needed, but simplifies our arguments.

A simple region Rj is directly contained in a simple region Ri, if Rj ⊂ Ri and
there is no simple region Rk, such that Rj ⊂ Rk ⊂ Ri (where ⊂ denotes strict
inclusion).

It is well known that any transition P system has a planar Venn-like repre-
sentation, with a 1:1 mapping between its tree nodes and a set of hierarchically
nested simple regions. Conversely, any single rooted set of hierarchically nested
simple regions can be interpreted as a tree, which can further form the structural
basis of a number of transition P systems.

We have already shown that this planar representation can be generalized
for hP systems based on canonical dags (i.e., without transitive arcs) and arbi-
trary sets of simple regions (not necessarily nested), while still maintaining a 1:1
mapping between dag nodes and simple regions [8].

Specifically, any hP system structurally based on a canonical dag can be inten-
sionally represented by a set of simple regions, where direct containment denotes
a parent-child relation. The converse is also true, any set of simple regions can
be interpreted as a canonical dag, which can further form the structural basis of
a number of hP systems.

We will now provide several solutions to our open question [8]: How to repre-
sent the other dags, that do contain transitive arcs? First, we discuss a negative
result. First, a counter-example that appeals to the intuition, and then a theorem
with a brief proof.

Example 19. Consider the dag (a) of Figure 5, where nodes 1, 2, 3 are to be
represented by simple regions R1, R2, R3, respectively. We consider the following
three candidate representations: (e), (f) and (g). However, none of them properly
match the dag (a), they only match dags obtained from (a) by removing one of
its arcs:

(e) represents the dag (b), obtained from (a) by removing the arc (1, 3);
(f) represents the dag (c), obtained from (a) by removing the arc (1, 2);
(g) represents the dag (d), obtained from (a) by removing the arc (2, 3).

Theorem 20. Dags with transitive arcs cannot be planarly represented by sim-
ple regions, with a 1:1 mapping between nodes and regions.

Proof. Consider again the counter-example in Example 19. The existence of arcs
(2, 3), (1, 2) requires that R3 ⊂ R2 ⊂ R1. This means that R3 cannot be directly
contained in R1, as required by the arc (1, 3). &'

It is clear, in view of this negative result, that we must somehow relax the require-
ments, if we want to obtain meaningful representations for general hP systems,

Discovering the Membrane Topology of Hyperdag P Systems 427

1

2

3

R1

R2

R3

R1 R2R3

(a)

1

2

3

(b)

(e)

1 2

3

1

2 3

(c) (d)

(f)

R1

R3R2

(g)

Fig. 5. A counter-example for planar representation of non-canonical dags

based on dag structure that may contain transitive arcs. We consider in turn
five tentative solutions.

6.1 Solution I: Self-Intersecting Curves

We drop the requirement of mapping nodes to simple regions delimited by simple
closed curves. We now allow self-intersecting closed curves with inward folds. A
node can be represented as the union of subregions : first, a base simple region,
and, next, zero, one or more other simple regions, which are delimited by inward
folds of base region’s contour (therefore included in the base region). For this
solution, we say that there is an arc (i, j) in the dag if and only if a subregion of
Ri directly contains region Rj , where regions Ri, Rj represent nodes i, j in the
dag, respectively.

Example 21. The region R1 in Figure 6 is delimited by a self-intersecting closed
curve with an inward fold that defines the inner R′′

1 subregion. Note the following
relations:

• R1 = R1 ∪ R′′
1 , thus R′′

1 is a subregion of R1;
• R1 directly contains R2, which indicates the arc (1, 2);
• R2 directly contains R3, which indicates the arc (2, 3);
• R′′

1 directly contains R3, which indicates the transitive arc (1, 3), because R′′
1

is a subregion of R1.

Remark 22. It is difficult to visualize a cell that is modelled by a self-intersecting
curve. Therefore, this approach does not seem adequate.

