
This is a preliminary version of a paper
that will appear in Electronic Proceedings
in Theoretical Computer Science.

c©M.J. Dinneen, Y.-B. Kim & R. Nicolescu
This work is licensed under the
Creative Commons Attribution License.

New Solutions to the Firing Squad Synchronization Problem
for Neural and Hyperdag P Systems

Michael J. Dinneen Yun-Bum Kim
Radu Nicolescu

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

{mjd,radu}@cs.auckland.ac.nz tkim021@aucklanduni.ac.nz

We propose a unified solution to an open question: the Firing Squad Synchronization Problem (FSSP)
for hyperdag P systems and for neural P systems with symmetric communication channels. Our
solution takes 6e + 7 steps, where e is the eccentricity of the commander cell of the dag or digraph
underlying these extended P systems. When restricted to tree-based P systems, unlike previously
proposed FSSP solutions, we allow the commander node to be any node of the underlying tree.
Also our solution works without membrane polarization techniques or conditional rules, but requires
states, as used in hyperdag and neural P systems.

Keywords: P systems, neural P systems, hyperdag P systems, synchronization, cellular automata.

1 Introduction

The Firing Squad Synchronization Problem (FSSP) [5, 6, 9, 12, 14, 15] is one of the best studied problems
for cellular automata. The problem involves finding a cellular automaton, such that, after a command is
given, all the cells, after some finite time, enter a designated firing state simultaneously and for the first
time. Several variants of FSSP [12, 14], have been proposed and studied. Studies of these variations
mainly focus on finding a solution with as few states as possible and possibly running in optimum time.

There are several applications that require synchronization. We list just three here. At the biological
level, cell synchronization is a process by which cells at different stages of the cell cycle (division,
duplication, replication) in a culture are brought to the same phase. There are several biological methods
used to synchronize cells at specific cell phases [4]. Once synchronized, monitoring the progression from
one phase to another allows us to calculate the timing of specific cells’ phases. A second example relates
to operating systems [13], where process synchronization is the coordination of simultaneous threads or
processes to complete a task without race conditions. Finally, in telecommunication networks [3], we
often want to synchronize computers to the same time, i.e., primary reference clocks should be used to
avoid clock offsets.

The synchronization problem has recently been studied in the framework of P systems. Using tree-
based P systems, Bernardini et al [2] provided a non-deterministic with time complexity 3h and a de-
terministic solution with time complexity 4n+2h, where h is the height of the tree structure underlying
the P system and n is the number of membranes of the P system. The deterministic solution requires
membrane polarization techniques and uses a depth-first-search.

More recently, Alhazov et al [1] described an improved deterministic algorithm for tree-based P sys-
tems, that runs in 3h + 3 steps. This solution requires conditional rules (promoters and inhibitors) and
combines a breadth-first-search, a broadcast and a convergecast, algorithmic techniques with a high
potential for parallelism.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Firing Squad Synchronization Problem for P Systems

In this paper, we continue the study of FSSP in the framework of P systems, by providing solutions
for hyperdag P systems [7] and for neural P systems [10] with symmetric communication channels. We
propose deterministic solutions to a variant of FSSP [14], in which there is a single commander, at an
arbitrary position. We further generalize this problem by synchronizing a subset of cells of the considered
hyperdag or neural P system.

Our first and “trivial” solution uses simple rules, but requires structural extensions, that may or may
not be allowed. However, the simplicity of this solution supports our hypothesis that basing P systems
on dag, instead of tree, structures allows more natural expressions of some fundamental distributed algo-
rithms [7, 8].

Our second solution is more traditional and does not require structural extensions, but is substantially
more complex. It does not require polarizations or conditional rules, but requires states, as defined for
hyperdag and neural P systems and also combines a breadth-first-search, a broadcast and a convergecast.
This solution takes 6e+7 steps, where e is the eccentricity of the commander cell of the underlying dag
or digraph. When restricted to P systems, our algorithm takes more steps than Alhazov et al [1], if
the commander is the root node, but comparable to this, when the commander is a central node of an
unbalanced rooted tree.

Section 2 provides background definitions and introduces the families of P systems considered for
synchronization. Next, in Section 3, we cite the communication models for hyperdag P systems and
neural P systems, and the transition and rewrite rules available for solving the FSSP. Our two FSSP
solutions are described in Sections 4 and 5. Finally, after illustrating the evolution of our FSSP algorithm
in Section 5, we end with some concluding remarks.

2 Preliminary

A (binary) relation R over two sets X and Y is a subset of their Cartesian product, R⊆ X×Y . For A⊆ X
and B⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A,(x,y) ∈ R}, R−1(B) = {x ∈ X | ∃y ∈ B,(x,y) ∈ R}.

A digraph (directed graph) G is a pair (X ,A), where X is a finite set of elements called nodes (or
vertices), and A is a binary relation A⊆ X×X , of elements called arcs. A length n−1 path is a sequence
of n distinct nodes x1, . . . ,xn, such that {(x1,x2), . . . ,(xn−1,xn)} ⊆ A. A cycle is a path x1, . . . ,xn, where
n≥ 1 and (xn,x1)∈ A. A digraph is symmetric if its relation A is symmetric, i.e., (x1,x2)∈ A⇔ (x2,x1)∈
A. By default, all digraphs considered in this paper, and all structures from digraphs (dag, rooted tree,
see below) will be weakly connected, i.e., each pair of nodes is connected via a chain of arcs, where the
arc direction is not relevant.

