
A Computational Attack on Gra�ti'sMatching and Chromatic Number ConjecturesMichael J. DinneenComputer Research and Applications,Los Alamos National Laboratory,Los Alamos, NM 87545AbstractIn this paper we present counterexamples for over twenty of the Gra�ticonjectures that deal with matching and/or chromatic number. Gra�ti is aconjecture generating computer program that systematically checks for rela-tionships among certain graph invariants. It uses a database of over 200 graphsand has generated over 700 conjectures. Our counterexamples were found bysearching through all of the nonisomorphic graphs with 10 or fewer vertices.For each conjecture that failed, we display a counterexample. For those con-jectures in which counterexamples seem to be very scarce, we list all that werefound.
1 IntroductionThis paper is a supplement to the paper [BDF] where the authors searched througha complete database of graphs with 10 or fewer vertices to �nd counterexamplesto various conjectures of Gra�ti. The results presented here deal exclusively withGra�ti's matching and chromatic number conjectures.Gra�ti is a conjecture generating program (see [Fa]) that was developed bySiemion Fajtlowicz in 1986. It operates on small databases of approximately 200graphs and systematically checks for relationships among certain graph invariants.The Gra�ti program has generated over 700 conjectures many of which have createdconsiderable mathematical interest.Using a readily available computer tape of all the nonisomorphic graphs with 10or fewer vertices (see [CCRW]), we have tested roughly 60 of the Gra�ti's matchingand chromatic number conjectures and have found counterexamples for about onethird of them. For each of the failed conjectures we present a counterexample, thevalues of the invariants, and the number of counterexamples.1



We �rst give in Section 2 some general de�nitions and a brief discussion of howwe arrived at our results. A table of passed conjectures is also given.In Section 3 we give those conjectures for which only a small number of coun-terexamples were found. Next in Section 4 we present the remaining conjectures forwhich more than 10 counterexamples are known.In both Sections 3 and 4 we organize the information into three categories: (1)conjectures on chromatic number, (2) conjectures on matching, and (3) conjectureson both chromatic number and matching. Also in these two sections we give tablesummaries of the conjectures and their counterexamples.2 Preliminaries2.1 De�nitionsMost of the graph de�nitions used in this paper may be found in the glossary of [BDF]or just before their �rst use in [Fa]. A few terms not applicable to [BDF] are nowde�ned.Matching: the size of the largest matching, that is, the size of the largest subsetS � E of edges of a graph G = (V;E) such that any vertex v in V is contained inat most one edge (a; b) of S. (Note that there may be more than one matchingset S.)perfect matching: a Matching of a graph G = (V;E) that equals jV j2 where jV j iseven.chromatic number: the smallest number of colors needed to color the vertices ofa graph such that two neighboring vertices must have a di�erent color. Thisinvariant may be abbreviated as chromatic.coordinates of a set S of vertices: a vector whose i-th component is the numberof neighbors of the i-th vertex in S. (Note that S is assumed to have anordering.)The following two pre�xes are used for Matching and chromatic. If an invariantM of a graph G is preceded by the pre�x mis, then it denotes M computed for thecomplement of G. Further, if an invariant M is preceded by the pre�x bi, then itdenotes M +misM . 2



2.2 AlgorithmsIt is well-known that both Matching and chromatic number are in some sense compu-tationally di�cult problems. The chromatic number problem is a classic NP-completeproblem, [GJ]. The Matching problem has been shown to be in P (see [Ed]), but asmany programmers would say, it requires an \exponential" amount of time to imple-ment an e�cient alternating path algorithm.Since our task was limited to graphs with 10 or fewer vertices, we devised aset of fairly e�cient backtracking algorithms to �nd the chromatic number and theMatching of such graphs. We include these algorithms for the curious reader inFigures 1 and 2 of the appendix. C++ syntax is used in both �gures.Our chromatic number function has an additional parameter to help speed upits termination, since quite often we know the maximum clique size of the graph athand. The �rst part of the algorithm is greedy in picking an initial coloration. In asystematic way, the remaining part of the algorithm does backtracking to �nd a bestcoloration.For some of the Gra�ti conjectures, we needed to know which edges yielded a max-imum matching. Thus, as can be seen, additional code was included in our matchingalgorithm to save the largest matching (Match M). This backtracking algorithm isalmost the same as our chromatic algorithm except that we search over all edges.With the use of a Cray Y-MP supercomputer, our programs take approximately 6hours (human time) to crunch through all the graphs in our database while computingboth Matching and chromatic number. One may compare this time with the 2 hoursneeded just to read in (count) all of these same graphs.2.3 Successful conjecturesIt may be of interest to know which conjectures passed all of the graphs in ourdatabase. We briey list these conjectures which are most likely true in Table 1. Inthis table we also state whether the invariants Matching and/or chromatic numberwere part of each conjecture. The interested reader should refer to [Fa] for the actualstatements of these conjectures.
3