428 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

1

2

3

R1R2R3R′′
1

Fig. 6. Solution I: R1 is delimited by a self-intersecting closed curve

6.2 Solution II: Distinct Regions

We drop the requirement of a 1:1 mapping between dag nodes and regions.
Specifically, we accept that a node may be represented by the union of one
or more distinct simple regions, here called subregions. Again, as in Solution I,
an arc (i, j) is in the dag if and only if a subregion of Ri directly contains
region Rj .

1

2

3

R′
1

R2R3
R′′

1

Fig. 7. Solution II: R1 is the union of two simple regions, R′
1 and R′′

1

Example 23. In Figure 7, the simple region R1 is the union of two simple regions,
R′

1 and R′′
1 , connected by a dotted line. Note the following relations:

• R1 = R′
1 ∪ R′′

1 , thus R′
1 and R′′

1 are subregions of R1;
• R′

1 directly contains R2, which indicates the arc (1, 2), because R′
1 is a sub-

region of R1;
• R2 directly contains R3, which indicates the arc (2, 3);
• R′′

1 directly contains R3, which indicates the transitive arc (1, 3), because R′′
1

is a subregion of R1.

Remark 24. In Example 23, a dotted line connects two regions belonging to
the same node. It is difficult to see the significance of such dotted lines in the
world of cells. Widening these dotted lines could create self-intersecting curves—
a solution which we have already rejected. Two distinct simple regions should
represent two distinct cells, not just one. Therefore, this approach does not seem
adequate either.

Discovering the Membrane Topology of Hyperdag P Systems 429

6.3 Solution III: Flaps

We again require simple regions, but we imagine that our representation is an
infinitesimally thin “sandwich” of several superimposed layers, up to one distinct
layer for each node (see Figure 8b). Initially, each region is a simple region
that is conceptually partitioned into a base subregion (at some bottom layer)
and zero, one or more other flap subregions, that appear as flaps attached to
the base. These flaps are then folded, in the three-dimensional space, to other
“sandwich” layers (see Figure 8c). The idea is that orthogonal projections of
the regions corresponding to destinations of transitive arcs, which cannot be
contained directly in the base region, will be directly contained in such subregions
(or vice-versa). Because the thin tethered strip that was used for flapping is not
relevant, it is represented by dots (see Figure 8d). As in the previous solutions,
an arc (i, j) is in the dag if and only if a subregion Sk of Ri directly contains
region Rj .

Superficially, this representation looks similar to Figure 7. However, its inter-
pretation is totally different, it is now a flattened three-dimensional object. We
can visualize this by imagining a living organism that has been totally flattened
by a roller-compactor (apologies for the “gory” image).

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Fig. 8. The process described in Solution III

We next give a constructive algorithm that takes as input a dag (X, δ) and
produces a set of overlapping regions {Rk | k ∈ X}, such that (i, j) ∈ δ if and
only if a subregion of Ri directly contains Rj .

430 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

Algorithm 10: A dag to regions.

Input: dag (X, δ).
Output: flattened regions {Rk | k ∈ X}.

Step 1: Reorder the nodes of the dag (X, δ) to be in reverse topological order.
(That is, sink nodes come before source nodes.)

Step 2: For each node i in δ ordered as in step 1 do:
If i is a sink:

Create a new region Ri disjoint from all previous regions.
Otherwise:

Create a base region of Ri by creating a simple closed region prop-
erly containing the union of all regions Rj such that (i, j) ∈ δ.
Further, for any transitive arc (i, j) create a flap subregion that
directly contains Rj and attach it with a strip to the edge of the
base region.

Remark 25. In the set constructed by this algorithm, if two or more transitive
arcs are incident to a node j then the respective flaps (without tethers) may
share the same projected subregion directly containing region Rj .

Example 26. Figure 9 shows an input dag with 6 nodes, 3 transitive arcs and its
corresponding planar region representation. Note the reverse topological order is
6, 5, 4, 3, 2, 1 and the regions R1 and R2 use the same flap subregions containing
the region R6.

1 2

3 4

5 6

R5R1 R6 R4 R2R3

Fig. 9. Illustration of Algorithm 10

Theorem 27. Every dag with transitive arcs can be represented by a set of
regions with folded flaps, with a 1:1 mapping between nodes and regions.