A dag (directed acyclic graph) is a digraph (X ,A) without cycles. For x ∈ X , A−1(x) are x’s parents,
A(x) are x’s children, and A(A−1(x))\{x} are x’s siblings.

A rooted tree is a special case of dag, where each node has exactly one parent, except a distinguished
node, called root, which has none.

Throughout this paper, we will use the term graph to denote a symmetric digraph and tree to denote
a rooted tree.

For a given tree, dag or digraph, we define ec, the eccentricity of a node c, as the maximum length of
a shortest path between c and any other reachable node in the corresponding structure.

For a tree, the set of neighbors of a node x, Neighbor(x), is the union of x’s parent and x’s children.
For a dag δ and node x, we define Neighbor(x) = δ (x)∪δ−1(x)∪δ (δ−1(x))\{x}, if we want to include
the siblings, or, Neighbor(x) = δ (x)∪δ−1(x), otherwise. For a graph G = (X ,A), we set Neighbor(x) =
A(x) = {y | (x,y) ∈ A}. Note that, as defined, Neighbor is always a symmetric relation.

M.J. Dinneen, Y.-B. Kim & R. Nicolescu 3

A special node c of a structure will be designated as the commander. For a given commander c, we
define the level of a node x, levelc(x) ∈ N, as the length of a shortest path between the c and x, over the
Neighbor relation.

For a given tree, dag or digraph and commander c, for nodes x and y, if y ∈ Neighbor(x) and
levelc(y) = levelc(x) + 1, then x is a predecessor of y and y is successor of x. Similarly, a node z is
a peer of a node x, if z ∈ Neighbor(x) and levelc(z) = levelc(x). Note that, for a given node x, the set of
peers and the set of successors are disjoint. A node without a successor will be referred to as a terminal.
We define maxlevelc = max{levelc(x) | x∈ X} and we note ec = maxlevelc. A level-preserving path from
c to a node y is a sequence x0, . . . ,xk, such that x0 = c,xk = y,xi ∈Neighbor(xi−1), levelc(xi) = i,1≤ i≤ k.
We further define countc(y) as the number of distinct level-preserving paths from c to y.

The level of a node and number of level-preserving paths to it can be determined by a standard
breadth-first-search, as shown in Algorithm 1. Intuitively, if the original structure is a tree, this algorithm
will “reset” the root at another node in the tree.

Algorithm 1 (Determine levels and count level-preserving paths)

• INPUT: A tree, dag or digraph, with nodes {1, . . . ,n} and a commander c ∈ {1, . . . ,n}.
• OUTPUT: The arrays levelc[] and countc[] of shortest distances and number of level-preserving

paths from c to each node in the structure, over the Neighbor relation.

array levelc[1, . . . ,n] = [−1, . . . ,−1]; countc[1, . . . ,n] = [0, . . . ,0]
queue Q = ()
Q⇐ c
levelc[c] = 0; countc[c] = 1
while Q 6= () do

x⇐ Q
for each y ∈ Neighbor(x) do

if levelc[y] =−1 then
Q⇐ y
levelc[y] = levelc[x]+1

if levelc[y] = levelc[x]+1 then
countc[y] = countc[y]+ countc[x]

return levelc

Example 1. Figures 1, 2 and 3 show levelc, predecessors, successors, peers and countc, for a tree, a dag
and a digraph structure, respectively. Small side-arrows indicate the arcs traversed while computing the
levels, over the induced Neighbor relation, as described in Algorithm 1.

3 P Systems and the Firing Squad Synchronization Problem

In this section, we briefly recall several fundamental definitions for P systems and describe a P systems
version of the Firing Squad Synchronization Problem (FSSP).

For the definitions of tree-based P systems, see Păun [10]. Here we reproduce the basic definitions
of dag-based hyperdag P systems, from our previous work [7] and digraph-based neural P systems, from
Păun [10].

Definition 2 (Hyperdag P systems [7]) A hyperdag P system (of order n), in short an hP system, is a
system Πh = (O,σ1, . . . ,σn,δ , Iout), where:

4 Firing Squad Synchronization Problem for P Systems

1

2 3

4 5 6

7

Node levelc predecessors successors peers countc
1 1 3 2 − 1
2 2 1 − − 1
3 0 − 1,4,5,6 − 1
4 1 3 − − 1
5 1 3 − − 1
6 1 3 7 − 1
7 2 6 − − 1

Figure 1: Left: a tree (taken from Bernardini et al [2]), with commander c = 3, e3 = 2; Right: table with
node levels, predecessors, successors, peers and countc’s.

1

2 3

5 6 7

8

9

4

10

Node levelc predecessors successors peers countc
1 2 2,3 − − 2
2 1 6 1,5 − 1
3 1 6 1,7 − 1
4 3 7 − − 1
5 2 2 − − 1
6 0 − 2,3,9 − 1
7 2 3 4 8 1
8 2 9 10 7 1
9 1 6 8 − 1
10 3 8 − − 1

Figure 2: Left: a dag with commander c = 6, e6 = 3 (siblings excluded); Right: table with node levels,
predecessors, successors, peers and countc’s.

