AVERAGE CASE-ANALYSIS OF PRIORITY TREES: A STRUCTURE
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ABSTRACT. Priority trees (p-trees) are a certain variety of binary trees of size n constructed
from permutations of the numbers 1,...,n. In this paper we analyse several parameters
depending on n (the size) and j (a number between 1 and n), such as the length of the
left path (connecting the root and the leftmost leaf), the height of node j (= distance from
the root), the number of left edges on the path from the root to the node j, the number of
descendants of node j, the number of key comparisons when inserting an element between
g3 and 7 + 1, the number of key comparisons when cutting the p-trees into two p-trees, the
number of nodes with 0, 1 or 2 children. Methodologically, recursions are set up according to
a fundamental decomposition of the family A of p-trees (using auxiliary quantities B and C);
using generating functions, they lead to systems of differential equations that can be solved
explicitly with some efforts. The quantities of interest can then be identified as coefficients
in the explicit forms of the generating functions.

1. INTRODUCTION

Priority trees (or “p-trees” for short) are a data structure to implement priority queues.
There exist applications of priority queues e. g. in operating systems like job scheduling or
resource management and in discrete event simulation models. Each element in a priority
queue has a fixed associated key value which determines its priority. The lower the key value
of an element in the queue is, the higher is its priority. Such a queue must support the two
basic operations of inserting an element with an arbitrary given priority (Insert) and of
removing the element with the highest priority (Delete).

A p-tree is either empty or it consists of a sequence of nodes with non-increasing keys, the
so called “left path,” such that to each node on the left path except the last one, there is
associated a possibly empty p-tree, the “right subtree.” If z is a node on the left path with
key [ and x being its left successor with key k, then all nodes y; of the right path associated
with z have key values s; ranked between & and [, or more precisely k& < s; < [. The element
with the smallest key value (i. e. with the highest priority) is the terminal node of the left
path and is called the “left leaf.”

To insert a new element p into a p-tree T the following recursive algorithm Insert can be
applied:

o If T is empty or the root of T has a key not greater than p, then let p be the new root
and T its left subtree.

e Otherwise search down the left path of T for the first node z that has a key that is not
greater than p.
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step 0 0] (empty tree)
step 1 8y (insert element 3)
step 2 ®/® (insert element 1)
© :
step 3 3 (insert element 6)
@
© :
step 4 (3 @D (insert element 4)
@
© :
step b 3 ) (insert element 5)
@ @y
© :
step 6 3 5) (insert element 2)
© QO d

Ficure 1. Generation of a p-tree.

— If no such node exists, then append p to the left path as the new left leaf.

— Otherwise denote the predecessor of z by z, so that the key of p is ranked between
the keys of 2 and z. In this case the algorithm Insert (of node p) will be applied
recursively to the right subtree of z.

As an example how the algorithm Insert works we show in Figure 1 the generation of the
p-tree from the permutation 316452.

2. THE MATHEMATICAL METHODS

For the mathematical analysis of this data structure we consider the model that all n! per-
mutations of the numbers 1,..., n generating a p-tree of size n are equally likely.

We will not decompose the p-tree into the left path and the right subtrees and treat the
components separately as it was done in [10], but rather work with 3 families of combinatorial
objects A, B and C. The family A are the ordinary p-trees, that are generated from random
permutations by starting with the empty tree, the family B are p-trees that are generated by
starting with one additional element “400” and the family C are p-trees that are generated
by starting with the extra element “—o00.”

For the following we assume that these additional elements are not counted for the size of an
object, which means that the size of an object is the number of nodes, without the elements
—oo and +oo. Again all n! permutations from 1 to n are assumed to be equally likely to
generate an object of size n from the families A, B and C.

For the forthcoming analysis the following decompositions of the families A, B and C w. 1. t.
the first element %k of a random permutation of the numbers from 1,2, ---,n are essential as
is shown in Figures 2, 3 and 4.

The parameters of the p-trees that we are going to analyse in this paper satisfy recursions
which are consequences of the decompositions of the families A, B and C. Using generating
functions, these recurrences translate into a system of differential equations. Although in
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object of C
with nodes k+1,...,n

object of B
with nodes 1,...,k—1

FI1GURE 2. Decomposition of the family A

object of A
with nodes k+1,...,n

object of B
with nodes 1,...,k—1

Ficure 3. Decomposition of the family B

object of C
with nodes k+1,...,n

object of A
with nodes 1,...,k—1

Ficure 4. Decomposition of the family C

most cases these differential equations for the distributions seem to be not tractable, we can
at least compute the expectations for the considered parameters.

Here is an example
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o\

P

FiGurE 5. A p-tree constructed from the permutation 811934171062 5.
The lenght of the left path is 4, the height of node 7 is 3, the number of
descendants of node 7 is 4, the number of left edges leading to node 4 is 2, the
number of nodes with 0,1,2 successors is 5,2, 4. The number of comparisons
to insert a node 8.5 is 4.

3. THE LENGTH OF THE LEFT PATH

In order to use the p-trees as a data structure for priority queue administration it is necessary
to be able to remove on demand the element with the highest priority (i. e. with the smallest
key) from the queue. In a p-tree this element, is the leaf of the left path starting at the root.

In the following we consider the distributions of the height of the element with highest priority
in p-trees. Therefore we have to consider the distributions of the length of the left paths in
in the families A, B and C. That means, we have to count the number of nodes on the direct
path from the root to the left leaf. To obtain easier recurrences it is advantageous to count
the element 4oc for the length of the left path in the family B but not the element —oco in
the family C.