Proof. We show by induction on the order of the dags that we can always produce
a corresponding planar representation. First, note that any dag can be recur-
sively constructed by adding a new node i and arcs incident from i to existing

Discovering the Membrane Topology of Hyperdag P Systems 431

nodes. Note that Algorithm 10 builds planar representations from sink nodes
(induction base case) to source nodes (inductive case). Hence, any dag has at
least one folded planar representation, depending on the topological order used.
We omit the details of how to ensure non-arcs; this can be easily achieved by
adding “spikes” to the regions—see our first paper for representing non-transitive
dags [8]. &'

Theorem 28. Every set of regions with folded flaps can be represented by a dag
with transitive arcs, with a 1:1 mapping between nodes and regions.

Proof. We show how to produce a unique dag from a folded planar representation.
The first step is to label each region Rk, which will correspond to node k ∈ X
of a dag (X, δ). We add an arc (i, j) to δ if an only if a subregion of Ri directly
contains the region Rj . &'

Remark 29. One could imagine an additional constraint, that nodes, like cells,
need to differentiate between its outside and inside or, in a planar representation,
between up and down. We can relate this to membrane polarity, but we refrain
from using this idea here, because it can conflict with the already accepted role
of polarities in P systems. It is clear that, looking at our example, this solution
does not take into account this sense of direction.

For example, considering the scenario of Figure (9), regions R3, R2 and R′
1

(the base subregion of R1) can be stacked “properly”, i.e., with the bottom side
of R3 on the top side of R2 and the bottom side of R2 on the top side of R′

1.
However, the top side of R′′

1 (the flap of R1) will improperly sit on the top side

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Half twist

Fig. 10. The process described in Solution IV

432 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

of R3, or, vice-versa, the bottom side of R′′
1 will improperly sit on the bottom

side of R3.
Can we improve this? The answer follows.

6.4 Solution IV: Flaps with Half-Twists

This is a variation of Solution III, that additionally takes proper care of the
outside/inside (or up/down) directions. We achieve this by introducing half-
twists (as used to build Moebius strips), of which at most one half-twist is
needed for each simple region.

Example 30. Figure 10 describes this process.

(a) a given dag with three nodes, 1, 2 and 3;
(b) three simple regions, R1, R2 and R3, still in the same plane;

1

2

3

4

R4 R3

R2

R1

(a) (b)

(c) (d)

R4 R3 R2R1

R4
R3

R2R1

Half twist

Half twist

Fig. 11. The process described in Solution IV

Discovering the Membrane Topology of Hyperdag P Systems 433

R3

R1

R2

Fig. 12. The process described in Solution IV

(c) R1 flapped and half-twisted in three-dimensional space;
(d) final “roller-compacted” representation, where dots represent the thin strip

that was flapped, and the mark × a possible location of the half-twist.

Corollary 31. Dags with transitive arcs can be represented by regions with half-
twisted flaps, with a 1:1 mapping between nodes and regions.

Proof. Since half-twisted flaps are folded flaps, the projection of the boundary
of the base and flaps used for a region is the same region as given in the proof
of Theorems 27 and 28, provided we always twist a fold above its base. &'

Remark 32. This solution solves all our concerns here and seems the best, taking
into account the impossibility result (Theorem 20).

6.5 Solution V: Moebius Strips

To be complete, we mention another possible solution, which removes any dis-
tinction between up and down sides. This representation can be obtained by
representing membranes by (connected) Moebius strips.

Perhaps interestingly, Solutions IV and V seem to suggest links (obviously
superficial, but still links) to modern applications of topology (Moebius strips
and ladders, knot theory) to molecular biology, for example, see [6].

7 Conclusions

In this paper we have presented several concrete examples of hP systems for
the discovery of basic membrane structure. Our primary goal was to show that,
with the correct model in terms of operational and transfer modes, we could
present simple algorithms. Our secondary goal was to obtain reasonably efficient
algorithms.