1. O is an ordered finite non-empty alphabet of objects;

2. σ1, . . . ,σn are cells, of the form σi = (Qi,si,0,wi,0,Pi), 1≤ i≤ n, where:

• Qi is a finite set (of states),
• si,0 ∈ Qi is the initial state,
• wi,0 ∈ O∗ is the initial multiset of objects,
• Pi is a finite set of multiset rewrite rules of the form: sx→ s′x′u↑v↓w↔ygozout , where s,s′ ∈Qi,

x,x′ ∈ O∗, u↑ ∈ O∗↑, v↓ ∈ O∗↓, w↔ ∈ O∗↔, ygo ∈ O∗go and zout ∈ O∗out , with the restriction that
zout = λ for all i ∈ {1, . . . ,n}\Iout .

3. δ is a set of dag parent-child arcs on {1, . . . ,n}, i.e., δ ⊆ {1, . . . ,n}× {1, . . . ,n}, representing
duplex communication channels between cells;

4. Iout ⊆ {1, . . . ,n} indicates the output cells, the only cells allowed to send objects to the “environ-
ment”.

Definition 3 (Neural P systems [10]) A neural P system (of order n ≥ 1), in short an nP system, is a
system Πn = (O,σ1, . . . ,σn,syn, iout), where:

1. O is an ordered finite non-empty alphabet of objects;

M.J. Dinneen, Y.-B. Kim & R. Nicolescu 5

1

2 3

4 5

6 7

Node levelc predecessors successors peers countc
1 0 − 3,7 − 1
2 2 3 − 4 1
3 1 1 2,4,5 − 1
4 2 3,7 6 2 2
5 2 3,7 6 − 2
6 3 4,5 − − 4
7 1 1 4,5 − 1

Figure 3: Left: a graph with commander c = 1, e1 = 3; Right: table with node levels, predecessors,
successors, peers and countc’s.

2. σ1, . . . ,σn are cells, of the form σi = (Qi,si,0,wi,0,Pi), 1≤ i≤ n, where:

• Qi is a finite set (of states),
• si,0 ∈ Qi is the initial state,
• wi,0 ∈ O∗ is the initial multiset of objects,
• Pi is a finite set of multiset rewrite rules of the form: sx→ s′x′ygozout , where s,s′ ∈Qi, x,x′ ∈

O∗, ygo ∈ O∗go and zout ∈ O∗out , with the restriction that zout = λ for all i ∈ {1, . . . ,n}\{iout}.
3. syn is a set of digraph arcs on {1, . . . ,n}, i.e., syn⊆ {1, . . . ,n}×{1, . . . ,n}, representing unidirec-

tional communication channels between cells, known as synapses;

4. iout ∈ {1, . . . ,n} indicates the output cell, the only cell allowed to send objects to the “environ-
ment”.

A symmetric nP system, (here) in short, a snP system, is an nP system where the underlying digraph
syn is symmetric (i.e., a graph). For further definitions describing the evolution of hP and nP systems,
such as configuration, rewrite modes, transfer modes, transition steps, halting and results, see our previ-
ous work [7]. For all structures, we also utilize the weak policy for applying priorities to rules, as defined
by Păun [11].
Remark 4. Most of the P systems considered here (i.e., nP systems, snP systems, hP systems with siblings
and hP systems without siblings) define a tag go that sends a multiset of objects along the previously
defined Neighbor relation. Traditional tree-based P systems do not directly provide this facility, however,
it can be easily provided by the union of out and in! target indications, that represent sending “to parent”
and “to all children”, respectively. That is, (w,go)≡ (w,out)(w, in!).

Definition 5 (FSSP for P systems with states—informal definition) We are given a P, hP, snP or
nP system with n cells, {σ1, . . . ,σn}, where all cells have the same states set and same rules set. Two
states are distinguished: an initial state s0 and a firing state sω . We select an arbitrary commander cell
σc and an arbitrary subset of squad cells, F ⊆ {σ1, . . . ,σn} (possibly the whole set), that we wish to
synchronize; the commander itself may or may not be part of the firing squad. At startup, all cells start
in the initial state s0; the commander and the squad cells may contain specific objects, but all other cells
are empty. Initially, all cells, except the commander, are idle, and will remain idle until they receive a
message. The commander sends one or more orders, to one or more of its neighbors, to start and control
the synchronization process. Idle cells may become active upon receiving a first message. Notifications

6 Firing Squad Synchronization Problem for P Systems

may be relayed to all cells, as necessary. Eventually, all cells in the squad set F will enter the designated
firing state sω , simultaneously and for the first time. At that time, all the other cells have returned to the
initial state s0, but without passing through the firing state. Optionally, at that time, all cells should be
empty.

In this paper, we propose two new deterministic FSSP solutions, that are described in the next two
sections:

• The first solution is “trivially” straightforward, and assumes that we are allowed to extend the
original structure. This solution works for hP systems and (not necessarily symmetric) nP systems,
but fails for tree-based P systems.