Decomposing the families A, 5 and C according to the first element k of a random permutation
with n elements as described above, we obtain the following recurrences for the probabilities
Ay Bnm and C), ,, that an object of these families with size n has a left path of length
m:

1 n m

An,m = — Z ch—k,i Bk—l,m—i for n 2 1 3 (1&)
K k=1 :=0
1 n

Bn,m - _ZBk—l,m—l forn 2 17 (1b)
K k=1
1 n

Cnm = - Cn— m— fi > 17 1

; n ; km—1 lormn > (1c)

AO,m - 50,m 3 BO,m — 51,m 3 and CO,m — 50,m . (1d)
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With the bivariate generating functions

Az, v) = Z Z Ay 2"0™, B(z,v) = Z Z By, 2"v™, and C'(z,v) = Z Z Chmz" o™

n>0m>0 n>0m>0 n>0m>0

m

we get from (1) by multiplying with nz""1v™ and summing up over all m > 0 and n > 1 the

following system of differential equations

%A(Z7 v) = B(z,v) C(z,v), (2a)
o v
%B(Zﬂj): 1_ZB(Z,U)7 (Qb)
o v
50(271]): 1_20(2’,1]), (QC)

with initial values A(0,v) =1, B(0,v) = v, and C'(0,v) = 1.
From (2b) we obtain

d(B(z,v)) v
——— > =d(log B = d
) = dflog Bz ) = T2, (3)
which leads through integration and adjusting to the initial values to the solution
v
B = . 4
R (4
Analogously we get from (2¢) for C'(z, v) the solution
1
C(z,v) = == (5)

With (2a) these expressions for B(z,v) and C'(z, v) lead to the following equations for A(z, v)

0 v
7.4k 0) = AESE (6)

from which we get by integration the solution

A(M):l_l% (1_11_@). (7)

In the following we denote the signless Stirling numbers of the first kind by [TZ] They are
given by the relation (see e. g. [4])

>y HESE=—r ®)

n>0m=0

With this equation the coefficients of B(z,v) and C(z,v) are obtained immediately whereas
for the coefficients of A(z,v) we get

1 0 1 v
Anm:_n—lm_A :_n—lm
= LTI AG ) = LT
2n7! L o

n—1, m—1
n E ](1 -z n!
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This leads to the following

Theorem 3.1. The probabilities A,, ,,,, By, ,, and C,, ,, of the length of the left paths in objects
of the families A, B and C of size n, i. e. the probabilities, that an object of size n has a left
path length m, are given by

2]
A = ———= forn > 1, (9a)
n!
Bym = [m_'l] forn>1, (9b)
n!
Com = [;”—'] forn>1. (9¢)

To get the expectations A,,, B, and C,, of the length of the left paths in objects of size n in

the families A, B and C we define

A = LA L BE) = 2B and C) = C(z)
) = oAz , 2) = 5-Blzv an 2= 5 Clzv
Then these expectations are given by A, = [2"]A(z), B, = [2"]B(z) and C,, = [2"]C(2).

(10)

v=1 v=1 v=1

Differentiating the equations (4), (5) and (6) with respect to v and evaluating at v = 1 leads
to

%A(Z) - % (%A(Z,v)) = ﬁlog (1 ! Z) g _12)2 , (11a)
B(z) = %B(Z,v) U:1:1i2—|—1i210g(1i2> , (11b)
C(z) = %G(Z,v) =5 : log (1 : Z) . (11c)
To extract the coefficients of such expressions we need the formulas (see [9])
] g o (72 ) = oo = 1) (1), (12a)

) ot (1) = (Ut — 11 - (1, - 12)) (" 7). ey

where H, =Y 1_; % respectively Hflm) =>r, kLm denote the harmonic numbers.
Then with (12a) we obtain from (11)

Theorem 3.2. The expectations A, B, and C, for the lengths of the left paths in objects
of size n in the families A, B and C are given by
A, =2H, -1 for n>1, Ag =0, (13a)
B,=H,+1forn>1, Bg=1, (13b)
C,=H, forn>1,Cy=0. (13c¢)
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In the following we denote by A,, the second factorial moment of the length of the left path in

p-trees of size n. Furthermore we define A(z) = %A(Z, v)
A, is given by A, = [z"]A(2).

Differentiating (6) two times with respect to v and evaluating at v = 1 leads to

E%A@):ZT§ZFk%Q(1iz)+(1f@2bg(1iz)- (14)

With (12) we get the coefficients A, and so we have

. Then the auxiliary quantity
1

v=

Lemma 3.3. The second factorial moment A, of the length of the left path in p-trees of size
n is given by

A, =4H? —4H, —4H® 44 for n>1, Ay =0. (15)

The variance A, of the length of the left path in p-trees of size n is given by the relation
A, =A,+ A, — A?
and therefore we get

Theorem 3.4. The variance A, of the length of the left path in p-trees of size n is given by
A, =2H, —4H®P +2 for n>1, Ag=0. (16)

The asymptotic behaviour of the lengths of the left paths in p-trees is described in the
following theorem.

Theorem 3.5. The sequence of random variables
Q* _ Qn - ,un
n o,
converges weakly to the standard normal (Gaussian) distribution. Here the random variables
Q,, denote the distributions of the lengths of the left paths in p-trees of size n with expectation

tr, and variance o2. That means we have

1 b2
Pla<Q <b)— /-Ta 17
eco<no [ (17)

and further
fn = 2logn + O(1) and o2 =2logn + O(1)

Jor n — oo.