Table 1: Conjectures that passed all applicable graphs with 10 or fewer vertices.Conjecture Matching ChromaticNumber32 no yes119 yes no125 no yes151 no yes162 yes no231 yes no280 no yes286 no yes294 yes no309 no yes316 yes no320 no yes323 no yes335 no yes337 no yes338 no yes339 no yes352 yes yes361 no yes370 no yes371 yes no399 no yes412 no yes

Conjecture Matching ChromaticNumber413 no yes423 yes no542 yes yes550 yes no563 yes no572 yes no599 yes no604 yes no605 yes no618 yes no622 yes no624 yes yes635 yes yes636 yes yes640 yes yes645 yes yes650 yes yes653 yes yes654 yes yes659 yes no661 yes no669 yes no
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3 Conjectures with 10 or Less CounterexamplesIn this section we list those conjectures for which only a few counterexamples werefound within our database. In some cases it may be reasonable to alter the originalconjecture to exclude those few graphs that we list (or imply) below. For instance,the only counterexample we found for Conjecture 609 is the small (trivial?) com-plete graph of order two. Another example is Conjecture 658 where the only knowncounterexamples are the complete graphs of order three and greater.Table 2 at the end of this section contains the values of the terms associated withthe �rst counterexample given for each of the conjectures. This table is organized inthe same fashion as the tables given in [BDF]. For example, referring to Conjecture609 of Section 3.1 and Table 2 we �nd for K2 that the chromatic number is two whilethe number of nonnegative eigenvalues is one.3.1 Conjectures on chromatic numberConjecture 609: Chromatic number � number of nonnegative eigenvalues. (con-nected, triangle-free graphs)
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Conjecture 658: Mischromatic / independence < residue. (graphs with sum ofEven � sum of Odd)
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3.2 Conjectures on MatchingConjecture 281: Maximum(Matching, misMatching) � number of negativeeigenvalues of Distance. (graphs with girth � 5)
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9Conjecture 296: Average distance � n / range of coordinates of matching. (trees)
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Conjecture 405: -smallest eigenvalue of Distance � biMatching. (graphs withindependence � 2)
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Conjecture 429: Range of positive eigenvalues � Matching. (regular graphs)
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8Conjecture 621: Sum of inverses of nonzero eigenvalues of Laplacian (inverseLaplacian) � n � Matching. (graphs of diameter 2)
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3.3 Conjectures on both chromatic number and MatchingConjecture 637: Size / independence � sum of positive eigenvalues. (graphswith mischromatic = n � Matching)
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Conjecture 652: Average distance � inverse Dual Degree. (graphs with mischro-matic = n � Matching)
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Conjecture 653: Average distance � frequency of mode of 1-Residue. (graphswith mischromatic = n � Matching)
0