• The second solution is more sophisticated and assumes that we are not allowed to extend the
structure. This solution works for tree-based P systems, hP systems and snP systems.

Our two solutions do not require polarities or conditional rules, but require priorities and states. Both
hP systems and snP systems already have states, by definition. However, it seems that traditional tree-
based P systems have not used states so far, or not much.

4 FSSP—Solution via Structural Extensions

A straightforward solution is possible when we are allowed to extend the cell structure of the given hP
or nP system. In this scenario we can also consider (not necessarily symmetric) general digraphs. In this
section, we further refine our solution given in an earlier paper [8].

Intuitively, we extend the original hP or nP system by an external cell, which will be called the
sergeant. The commander initiates the synchronization process by sending an order to the sergeant, who
“shouts” to all squad cells, prompting these cells to enter the firing state, all at the same time. Because of
their structural constraints, trees have only limited expansion possibilities (essentially adding new roots
or leaves) and this approach will fail for tree-based P systems.

In the final version we will indicate a natural way to achieve this structural extension (which will add
ec +2 steps), that we believe is compatible with the existing P systems rules.

Algorithm 2 (FSSP—Structural Extensions)

Precondition: An hP or nP system, with n cells σ1, . . . ,σn, a commander cell σc and a set of squad cells
F to be synchronized. We extend its underlying dag or digraph structure by adding a new sergeant cell
σn+1.

• For hP systems, we extend the original dag by an arc (σn+1,σi), for each i ∈ F ∪σc.

• For nP systems, we extend the original digraph by an arc (σc,σn+1) and by an arc (σn+1,σi), for
each i ∈ F ∪σc.

All cells start in the state s0 and have the same rules. The state s1 is the firing state. Initially, the
commander σc is marked by one object a, each squad cell is marked by one object t (this can include the
commander σc or the sergeant σn+1, or both) and the sergeant σn+1 is marked by one object c; all other
cells have no objects.
Postcondition: All cells in the set F enter the state s1, simultaneously and for the first time, after 3
steps.

M.J. Dinneen, Y.-B. Kim & R. Nicolescu 7

Rules: All rules and states use rewrite mode α = min and transfer mode β = repl.

0. For state s0, the rules will run under these priorities:

1) s0a→ s0bgo

2) s0bct→ s0 f fgo

3) s0bc→ s0 fgo

4) s0b f t→ s1

5) s0 f t→ s1

6) s0b f → s0

7) s0b→ s0

Example 6. Figure 4 illustrates this algorithm for a system which consists of seven cells {σ1, . . . ,σ7}.
The commander cell is σ5 and the squad set is F = {σ1, . . . ,σ5}. In the diagram on the left, this system’s
structure has already been extended by the sergeant cell σ8 and the required communication channels,
represented by dotted arrows. The actual system structure is not actually used by this algorithm and was
here replaced by a blob that circumscribes the original cells. The table on the right shows specific traces
for a specific hP system with seven cells—an hP system based on the tree shown in Figure 1, with c = σ3.
The extended structure is a dag, which is not a tree anymore.

σ2 σ3

σ1 σ7 σ4

σ6 σ5

σ8

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
0 s0t s0t s0at s0t s0t s0 s0 s0c
1 s0bt s0t s0t s0bt s0bt s0b s0 s0bc
2 s0 f t s0 f t s0 f t s0 f t s0 f t s0 s0 s0
3 s1 s1 s1 s1 s1 s0 s0 s0

Figure 4: Left: An hP system extended for Algorithm 2. Right: Traces for the hP system of Figure 1.

5 FSSP—Solution via Rules

Here we consider a more complex scenario, where we are only allowed to modify the rules of the given hP
or nP system, but not its original structure. A brief description of this solution follows. The commander
intends to send an order to all cells in the set F , which will prompt them to synchronize by entering
the designated firing state. However, in general, the commander does not have direct communication
channels with all the cells. In this case, the process of sending a command to the destination cell will
cause delays (some steps), as the command is relayed through intermediate cells. Hence, to ensure all
firing squad cells enter the firing state simultaneously, each firing squad cell determines the number of
steps it needs to wait before entering the firing state.

As in our earlier paper [8], cells have no built-in knowledge of the network topology. The cells are
initially empty, except the commander, which is initially marked by one a, and the squad cells, which
are initially marked by one f each. All cells start with the same set of rules, which are applied in the

8 Firing Squad Synchronization Problem for P Systems

max rewrite mode, using weak priorities, and the repl transfer mode. In the proofs, all rules that are
concurrently applied will be grouped together within parentheses; e.g., (x,y),z indicates two steps, first
rules x and y, concurrently executed, followed by rule z.

Each cell independently progresses through three phases, called FSSP-I, FSSP-II and FSSP-III,
which are detailed in Algorithms 3, 4 and 5, respectively. Phase FSSP-I is a broadcast from the com-
mander, starts in s0 and ends in s2. Phase FSSP-II is a convergecast from terminal cells, followed by a
second broadcast from the commander; this phase starts in s2 and ends in s8. Phase FSSP-III starts in s8
and continues with a countdown until squad cells end in the firing state s9, and all other cells end in s0.
A sample run of our algorithm will follow at the end of this section, in Example 12.