Proof. With the asymptotic expansions of the harmonic numbers

1 1 1
i =logn 7+ 5o+ 0 () (182)
2
) T 1 1 1
Hé)_F_E—I_W—I—O(ﬁ) (18b)

we get from the exact formulas (13a) and (16) immediately

i = A, =2logn + O(1) and o2 = A, =2logn + O(1).
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To prove the theorem we use a method that is described in [6]. We start with the sequence
of the characteristic functions ¢gx (1) = E(e"n?) of the 2 and show, that this sequence

converges pointwise to the characteristic function e % of the standard normal distribution.
In other words, we show, that

2
bax (1) = e™ 7 (19)
for every t € R and n — co. By the continuity theorem for characteristic functions of Paul

Lévy (see e. g. [3]), we can then deduce from (19) the weak convergence of the distribution
functions (17).

From the bivariate generating function A(z,v) of the probabilities A, ,,, that the length of
the left path in a p-tree of size n is equal m as given by (7), we obtain with

An(v) = [2"]A(z,v)
the probability generating function of the €,. First we obtain

An(0) = L1y 2 !

119 e v v n+2v—2
n 8ZA(Z7U)_ n[z ](1—2)2“ B 21}—1( n )

With the asymptotic expansion for fixed «

(n—;a) _ (n—l-oe)-(nr—lgo?—l_—ll))-..(n—l-l) _ F(o?j—l) : (14_(9(%)) :

g (T ()

for fixed v and n — oo.

we get

For the characteristic functions ¢q:x (t) of the €27 we have then

bas (1) = E( ) ZP m) €= 3 B (@ =t )
=Y P(Qu=m) T =) A et — o A (e ).
m>0 m>0

With (20) we get the expansion

An(edr) = %exp (21ogn(e'™ ~ 1)) (1 Lo (%))

= exp (2 log n(eiﬁ — 1)) (I4+0(1)) = (2 log ni — %) (14 0(1))

On n

— exp (2 log n-L — g) (1 40(1)) .

n

This leads to

gt it it
Pax (t) =€ ™ Ap(eon) = exp (—210g n;—) exp (2 log n— — —) (14 0(1))

n On 2
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S

= —%-(1+o( ) — e T
for a fixed t and n — oco. With the continuity theorem of Lévy the theorem is completely
proved. O

4. THE HEIGHT OF THE NODES

In the following we consider the distributions of the height of the nodes with key j of objects
of size n in the families A, B and C. To be precise, we say that the height of a node j is the
number of nodes between the root and the node j.

With A, ;., By jm and C, ;, we denote the probabilities, that the node with key j in an
corresponding object of size n has height m. To get a recurrence for these quantities, we use
the already treated distribution of the length of the left path in objects of the family C. To
avoid confusion, from now on the probability, that the length of the left path in an object of
size n in the family C is equal m, is denoted by p,, ,,,. With (5) and (9¢) we have for p,, ,,,
respectively its generating function p(z,v) =3 <0 > .50 Prmz 0"

Prm = [;L”—'] and p(z,v) = ﬁ (21)

With these remarks we get by means of decomposing the families A, 5 and C according to
the first element k of a random permutation following recurrences for 1 < j <n

1
An,j,m = E ch k,g—k,m ‘I’pn Jym— 1+ Z an szk 1,7,m—1 3 (223)
k=541 =0
=
B jm = — Y Ankjkmot +Oma+ Z Bi_1jm-1 ], (22b)
k=1 k=j+1
1 n
Cn,j,m: ; ch k,g—k,m ‘|’pn Jym— 1+k2—1z;pn szk 1,5,m—1—i . (22C)
7 7

Introducing the trivariate generating functions

(z,u,v) ZZZAanzu]m B(z,u,v) ZZZB”W”Z w v and

i>1n>jm>0 i>1n>jm>0
)= XY o
izl n>jm>0
we get from (22) by multiplying with nz""tu/v™ and summing up over all n > j > 1 and
m > 0 the following system of linear differential equations

d U

&A(Zvuvv) = 1 _ UZC(Zvuvv)—l_ 1 _ uzp(zvv) —|—p(Z,U) B(Zvuvv)v (23&)
0 vy viu v
aB(z,u,v) =1 uzA(z,u,v) + =2 =u) + = ZB(z,u,v) , (23b)
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iC’(Z, w,v) =

P C(z,u,v)+

vuuzp(z7 v) +vp(z,v) Az, u,v). (23c¢)

1—uz 1-

This system of differential equations seems to be not tractable, but it is helpful to get factorial
moments of the distribution of the height of nodes in p-trees, in particular the expectation.

Then the ordinary generating functions

Az, u) = Zzn:Ang”uj , B(z,u) = Zzn:Bng”uj , Clzu) = Zzn:Cngnuj

n>1 j=1 n>1 j=1 n>1 j=1

of the expectations A, ;, B, ; and C), ; of the heights of the node j in objects of size n in the
families A, B and C fulfill the relations

A(z,u) = %A(Z, u, )

Differentiating (23) with respect to v and evaluating at v = 1 leads to the following system
of linear differential equation for A(z, u), B(z,u) and C'(z, u)
u

)

A u) = Oz u) + %B(Z, W)+ filz ), (242)
) 1

—B(zu) = T——A(z,0) + T=B(zu) + fa(z ), (24b)
) 1

50(27 u) = - _UUZC(,Z7 u) + :A(@ u) + f3(z,u) (24c)

with

In the following this system of differential equations will be converted to a single differential
equation for A(z,u). To do this, we introduce two functions B(z,u) and C'(z,u) which are

given by the relations B(z,u) = By nd Cl(z,u) = C(zu)

1—= 1—uz °

Then we get from (24)

d
aA(z,u) = =)
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1 0~
— 253(27 u) = 1 _uuzA(Z’ w) + falz,u) (25b)
1 9~ 1
w0 = T2 AE U+ ). (25¢)