We first started with cases, where the cells could be anonymous, and showed,
among other things, how an hP system could (a) broadcast to descendants, (b)
count paths between cells, (c) count children and descendants, and (d) determine
cell heights. We then provided examples where we allowed each cell to know its

434 R. Nicolescu, M.J. Dinneen, and Y.-B. Kim

own ID and use it as a communication marker. This model is highlighted by
our algorithm that computes all the shortest paths from a given source cell—
a simplified version of the distributed Bellman-Ford algorithm, with all unity
weights. For each of our nontrivial algorithms, we illustrated the hP system
computations on a fixed dag, providing step-by-step traces.

We then moved onto a simple solution that can be used to synchronize a
subset of (possibly all) cells. We presented a fast solution that requires structural
extensions, which are straightforward with dags, but not applicable to trees. The
solution given here assumes that the required extensions have already been built.
In a related paper [5], we describe a natural way to dynamically extend a dag
structure, which we believe is compatible with the P systems framework.

Finally, we focused on visualizing hP systems in the plane. We presented
a natural model, using folded simple closed regions to model the membrane
interconnections, including the transitive arcs, as specified by an arbitrary dag
structure of an hP system.

As with most ongoing projects, there are several open problems regarding
practical computing using P systems and their extended models. We end by
mentioning just a few, closely related to the development of fundamental algo-
rithms for discovery of membrane topology.

• In terms of using membrane computing as a model for realistic networking,
is there a natural way to route a message between cells (not necessarily con-
nected directly) using messages, tagged by addressing identifiers, in analogy
to the way messages are routed on the internet, with dynamically created
routing information?

• What are the system requirements to model fault tolerant computing? The
tree structure seems to fail here, because a single node failure can discon-
nect the tree and make consensus impossible. Is the dag structure versatile
enough?

• Do we have the correct mix of rewriting and transfer modes for membrane
computing? For example, in which situations can we exploit parallelism and
in which scenarios are we forced to sequentially apply rewriting rules?

Acknowledgements

The authors wish to thank John Morris and the three anonymous reviewers for
detailed comments and feedback that helped us improve the paper.

References

1. Alhazov, A., Margenstern, M., Verlan, S.: Fast synchronization in P systems. In:
Corne, D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008.
LNCS, vol. 5391, pp. 118–128. Springer, Heidelberg (2009)

2. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: How to synchronize
the activity of all components of a P system? Int. J. Found. Comput. Sci. 19(5),
1183–1198 (2008)

Discovering the Membrane Topology of Hyperdag P Systems 435

3. Ciobanu, G., Desai, R., Kumar, A.: Membrane systems and distributed computing.
In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS,
vol. 2597, pp. 187–202. Springer, Heidelberg (2003)

4. Ciobanu, G.: Distributed algorithms over communicating membrane systems.
Biosystems 70(2), 123–133 (2003)

5. Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: New solutions to the firing squad syn-
chronization problem for neural and hyperdag P systems. EPTCS 15, 1–16 (2009)

6. Flapan, E.: When Topology Meets Chemistry: A Topological Look at Molecular
Chirality. Cambridge University Press, Cambridge (2000)

7. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

8. Nicolescu, R., Dinneen, M.J., Kim, Y.-B.: Structured modelling with hyperdag
P systems: Part A. In: Mart́ınez del Amor, M.A., et al. (eds.) Seventh Brainstorm-
ing Week on Membrane Computing, vol. 2, pp. 85–107. Universidad de Sevilla
(2009)

9. Păun, Gh.: Membrane Computing-An Introduction. Springer, Heidelberg (2002)
10. Păun, Gh.: Introduction to membrane computing. In: Ciobanu, G., Păun, Gh.,

Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 1–42.
Springer, Heidelberg (2006)

	Discovering the Membrane Topology of Hyperdag P Systems
	Introduction
	Preliminaries
	Basic Algorithms for Network Discovery–Without IDs
	Basic Algorithms for Network Discovery–With IDs
	The Firing-Squad-Synchronization-Problem (FSSP)
	Planar Representation
	Solution I: Self-Intersecting Curves
	Solution II: Distinct Regions
	Solution III: Flaps
	Solution IV: Flaps with Half-Twists
	Solution V: Moebius Strips

	Conclusions