The statechart in Figure 5 illustrates the combined flow of these three phases. The nodes represent
the states of the hP or nP system and the arcs are labelled with numbers of the rules that match the
corresponding transitions.

s0 s1 s2 s4 s6 s7 s80.1, 0.2 1.1, 1.2, 2.2, 2.3,

4.3

7.2, 7.3 8.2, 8.4
s5

5.6

s9

8.1
4.1, 4.2,

s3 3.1, 3.2,

2.1, 2.7

2.5, 2.6 3.3, 3.4
4.6, 4.7,

5.1, 5.3,

5.2, 5.7 6.1, 6.2

7.1

4.4, 4.5, 4.10,

2.4

8.3

1.3 4.8, 4.9

5.4, 5.5,

4.11, 4.12, 4.13

6.7

6.3, 6.4,
6.5, 6.6,

Figure 5: Statechart view of the combined FSSP algorithm phases.

The initial configuration is defined below for our FSSP algorithm.

FSSP: The initial configuration

• Γ = {σ1, . . . ,σn}, n > 1, is the set of all cells, σc is the commander, and the firing squad is F ⊆ Γ;

• O = {a,b,c,d,e, f ,g,h,k, l, p,q};

• Qi = {s0,s1,s2,s3,s4,s5,s6,s7,s8,s9}, for i ∈ {1, . . . ,n}, which is “allocated” to three phases as
follows:

◦ FSSP-I contains rules for states {s0,s1};
◦ FSSP-II contains rules for states {s2,s3,s4,s5,s6};
◦ FSSP-III contains rules for states {s6,s7};
◦ FSSP-IV contains rules for states {s8,s9}.

• sω = s9 is the firing state;

• si,0 = s0, for i ∈ {1, . . . ,n};

• wc,0 = {a}, if σc /∈ F , or {a, f}, otherwise;

• wi,0 = { f} for all σi ∈ F \σc;

• wi,0 = /0, for all σi ∈ Γ\ (F ∪{σc});

M.J. Dinneen, Y.-B. Kim & R. Nicolescu 9

• Priority rules, in the weak interpretation:

0. For state s0:

1) s0a→ s1aedgo

2) s0d→ s1adgo

1. For state s1:

1) s1ae→ s2aeek
2) s1a→ s2ak
3) s1d→ s2l

2. For state s2:

1) s2k→ s2

2) s2ae→ s3aee
3) s2d→ s3d
4) s2a→ s6acgo

5) s2l→ s3lggo

6) s2g→ s3

7) s2ae→ s2aee

3. For state s3:

1) s3ae→ s4aee
2) s3a→ s4a
3) s3g→ s4 p
4) s3c→ s4

4. For state s4:

1) s4cd→ s4

2) s4ade→ s4adee
3) s4d→ s4d
4) s4aeeeee→ s6aeee
5) s4eeeee→ s6e
6) s4a→ s5ak
7) s4l→ s5lhgo

8) s4h→ s5

9) s4q→ s5

10) s4c→ s6

11) s4g→ s6

12) s4h→ s6

13) s4q→ s6

5. For state s5:

1) s5k→ s5

2) s5a→ s6acgo

3) s5hp→ s5 p
4) s5 pq→ s5

5) s5 p→ s5kp
6) s5l→ s5lhgo

7) s5l→ s6qgo

6. For state s6:

1) s6ae→ s7ak
2) s6e→ s7bego

3) s6c→ s6

4) s6g→ s6

5) s6h→ s6

6) s6 p→ s6

7) s6q→ s6

7. For state s7:

1) s7k→ s7

2) s7a→ s8a
3) s7e→ s8

8. For state s8:

1) s8ab→ s8a
2) s8a f → s9

3) s8a→ s0

4) s8a→ s9

Algorithm 3 (FSSP-I: First broadcast from the commander)

Precondition: The initial configuration as specified earlier.
Postcondition:

• The end state is s2.

• A cell σi has

◦ countc(i) copies of a and countc(i) copies of k;
◦ u copies of l, where u is the total number of a’s in σi’s peers;
◦ v copies of d, where v is the total number of a’s in σi’s successors;
◦ two copies of e, if σi = σc;
◦ one copy of f , if σi ∈ F .

Proof. This phase of the algorithm is a broadcast that follows the virtual dag created by the levels
determined by Algorithm 1.

Consider a cell σi. By induction:

10 Firing Squad Synchronization Problem for P Systems

• At step levelc(i), σi (except the commander) receives a total of countc(i) copies of d from its
predecessors.

• At step levelc(i)+ 1, σi broadcasts countc(i) copies of d to each of its neighbors and transits to
state s1. At the same time, σi accumulates one local copy of a for each sent d, for a total count of
countc(i) of a’s. Also, σi receives u copies of d, similarly sent by its peers, where u is equal to the
total number of a’s similarly accumulated, at the same time step, by σi’s peers.