To eliminate E(Z, u), we extract it from (25a), differentiate with respect to z and multiply
by i This leads to

> _ 2 0 u(l = 2)° ~ 2
B(z,u)=(1-2) aA(Z, u) — mC(Z, uw)— (1 —2)*fi(z,u), (26a)
1 0 3 0 0 w(l—2) 0 ~
= z%B(Z u) = —2514(2, u) + (1 — Z)@A(Z, u) — m%c(% )
_ %G(Z,u) = ! Z% (1= 21 (2 ) - (26D)

Inserting (26b) in (25) leads to the following system of differential equations for A(z,u) and
C(z,u)

u 9 0? u(l—2) 0 ~
oA S g E e
+ B0 = e - T (- )
1 0 = 1
w0 W = ARV R (27b)

To eliminate also C'(z,u), we insert equation (27b) in (27a) and solve for C'(z, u). This leads
to

) - zu@l__ﬁff - § (1= 2 ) 29
(1 —uz)?(1-2)
T 2w-1) fslzu).

Differentiating this equation with respect to z and multiplying by ﬁ gives a differential
equation for A(z,u) after insertion in (27a).

Quz —u— 1 1—uz 0

mA(Z, u) — 2 (— 514(2, u) —
3(1—uz)(2uz—u—1) 92 1(1—uz)?(1-2) 9
2 u(l — u) ﬁA(% W) = 2 wu(l—u) @A(% v (20)
19 [(1—wuz)?
= falzu)+ 1—uzdz | 2u(u— 1)f2(z,u)—|—

(1—uz)?

=1 =2)

9 )
8_ ((1_ Z) fl(zvu)) +
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Resubstituting fi(z,u), f2(2,u) and f3(z,u) and taking the initial values Agp =0, A;; =1,
A1 =2 and Ay 5 =1 into account leads to the following linear differential equation of order
3 for A(z,u) with the given initial conditions:

2uz —u—1 o l-uz 0 _§(1—uz)(2uz—u—1)8_2
(1—2)(1—u)A<Z7u) 2 1—u 82A<Z7u) 2 uw(l — u) 822A(Z7u)
1(1—uz)?(1-2) 9 _uztu—2
B T R R G Rl g e (30)
A0 =0, gAGw| = ghAGw| =20t
) =0, F-AGu Zzo_u, 5z Az T w4 u) .

Now we have to find 3 linearly independent solutions of the corresponding homogeneous
differential equation

Quz —u — 1 1—uz 0

oo e =2 g e = )
3(1—uz)(2uz—u—1) 92 1(1—uz))(1-2) 9 B
2 w(l — u) @Ah(% Db 2 u(l—u) @Ah(% u =0,

then we can apply the variation of the parameter method [11] in order to solve (30).

From the homogeneous system of linear differential equations corrresponding to system (24)

J U 1

aAh(z, u) = = uzCh(z, u) + :Bh(z, u), (32a)
J

th(Z, u) = = uzAh(z, u) + T ZBh(z7 u), (32b)
9z ) = —Colz, ) + —— Az, 0) (320)
0z MOW = T T M T T AAs Y ¢

it is easy to see that there exists a one dimensional solution space with Ay, (z,u) = B (z,u) =
Ch(z,u). The corresponding differential equation

d
aAh(z, u) = T uzAh(z, u) + = ZAh(z7 ) (33)
has the solution
_ ky (w)
Ap(z,u) = =20 —us)" (34)

To reduce the order of the differential equation (31), we substitute
E(z,u) 0
d F =—F
(1—2)(1—uz2) and F(zu) dz (z:0)

with functions F(z,u) and F(z,u) (method of d’Alembert [11]). This leads to the linear
differential equation of order 2

1 1 1—uz 92
I—a0—w B9 30T 0es

Az, u) =

F(z,u)=0. (35)
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Using the substitution z = 141=%¢ and the notation F(t,u) = F(1+ L=t ), the differential
equation (12) transforms into the hypergeometric equation

82
t(1— t)ﬁF(t7 w)+2F(t,u)=0. (36)
Now we recall [2], that for all ¢ # 1,2,--- a one dimensional solution space of the hypergeo-
metric differential equation
HL=0)f"(t) + (= (L+a+0)t) f'(t) —abf(t) =0 (37)

is in a neighborhood of ¢t = 0 given by

k()¢ o Fy ( e +21Lbc_ e+l ‘ t) : (38)
where o F| denotes a hypergeometric function [8].
In our instance the parameters are ¢ = 0, ¢ = —2 and b = 1, thus the above hypergeometric
function degenerates to a polynomial, and we get one solution of (36) as
Ftyu)=1t—1>. (39)
Resubstituting leads to a one dimensional solution space
F(z,u) = ka(u)(1 — 2)(1 — uz) (40)
of (35).
Introducing new functions G'(z, u) and H(z,u) by
F(zyu) = (1 —2)(1 —uz)G(z,u) and H(z,u) = %G(z, u), (41)

we get from (35) a linear differential equation of order one:

This equation has the solution

kg(u)
(1—2)2(1 —uz)?’

H(z,u) = (43)

with a function ks(u), depending only on w.

Adding the three linearly independent solutions (34), (40) and (43) we get by resubstituting
the complete solution of the homogeneous differential equation (31)

Anle) = SE?)_ R S’E?_ ” /02(1 — (1 — ut)dt

CS(U) ’ — T — uxr ’ 1 X
F S 090 [ ] ¢
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or, integrated,

c1(u) 2(6 — 3uz — 3z + 2uz?)