1

2

3

4

5

0

1

2

3

4

5

0

1

2 3

4

5

6

7

0

1

2

3

45

6

0

1

2

3

45

6

7

0

1

2

3

4

5

6

7 0

1 2

3

4

5

6

78

Table 2. The Value of the Terms Associated with the First Counterexample:Conjectures with 10 or Less CounterexamplesConjecture Number ofcounterexamples 1st term 2nd term 3rd term 4th term 5th term281 1 5 4 6 - -296 5 2.0667 6 3 - -405 10 4.2626 4 2 - -429 1 5 4 - - -609 1 2 1 - - -620 1 2.0071 2 - - -621 4 4.1125 8 4 - -637 2 9 2 4.4788 3 -652 1 1.6222 1.6089 8 - -653 7 2.3333 2 3 - -658 8 1 1 1 3 6
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4 Conjectures that have More than 10 Counter-examplesThis section presents those conjectures for which we have found more than 10 coun-terexamples. Since there are an abundant number of graphs for these conjectures,a pictorial view is given for only the �rst counterexample found. Table 3 containsthe values of the terms associated with those graphs presented along with the totalnumber of counterexamples found.4.1 Conjectures on chromatic numberConjecture 264: 2 + range of positive eigenvalues � bichromatic.
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Conjecture 574: Mischromatic / independence � mode of Even. (connectedgraphs)
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Conjecture 660: Mischromatic / independence < range of positive eigenvalues.(graphs with sum of Even � sum of Odd)
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4.2 Conjectures on MatchingConjecture 188: Mode of eigenvalues of Laplacian � n � Matching. (graphswith sum of Odd � sum of Even)
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Conjecture 598: Range of coordinates of matching � n / average distance.(triangle-free graphs)
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4.3 Conjectures on both chromatic number and MatchingConjecture 340: 2 + minimum positive eigenvalue � bichromatic. (graphs witha perfect matching)
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Conjecture 644: Minimum of Dual Degree � mean of Odd. (graphs withmischromatic = n � Matching)
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Conjecture 646: Randic � maximum frequency of coordinates of a maximumclique. (graphs with mischromatic = n � Matching)
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56Conjecture 649: There are graphs with mischromatic / independence � rangeof positive eigenvalues. (graphs with mischromatic = n � Matching)
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Table 3. The Value of the Terms Associated with the First Counterexample:Conjectures with More than 10 CounterexamplesConjecture Number ofcounterexamples 1st term 2nd term 3rd term 4th term 5th term188 67713 4 6 3 16 18264 582 5 6 - - -340 29 5.123106 7 - - -381 33 4 3 - - -574 15 3 2 1 - -598 160 3 6 2.0667 - -644 246 5.4286 5.4000 5 - -646 444994 3.207107 3 3 - -649 73 1 1 1 1 -651 715 2.1786 2 4 - -660 105 1 1 2 3 6
References[BDF] T.L. Brewster, M.J. Dinneen, and V. Faber, A Computational Attack on theConjectures of Gra�ti: New Counterexamples and Proofs, January, 1992.[CCRW] R.D. Cameron, C.J. Colbourn, R.C. Read, N.C. Wormald, Cataloguing theGraphs on 10 Vertices, Journal of Graph Theory, 9 (1985) p. 551-562.[Tape announcement, Discrete Math. 31 (1980) p. 224.][Ed] Jack Edmonds, Paths, Trees, and Flowers, Canadian Journal of Mathemat-ics, 17 (1965) p. 449-67.[Fa] Siemion Fajtlowicz, Written on the Wall, Department of Mathematics, Uni-versity of Houston, February 19, 1987, Updated May 26, 1991.[GJ] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide tothe Theory of NP-Completeness, W.H. Freeman, San Francisco, CA, 1979.
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Appendix
Figure 1: A backtracking algorithm used to �nd the chromatic number./** Chromatic number of graph.*/int chromatic(const Graph &G, int lower_bound){ int n = G.order();short int vert[n]; /* Current assignment of colors. */int max_count=1; /* Number of colors used. */int i, j, c;int first_max;int direction;/** Be greedy to find an initial coloration.*/for (i=0; i<n; i++){for (c=0; c<max_count; c++){ for (j=0; j<i; j++)if (G.is_edge(i,j)==true && vert[j]==c) goto Next_c;vert[i]=c;goto Next_i;Next_c: ;}vert[i]=max_count;max_count++;Next_i: ;}
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Figure 1 (continued): A backtracking algorithm used to �nd the chromatic number./** Try to use fewer colors.*/Lower_max:if (max_count==lower_bound) return max_count;for (first_max = --max_count; vert[first_max]!=max_count; first_max++);for (i=first_max-1,direction=0; direction ? i<n : i>=0; i+=direction-1){if (vert[i]+1 < max_count+direction)for (c = (direction ? 0 : vert[i]+1); c<max_count; c++){for (j=0; j<i; j++)if (G.is_edge(i,j)==true && vert[j]==c) goto Next_c2;vert[i]=c;direction=2;goto Next_i2;Next_c2: ;}direction=0;Next_i2: ;}if (i<0) return max_count+1;else goto Lower_max;}
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Figure 2: A backtracking algorithm used to �nd a maximum matching./** Maximum Matching of a graph.*/int matching(const Graph &G, Match &M){ int n = G.order();short int vert[n]; /* vert[i] is matched up with match[i] */short int match[n];Bool used[n];int current_match=0;int isolated=0;int max_match=0;int best_match=n/2;int i, j, m;for (i=0; i<n; i++) used[i]=false;/** Be greedy to find a matching.*/Add_matching:for (i = current_match ? vert[current_match-1]+1 : 0; i < n-1; i++){if (used[i]) continue;for (m=i+1; m<n; m++){ if (used[m]) continue;if (G.is_edge(m,i)){vert[current_match]=i;match[current_match]=m;used[m]=true;current_match++;break;}}}
15



Figure 2 (continued): A backtracking algorithm used to �nd a maximum matching.if (max_match < current_match-isolated){ max_match=current_match-isolated;M.save_match(vert,match);}if (current_match-isolated == best_match) return best_match;/** Backtrack phase to try and improve matching.*/for (j=current_match-1; j>=0; j--){if (match[j] == n) isolated--;elseif (match[j] == n-1){ used[match[j]]=false;match[j]=n;isolated++;current_match=j+1;goto Add_matching;}else{ used[match[j]]=false;/** Try to just alter current match.*/for (m=match[j]+1; m<n; m++){if (used[m]) continue;if (G.is_edge(m,vert[j])){used[m]=true;match[j]=m;current_match=j+1;goto Add_matching;}} 16



Figure 2 (continued): A backtracking algorithm used to �nd a maximum matching./** See if we can replace this match with a later one.*/for (i = vert[j]+1; i<n-1; i++){if (used[i]) continue;for (m=i+1; m<n; m++){ if (used[m]) continue;if (G.is_edge(m,i)){vert[j]=i;used[m]=true;match[j]=m;current_match=j+1;goto Add_matching;}}}/** All of the above failed so backtrack. (next j)*/}}return max_match;}

17