• At step levelc(i)+2, σi receives v copies of d, sent back by its successors; and transits to state s2,
where v is equal to the total number of a’s created, at the same time step, by σi’s successors;

The commander, by initially having one a, creates two copies of e. Finally, the rules associated with
this phase do not change the number of f ’s, thus, each cell in the firing squad still ends with one f .

Lemma 7 (FSSP-I: Number of steps). For each cell σi, the phase FSSP-I takes levelc(i)+2 steps.

Proof. As indicated in the proof of the Algorithm 3, the total number of steps is levelc(i)+2.

Algorithm 4 (FSSP-II: Convergecasts from terminal nodes)

Precondition: As described in the postcondition of Algorithm 3.
Postcondition:

• This phase ends when the commander enters state s6.

• A cell σi has

◦ countc(i) copies of a;
◦ ec +2 copies of e, if σi = σc;
◦ one copy of f , if σi ∈ F .

Proof. Briefly, this phase of the algorithm starts with a convergecast of c’s from the terminal cells;
followed by a second broadcast of e’s from the commander, where the number of e’s received by a cell
σi indicates its necessary synchronization delay.

A terminal cell σi enters this phase levelc(i) steps after the commander, idles one step in state s2,
then starts its role in the convergecast, by broadcasting countc(i) copies of c to its predecessors and peers
(it does not have successors) and transits to state s6. This cell further idles in state s6 until it receives e’s
from its predecessors. The convergecast takes four steps at each level. The total run-time is dominated
by ec, the length of the longest level-preserving path from commander. Therefore, the convergecast wave
will complete at commander after ec + 4ec− 2 = 5ec− 2 steps after the commander starts this phase.
When the commander receives the convergecast from all its successors, it takes two steps to transit to
state s6. Therefore, the commander enters state s6, 5ec steps after it starts this phase.

Lemma 8 (FSSP-II: Number of steps). For each cell σi, the phase FSSP-II takes 5ec− levelc(i) steps.

Proof. As indicated in the proof of Algorithm 4, this phase takes 5ec steps.

Algorithm 5 (FSSP-III: Second broadcast from the commander)

M.J. Dinneen, Y.-B. Kim & R. Nicolescu 11

Precondition: As described in the postcondition of Algorithm 4.
Postcondition:

• The end state is s8.

• A cell σi has

◦ countc(i) copies of a;
◦ (ec +1− levelc(i))countc(i) copies of b;
◦ one copy of f , if σi ∈ F .

Proof. In this phase, commander starts its second broadcast, by sending ec + 1 copies of e’s to all its
successors. By induction on level, a cell σi receives a total of (ec + 2− levelc(i))countc(i) copies of e’s
from its predecessors, reduces this count by countc(i) (i.e., the count of a’s), forwards the remaining (ec +
1− levelc(i))countc(i) copies of e’s to all its successors and creates for itself (ec +1− levelc(i))countc(i)
copies of b’s. A more detailed description will be given in the final version.

All rules of this phase do not change the number of a’s or the number of f ’s; therefore, the corre-
sponding postcondition holds.

Lemma 9 (FSSP-III: Number of steps). For each cell σi, the phase FSSP-III takes levelc(i)+3 steps.

Proof. As indicated in the proof of Algorithm 5, this phase takes levelc(i)+3 steps.

Algorithm 6 (FSSP-IV: Timing for entering the firing state)

Precondition: As described in the postcondition of Algorithm 5.
Postcondition:

• The end state is s9 for cells in the firing squad, or s0, otherwise.

• Each cell is empty.

Proof. As long as b’s are present, a cell σi performs a transition step that decreases the number of b’s by
countc(i) (i.e., the number of a’s). This step will be repeated (ec + 1− levelc(i)) times, as given by the
initial ratio between the number of b’s, (ec + 1− levelc(i))countc(i), and the number of a’s, countc(i).
This is the delay every cell needs to wait, before entering either the firing state s9 or the initial state s0.

Finally, in the last step, cell σi enters s9, if σi has one f , or s0, otherwise. At the same time, all
existing objects are removed.

Lemma 10 (FSSP-IV: Number of steps). For each cell σi, the phase FSSP-IV takes ec + 2− levelc(i)
steps.

Proof. As indicated in the proof of Algorithm 6, this phase takes (ec + 1− levelc(i)) + 1 = ec + 2−
levelc(i).

Theorem 11. For each cell σi, the combined running time of the three phases Algorithm 3, 4, 5 and 6 is
6ec +7, where ec is the eccentricity of the commander σc.

12 Firing Squad Synchronization Problem for P Systems

Proof. The result is obtained by summing the individual running times of the three phases, as given by
Lemmas 7, 8, 9 and 10: (levelc(i)+2)+(5ec− levelc(i))+(levelc(i)+3)+(ec +2− levelc(i)) = 6ec +7.

Example 12. We present traces of the FSSP algorithm for the hP system given in Figure 2 in Table 1,
where the cells are ordered according to their levels and the starting states of phases FSSP-II, FSSP-III
and FSSP-IV are highlighted.

Table 1: The FSSP trace on the dag of Figure 2, where c = 6, e6 = 3, F = {σ1,σ4,σ5,σ7,σ9,σ10}.