=g r o TeW T T aa e
6(1 —uz)(2uz —3u+1) 1
+es(u) | - 1> log (1_uz) )
Pl s, (L)
C (w=1)(12u?2* — 12u(u+ 1)z - 5u® + 4u - 5)]
(1—2)(1 - uz) '

Now the variation of the parameter method leads after insertion of the initial conditions to
the following solution of the generating function A(z,u) of the expectations of the height of
node j in a p-tree of size n:

Az u) = é(%zz - =) /oZ (1— t)?(ll — ut)? log (1 i t) dt
+ % (11_—?22 /OZ (1— t)2(11 —ul)? log (1 i t) dt
1
3

T30C Z)?(Ll— uz) log” (1 i z)
)

u(2u22 — w2+ uz—2u+1

(= ox (2

u(u—l—l)(?uz—u—l)log( 1 )_1 ut 1 log( 1 )

(1—w)3 1 —uz 3(1—wu)(l-2) 1 —uz

u?z u 1 2u+1 11
(1_u)2+ (I—u)(1—uz) 31 —u)(l-2) +§(1_2)2- (46)

To extract the coefficients from equation (46), we use apart from the formulas (12) also

[2"u] /OZ = t)2(11 — ) log (%) dt = (j—l_l)nﬂ([{n_j -1), (47a)

"] 5 i e /0 (1- t)2(11 —)E 08 (%) dt

" (47b)
(j+1)((nj+1)Hnj2(nj))j(j+1)(z ’;CWHnHj))-

k=7+1
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Theorem 4.1. The expectation A, ; of the height of the node with key j in a p-tree of size
n is for 1 < 3 <n given by
2 <~ Hi; 1
Apj=—= L+ —(H, - H;
! 3 Z k + 3( i)+ n—1 n
k=j+1 (48)

1 (2) 5 1 ) .
+ g(HIQ-i—l —Hiy)+ gHH—l -1+ 30+ 1) with [:=mn—j.

—21(l+ 1)H, + 312 N 20+1)%H, - 37 -1

Now we evaluate our findings asymptotically, under the assumptions j fixed; 7 ~ pn, with
k—j

0 < p<1;n—jfixed. In order to handle the sum ZZ:]‘-H HT asymptotically we state the
following relations

Z Hy_; L Z H?C_k _ % (Hz _ Hff)) _ % (HJZ_I + H](E)l) + H,H;_ (49a)
et k=1

iH_, S m
> 2 = n —kk = Hitln-j-1, 1ob)
k=1 k=1

which can be proved by means of generating functions.

For a fixed ratio p = % with 0 < p < 1 we use for n — oo the expansion

i

H,_ .
> & £ =log?n + (log p+27) logn + 7%+ ylog p — dilog(1 — p) +o(1), (50
k=1

which can be proved by means of Euler’s summation formula after applying the asymptotics
for the harmonic numbers (it can also be found in [12]). We recall the definition of the
dilogarithm dilogz (see e. g. [1])

“ logt
dilogz = / 8" . (51)
LTt

Combining (18), (49) and (50) we get the following lemma.

Lemma 4.2, The sum ZZ:]‘-H % has the following asymptotic equivalents:
n (2)
Hyj 1, , w4 HP  H; H 1
=_-log"n+ylogn—- —+ - —+—-—-4+0| -
k:zj;q k 2 12~ 2 2 J 2 n (52a)
for fixed 7,
"\ Hy_j 1
3> ’”:0(—) for fixed [ =n — j, (52b)
. k n
k=j+1
"L Hy_j .
Z ? = —logplogn+ O(1) forj=pnand 0 < p< 1. (52¢)
k=7+1

With the relations (18) and (52) we get from (48) the following corollary.
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Corollary 4.3. The expectation A, ; of the height of the node with key j in a p-tree of size
n s for n — oo asymptotically given by

A, ; =2logn+ O(1) for fixed j, (53a)
1 5 1 1 1 .
A= gHEy + 5 Hip - §H}+)1 1+ (z — 1) +O (—) for fixed l=n—j,  (53b)

1 2
Am:glog?n—l—(——p + p-|- 'y—|— —|— logp—l- log(l— ))logn—l-o(l) (53c)

forj=pnand 0 <p<1,

Also of interest are the expectations A,, of the height of a random node in a p-tree of size n.

Because of
n

1
A, = EZAW

=1
these parameters are easily obtained by summing up (48). With basic summation formulas
for the harmonic numbers and the relation

7=1 k=541 k=1 k=1

we get

Corollary 4.4. The expectation A, of the height of a randomly chosen node in a p-tree of
size n is given by
A = n—l—ng_l_ 2(2n—l—5)Hn_ n—l—lH?(f) B 13n+1
3n In 3n 27n

or asymptotically by

forn>2 and Ay =1 (55)

1 2 4
An:§10g2n+(§7‘|‘ 5) log n+ O(1) forn — oo. (56)

5. THE NUMBER OF LEFT EDGES TO A NODE

As opposed to the previous section we consider here the edges from the root to a specified
node, but only the leftsided edges. In this way we get an impression of the leftist shape of
the tree.

Here we denote by AL;, 7[”] and C[ ] the expectations of the number of leftsided edges from

the root to the node with key j in obJects of size n in the families A, B and C.

To obtain recurrences for these parameters, we use the already computed expectation of the
length of the left path of objects in the family C of size n. As was shown in section 3, this
expectation is H,.

Decomposing the families A, B and € according to the first element & of a random permuta-
tion, we get for 1 < 5 < n the following recurrences

L
Anvj:_ C?E]k] k—I_Hn ]—I_ Z ( k1]+Hn k) s (57&)
k=1 k=j+1
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i—1

I 1

L]]n(ZAL ke k—l_l—l_Z(kl]—l_l))v (57b)
k=1 k=7+1

e 1 ]_1C[L] H H 57

n,]_; nk]k—l_ n]—I_Z(kl]—l_ nk) ’ ( C)
k=1 k=7+1

with initial values A[ (]) 0, B([fg =0 and C([)% =0.

With the bivariate generating functions AP(z,u) = Dot Don>i A2y ete. the above

n7]

n—1

recurrences (multiplied by nz w’ and summed up over all n > j > 1) lead to the following

system of differential equations

%A[L](z7 u) = - _UUZC[L](Z’ u) + %B[L](& u) + fi(z,u), (58a)
5B ) = A+ B + o), (55b)
5 C ) = )+ A ) + () (55¢)
with
u 1 wz 1
o) = gt (75) = e (25)
fQ(Zvu) = k + i ’
(1—2)(1—wuz) (1-=2)2%(1—-uz)
u 1 wz 1
fa(z ) = (1—2)(1—u2) o (1 - Z) T ) o8 (1 - Z) '

This system of differential equations can be solved analogously to (24). This leads to the

bivariate generating function A¥(z, u) of the expectations ALL} of the number of leftsided
edges from the root to the node j:

= (b B [ (0

+ (‘%(1%:)2(1—@ —I—%(l—z)u(l—u)) log” (1:2)

[2(u—|—1)(2uz—u—1)u 7 u
3 (1—u)?

B %(1 £5Zz_)(?)?j u)] log (1 i z)

Extracting the coefficients using (12) and (47) we obtain



18 A. PANHOLZER AND H. PRODINGER

Theorem 5.1. The expectation A 4 of the number of leftsided edges from the root to the
node with key j in a p-tree of size n zs for 1 < j <n given by

2 - H 1
A = -3 3 2 Iy H2 S+ H, —Hj - ngf_)j
k=7+1

+(1+2(j_1)2_g(j_1)(j_2) 2 1 )n_j_é(Sj—l)(Qj—l) (60)

n 3 n—1 3n—j74+1 n
(]—1) 5 1 1 4
2 — — = —.
+ n—1 +3n—]—|—1+ 3

The expectation A[ ] of the number of rightsided edges from the root to the node j in a
p-tree of size n is easy to obtain using the relation

A =g o1 Al (61)

n7] 7]

Theorem 5.2. The expectation A 4 of the number of rightsided edges from the root to the
node with key j in a p-tree of size n zs form >4 > 1 given by

1 1

— s 2
A[R]_EHM_ 2Hot H+}21 2j+1 2(j—1)

1
= S - = (62)
™3 n 3 n—-1 3n—j34+41 33

1
3
With the relations (18) and (52) we get the following asymptotic corollaries.

Corollary 5.3. The expectation A 4 of the number of leftsided edges from the root to the
node with key j in a p-tree of size n zs Jor n — oo asymptotically given by

Agﬂ = 2logn 4+ O(1) for fixed 7, (63a)
1 5 1 2 H, 5 1 .
Ly < B - A - 4 C) R i T for fixed [ = n — b
ng = gHL T = g =gl +3l—|—1+31—|—1+0 or e g, (630)

n7]

1 2
A[L]4:§10g2n_|_(——p + p—l— 'y—l—l—l— logp—l— log(l— ))logn—l—(’)(l) (63¢)

forj=pnand 0 < p<1.

Corollary 5.4. The expectation A 4 of the number of rightsided edges from the root to the
node with key j in a p-tree of size n zs Jor n — oo asymptotically given by

2 1 1 1
AE?} §H] “373% +0 (—) for fixed 7, (64a)
R 2 1 1 1 _ ~
A= §Hl_§+§l—|——1+0 for fixed l=n—7, (64b)
2

2 1 1
ARl 2 z - 1 1 1- —
ng = 31080 = p + p 5t 7+ ogptg og( )+0(n) (64c)

forj:pnand0<,0<1.
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6. THE NUMBER OF DESCENDANTS

In the following we consider the number of descendants of particular nodes in objects of the
families A, B and C. The number of descendants of a node z is here defined as the size of
the subtree rooted at node z.

To get recurrences for the expectations A, ;, B, ; and (), ; of the number of descendants of
the node with key j of objects in the families A, B and C of size n, we introduce auxiliary

parameters ¢, ;, 9 and C[ @l

n,j
Here g, ; is the probability, that the node with key j in an object of C of size n is positioned
on the left path, that means, that node j lies on the path from the root to the left leaf.
This is equivalent to the condition, that the node j is a left-to-right maximum in a random
permutation of size n, and so we get

o 1
i = 4 jH+1°
With C[ ] we denote the conditional expectation of the number of desendants of node j in
an obJect of C with size n, under the condition, that the node j lies on the left path.

Consequently C[ @l denotes the conditional expectation of the number of descendants of node
j in an object of C with size n under the condition, that the node j does not lie on the left
path.

Decomposing the families A, 5 and C according to the first element k of a random permutation
leads for n > j > 1 to the following recurrences

—1

Apj = ((]n—k,j—k (Cﬁ]m_k + k) + (1 = ¢n—i,j—k) 07[;%]7]4%) +J+ Z Br_1j| »
1 k=7+1

Y

3|
ol
I

(65a)

oy
E

o

I
3| =
M

An k,j— k—I']—I_ Z Bk 1,5 » (65b)
k=7+1

-1

Chj= % ((]n—k,j—k (Cﬁ]m_k + k) + (1 = Gn—rj—k) 07[;%]7]4%) +Jj+ Z Ap_1
1 k=7+1

N

o
Il

(65¢)

With the trivial equivalence

Crj = 4n;C 4 (1 = gu ) CTF

sJ sJ

the system (65) leads for n > j > 1 to the recurrences

J=1 n
k .
z;( n—hj—k + _I_l)—I-J—I- Z By-1,; ], (66a)

k=7+1
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:

k e
i = -k j—k + ————— ' Ag-1j ]
Chj (kl (C kj—k n—]—|-1) +7+ Z k 1,]) (66¢)

k=7+1

-1

oy
E
o,
I
3|
o

Ankjor i+ D Bkl,j) ; (66b)

1 E=j+1

S T
Il

(]

3|

with initial values Agg =0, Boo =0 and Cpo = 0.