σ6 σ2 σ3 σ9 σ1 σ5 σ7 σ8 σ4 σ10

0 s0a f s0 s0 s0 f s0 s0 f s0 f s0 s0 f s0 f

1 s1ae f s0d s0d s0d f s0 s0 f s0 f s0 s0 f s0 f

2 s2ad3e2 f k s1a s1a s1a f s0d2 s0d f s0d f s0d s0 f s0 f

3 s2ad3e3 f s2ad3k s2ad3k s2ad f k s1a2 s1a f s1ad f s1ad s0d f s0d f

4 s3ad3e4 f s2ad3 s2ad3 s2ad f s2a2k2 s2a f k s2ad f kl s2adkl s1a f s1a f

5 s4ad3e5 f s3ad3 s3ad3 s3ad f s2a2 s2a f s2ad f l s2adl s2a f k s2a f k

6 s4ad3e6 f s4ac3d3 s4ac2d3g s4ad f g s6a2 s6a f s3ad f gl s3adgl s2a f g s2a f g

7 s4ad3e7 f s4a s4adg s4ad f g s6a2 s6a f s4acd f l p s4acdl p s6a f g s6a f g

8 s4ad3e8 f s5ak s4adg s4ad f g s6a2 s6a f s4a f l p s4al p s6a f s6a f

9 s4ad3e9 f s5a s4adgh s4ad f gh s6a2 s6a f s5a f hkl p s5ahkl p s6a f h s6a f h

10 s4acd3e10 f s6a s4adgh2 s4ad f gh2 s6a2c s6ac f s5a f hl p s5ahl p s6a f h s6a f h

11 s4ad2e11 f s6a s4acdgh2q s4acd f gh2q s6a2 s6a f s6ac f hpq s6achpq s6ac f q s6ac f q

12 s4ad2e12 f s6a s4agh2q s4a f gh2q s6a2 s6a f s6a f s6a s6a f s6a f

13 s4ad2e13 f s6a s5agk s5a f gk s6a2 s6a f s6a f s6a s6a f s6a f

14 s4ad2e14 f s6a s5ag s5a f g s6a2 s6a f s6a f s6a s6a f s6a f

15 s4ac2d2e15 f s6a s6ag s6a f g s6a2c s6a f s6ac f s6ac s6a f s6a f

16 s4ae15 f s6a s6a s6a f s6a2 s6a f s6a f s6a s6a f s6a f

17 s6ae5 f s6a s6a s6a f s6a2 s6a f s6a f s6a s6a f s6a f

18 s7ab4 f k s6ae4 s6ae4 s6ae4 f s6a2 s6a f s6a f s6a s6a f s6a f

19 s7ab4e9 f s7ab3k s7ab3k s7ab3 f k s6a2e6 s6ae3 f s6ae3 f s6ae3 s6a f s6a f

20 s8ab4 f s7ab3e6 s7ab3e6 s7ab3e2 f s7a2b4k2 s7ab2 f k s7ab2e2 f k s7ab2e2k s6ae2 f s6ae2 f

21 s8ab3 f s8ab3 s8ab3 s8ab3 f s7a2b4 s7ab2 f s7ab2e3 f s7ab2e3 s7ab f k s7ab f k

22 s8ab2 f s8ab2 s8ab2 s8ab2 f s8a2b4 s8ab2 f s8ab2 f s8ab2 s7ab f s7ab f

23 s8ab f s8ab s8ab s8ab f s8a2b2 s8ab f s8ab f s8ab s8ab f s8ab f

24 s8a f s8a s8a s8a f s8a2 s8a f s8a f s8a s8a f s8a f

25 s9 s0 s0 s9 s0 s9 s9 s0 s9 s9

M.J. Dinneen, Y.-B. Kim & R. Nicolescu 13

6 Conclusion

We have presented two new algorithms for the Firing Squad Synchronization Problem that operate on
several families of P systems. Out of the box, both algorithms work for hyperdag P systems and symmet-
ric neural P systems. The first “trivial” algorithm, based on structural extensions, highlights the merits of
dags as underlying structures for P systems. The second algorithm, which is more complex, is applicable
to P systems with fixed membrane topologies and is uniformly defined in terms of a structural Neighbor
relation. Both our FSSP algorithms handle a generalized version of the FSSP, where the commander can
assume an arbitrary position and only a specified subset of the cells need to be synchronized.

An open problem is to find an efficient solution for transition P systems without polarizations and
without states. Another natural problem, left open by the work started in this paper, is to find an efficient
synchronization algorithm for arbitrary strongly-connected (non necessarily symmetric) nP systems. It
would also be interesting to find an FSSP algorithm for hP or snP systems that runs in fewer than 6e+7
steps, where the multiplier is less than 6.

Acknowledgements

The authors wish to thank John Morris and the three anonymous reviewers for detailed comments and
feedback that helped us improve the paper.

References

[1] Artiom Alhazov, Maurice Margenstern & Sergey Verlan (2009): Fast Synchronization in P Systems. In:
David W. Corne, Pierluigi Frisco, Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa, editors: Workshop
on Membrane Computing, Lecture Notes in Computer Science 5391. Springer, pp. 118–128. Available at
http://dx.doi.org/10.1007/978-3-540-95885-7_9.