Introducing bivariate generating functions A(z,u) = >_,5; 2,5, Ap 2"l etc. we get from

n—1

the system of recurrences (66) by multiplication with nz"""w/ and summing up over all

n > 7 > 1 the following system of differential equations

b A0 = O )+ Bl )+ il w), (67a)

O B0 = A ) + Bl )+ (), (67b)

? 1

SClu) = _“uzc(z, w)+ A w) + (2, 0) (67¢)
with

u? 1 U
Sz u) = (1—uz)3 log (1 - z) + (1—2)(1—wuz)?’
fQ(Zvu) = -

(1—2)(1 —wuz)?’

u2 u

ﬁ@”*:u_u@“%<ﬁiz)+<r—au—u@”

This system can be solved analogously to (24), and we get for A(z,u)

1 1 11 (u—1)?
Az, u) = [——uz—l——u—l———l——(u )

+ (_é (2uf1_—uu;31)u + % (1-2)(1—-u) %(1 —uz)(1l— u)) log” (1 i z)
+ (—I_% (2uf1_—uu;31)u + % (1- uz?)L(l — u)) log (1 i z) log (1 —1uz)

uz —u—1)u 1 1 9 1
(e ) ()
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12uz—u—1+1 u? -3 -I-l 1 +2 1
6 1-—u 6(1l—2)(1—-wu 2(1-2)72%u 3(1—wuz)(l-u)

(68)

To extract the coeflicients of this expression, we need apart from (12) and (47) the following
equations

e ()

1. 1j2435+2 1n?—2jn—3n+352+35+2
= -5ity— —Hitg - (Hoo1 = Hop—jo1) , (69a)
4 1 1 1 Lo,
"u! 1 1 = . 69b
[Zu](l—u)(l—uz) Og(l—z) Og(l—uz) ;n—k (69b)
Then we get from (68) for the desired expectations
132 “Help 1 2 1
= ——H!—ZH!_ Hn H, — —H?
I 3Zn ko Z PR A S S
k=1 k= ]-|—1
1 ._ 1 2._ 2 2 .2_ . _2.3
-I-—‘QHn— ‘QHn_]‘——n] 6n” + 2nj nt]—|—6n J o, (70)
6 3 6 J 6 n(n —1)j
3 2. .2 . .3 .2 .
+1H()—2H7(12_)4+1H(42)—|-1n +6n2j — 3nj —371]—.7l‘|‘2j — 35 -I-]7
6 3 6 6 n(n—1)(n—j+1)

which can be simplified by use of equations (49). This leads to

Theorem 6.1. The expectation A, ; of the number of descendants of the node with key j in
a p-tree of size n is for 1 < j <mn given by

4 1 2 1,
n,] - 3 — + Hn ]H 3Hn—]H] - an - HnHj + gH]‘
1 L 1, 1jG-1 4 2 2 2 o
Tt ”( sty oo ) o gmL P e (1
J _}J(J—l) }j(2j—1)+1
n—j+1 3 n-—1 6 n 6"

To evaluate our findings asymptotically, under the assumptions j fixed; j ~ pn, with 0 < p <

1; n—j, we state here the following lemma, that handles the sum >~ _, H’L_k asymptotically.
It can be obtained easily from (52) by use of (49).
Lemma 6.2. The sum Zi:l H’L_k has the following asymptotic equivalents:
d 1
Z k_k :Hjlogn—l—'ij—l—(’)(—) for fixed 7, (72a)
k=1 K
J 2
H,_ 1 .
? i =log® n 4 2ylogn + ~* — %—I—O (—) for fixed I =n — 7, (72b)
n

o
Il
—
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J
H, .

> = =logh(n) + (log p +27) log n +7* + 7 log p — dilog (1 — p) + o(1)

k=1

forj=pnand 0 <p<1.

(72c)

Now we obtain from (72a) by use of the previous lemma

Corollary 6.3. The expectation A, ; of the number of descendants with key j in a p-tree of
size n is for n — oo asymptotically given by

[ 20,1 1 :
An,j = gH] — —H] ‘|‘ gH] ‘|‘ 6 ‘|‘ O (E) fOI’ ﬁXGd 7 (73&)
Anj = 1+ 7 +iilogn+O(1) for fixedl =n—j, (73b)
1 1
A, = log n—l—( p* ——p———l— 'y—l— logp——log(l— ))logn—l—(’)(l)
3 (73c)

for]:pnand0<,0<1.

7. THE NUMBER OF KEY COMPARISONS WHEN INSERTING AN ELEMENT

To insert a new element into a p-tree we need the recursive algorithm Insert as described in
section 1. Here we are interested in the average number of key comparisons that are made,
when a particular new element is inserted into a random p-tree.

1 gl

n,7? n]

In the following we denote by A and C[] the expectations of the number of key

comparisons, that are made when inserting the element with key 7 + % with 7 € Z and
0 < 7 < n into an object of size n of the families A, B and C.