[2] Francesco Bernardini, Marian Gheorghe, Maurice Margenstern & Sergey Verlan (2008): How to Synchronize
the Activity of All Components of a P System? Int. J. Found. Comput. Sci. 19(5), pp. 1183–1198. Available
at http://dx.doi.org/10.1142/S0129054108006224.

[3] Roger L. Freeman (2005): Fundamentals of Telecommunications, 2nd Edition. Wiley-IEEE Press.
[4] Tim Carter Humphrey (2005): Cell Cycle Control: Mechanisms and Protocols. Humana Press.
[5] Kojiro Kobayashi & Darin Goldstein (2005): On Formulations of Firing Squad Synchronization Problems.

In: Cristian Calude, Michael J. Dinneen, Gheorghe Păun, Mario J. Pérez-Jiménez & Grzegorz Rozenberg,
editors: UC, Lecture Notes in Computer Science 3699. Springer, pp. 157–168. Available at http://dx.
doi.org/10.1007/11560319_15.

[6] Jacques Mazoyer (1987): A Six-State Minimal Time Solution to the Firing Squad Synchronization Problem.
Theor. Comput. Sci. 50, pp. 183–238.

[7] Radu Nicolescu, Michael J. Dinneen & Yun-Bum Kim (2008): Structured Modelling with Hyperdag P
Systems: Part A. Report CDMTCS-342, Centre for Discrete Mathematics and Theoretical Computer Sci-
ence, University of Auckland, Auckland, New Zealand. Available at http://www.cs.auckland.ac.
nz/CDMTCS/researchreports/342hyperdagA.pdf. Also in: Rosa Gutiérrez-Escudero, Miguel Angel,
Gutiérrez-Naranjo, Gheorghe Păun & Ignacio Pérez-Hurtado, editors: Proceedings of Seventh Brainstorm-
ing Week on Membrane Computing (BWMC2009). Universidad de Sevilla, pp. 85–108.

[8] Radu Nicolescu, Michael J. Dinneen & Yun-Bum Kim (2009): Discovering the Membrane Topology of
Hyperdag P Systems. In: Proceedings of the 10th Workshop on Membrane Computing. pp. 1–27. To appear.

http://dx.doi.org/10.1007/978-3-540-95885-7_9
http://dx.doi.org/10.1142/S0129054108006224
http://dx.doi.org/10.1007/11560319_15
http://dx.doi.org/10.1007/11560319_15
http://www.cs.auckland.ac.nz/CDMTCS/researchreports/342hyperdagA.pdf
http://www.cs.auckland.ac.nz/CDMTCS/researchreports/342hyperdagA.pdf

14 Firing Squad Synchronization Problem for P Systems

[9] Kenichiro Noguchi (2004): Simple 8-state minimal time solution to the firing squad synchronization problem.
Theor. Comput. Sci. 314(3), pp. 303–334. Available at http://dx.doi.org/10.1016/S0304-3975(03)
00425-0.

[10] Gheorghe Păun (2002): Membrane Computing-An Introduction. Springer-Verlag.
[11] Gheorghe Păun (2006): Introduction to Membrane Computing. In: Gabriel Ciobanu, Mario J. Pérez-Jiménez

& Gheorghe Păun, editors: Applications of Membrane Computing, Natural Computing Series. Springer, pp.
1–42. Available at http://dx.doi.org/10.1007/3-540-29937-8_1.

[12] Hubert Schmid & Thomas Worsch (2004): The Firing Squad Synchronization Problem with Many Generals
For One-Dimensional CA. In: Jean-Jacques Lévy, Ernst W. Mayr & John C. Mitchell, editors: IFIP TCS.
Kluwer, pp. 111–124.

[13] Abraham Silberschatz, Peter Baer Galvin & Greg Gagne (2004): Operating System Concepts, 7th Edition.
Wiley.

[14] Helge Szwerinski (1982): Time-Optimal Solution of the Firing-Squad-Synchronization-Problem for n-
Dimensional Rectangles with the General at an Arbitrary Position. Theor. Comput. Sci. 19, pp. 305–320.

[15] Hiroshi Umeo, Masashi Maeda & Norio Fujiwara (2002): An Efficient Mapping Scheme for Embedding
Any One-Dimensional Firing Squad Synchronization Algorithm onto Two-Dimensional Arrays. In: Stefania
Bandini, Bastien Chopard & Marco Tomassini, editors: ACRI, Lecture Notes in Computer Science 2493.
Springer, pp. 69–81. Available at http://link.springer.de/link/service/series/0558/bibs/
2493/24930069.htm.

http://dx.doi.org/10.1016/S0304-3975(03)00425-0
http://dx.doi.org/10.1016/S0304-3975(03)00425-0
http://dx.doi.org/10.1007/3-540-29937-8_1
http://link.springer.de/link/service/series/0558/bibs/2493/24930069.htm
http://link.springer.de/link/service/series/0558/bibs/2493/24930069.htm

	Introduction
	Preliminary
	P Systems and the Firing Squad Synchronization Problem
	FSSP---Solution via Structural Extensions
	FSSP---Solution via Rules
	Conclusion