Decomposing the families A, 5 and C according to the first element k of a random permutation
leads for n > 1 and 0 < 5 < n to the following recurrences

1 J
Al =~ yclt ,”k+z (B2, + Hak) ] (T4a)
k=1 k=j+1
1 J
k=1 k=7+1
J
07[1{]]':5 ch kj—k T Z ( g1, T Hn k‘|‘2) ; (74c)
k=1 k=j+1

with the initial values AE{]() =0, B([)I}) =1 and C([){g) =1.

Multiplying (74) by nz""'4’ and summing up leads by use of the bivariate generating func-

tions
u) = ZZAE]J,ZHUJ 7 B[I](Z7 u) = Z ZBL{]]‘Znt 7 C[I](z, w) = ZZCL{]]‘ZnU]

720 n>j 720 n>j 720 n>j
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to the following system of differential equations

9 1
%A[I](Zv u) = 1 _UUZC[I](Z, u) + :B[I](Z, u) + fi(z,u), (75a)
9 1
@Bm(% w) =g _UUZA[I](Z, ) + :B[I](Z, u) + fo(z,u), (75b)
9 1
5.0 =+ _UUZC[”(Z, W)+ A 0 + Sz ) (75¢)
with
1 1
iz ) = (1—2)2%(1 — uz) log (1 —-z)
2u 1
REY = g ST T U — e
B 1 | ( 1 ) 2
BEw=apamm e\ ) Yoo ara ey

Analogously to the previous sections we find as solution of (75) for AUl(z, u):

AWz, ) = (%“‘ %“‘ % " §H) / (1- t>2<11 TR (1 . t) “

+ (‘%(1%:;(1—@ + %(1—2)1(1—u)) log” (1:2)
[l(u—l—l)@uz—u—l) 7 1 11

3 (1= u)? T30 0—w  3(-2%
s e ()
_I_(_l(u—l—l)(Quz—u—l)_l ut1 )log( 1 )

3 (1—u)? 3(1—2)u 1—uz
-I-é uz —I—l 20 — 2u—1 -I-l 1 1 2u — 3 (76)
3(1—v) 3(1-2(1-wu 3(1—-2)>2%u 3(1-uz)(l—u)

Extracting the coeflicients leads to

I .
L]j of the number of key comparisons, that are made by

inserting a new element with key j + % with the procedure Insert in a p-tree of size n is
given by

2 o~ Hi_: 1 1 2 1 2
Al _Z L4+ ZH? . -~ - =\H, 4+ =\ H,
m 3@2% '3 ”—f+( 3 Sj) +(3+3j) !

Theorem 7.1. The expectation A

T2 257 2j(G—1) Lo 1j(2j+5)  27°47-1 (17)
— 44 2L _Z H, ,—=-HY -2 -
+(3+3j+3n 3 n—1 e L R
11 1 1 11

1
5 - + = - — == ——for1<j<n-1,
3n—74+1 3n—-3 3534+41 3y

AEf,]nzl forn>1, 145]0:07 Al =2H,—1 forn>1.

n,0 —
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We also state the following asymptotic equivalents

(] :
i of the number of key comparisons, that are made when

inserting a new element with key 7 + % with the procedure Insert in a p-tree of size n is for
n — oo asymptotically given by

Corollary 7.2. The expectation A

AL{]] = 2logn+ O(1) for fixed j, (78a)
Al — %Hﬁ + gH; - % - %H}z) + % + 3(11 5o (%) for fixed [ =n—j, (78b)
Al = élogZ n+ (—%pZ + %p + %’y + g + glogp + glog(l - p)) +0(1) (780)
forj=pnand 0 < p<1.

Furthermore we get for the arithmetic mean Aﬁf] = #Z}Lo AL{]] of the number of key

comparisons when inserting a new element in a p-tree of size n by summing up (78a)

Corollary 7.3. The expectation Aﬁf] of the number of key comparisons, that are made when

inserting a randomly chosen element from the set {%, %, ey ”zil} with the algorithm Insert
in a p-tree of size n is given by
1 10 1 28
I 2 I

This result can be found already in [10].

8. ANALYSIS OF A PROCEDURE TO SPLIT P-TREES

Beside the algorithms Insert and Delete to insert resp. remove an element of a p-tree, we
consider here the algorithm Cut to split a p-tree at an arbitrary place into two p-trees. This
procedure was introduced in [13]. Thereby a tree T will be split into two p-trees according
to a given key s in such a way that one tree Ty contains all nodes from T with keys less or
equal s, whereas the remaining tree T' — T contains all nodes with keys greater than s. The
trees obtained in this way might also be empty.

In more detail, the recursive algorithm Cut reads as follows. (We use the abbreviation 7'(z)
for the subtree with node x as root, when z is a node of the tree 7'.)

1. (a) If T is empty or the root of T" has a smaller key than s, then set T} := T, set T := ()
and terminate.
(b) Otherwise set T} := () and go to step 2.
2. Move along the left path of T until the first node y with key less or equal s is found.
(a) If no such node is found, terminate.
(b) Otherwise we denote by z the predecessor of y. Then it is known that s lies between
the keys of y and z.
(i) If the right subtree of z is empty, then set 71 :=T'(y) and T :=T — T(y).
(i) Otherwise attach the right subtree of z between z and the left son of z and set
the right subtree of the node z empty. Search the left leaf of 7'(z) and connect
the node y to it. Finally repeat step 2 starting from the node z.
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In [13] it was stated, that the number of key comparisons splitting a randomly generated
p-tree according to a key s in this algorithm is the same as the number of key comparisons
inserting the element s in the tree. This is not fully correct, although the difference is
marginal.

To analyse this parameter, we denote by AEH], L I and C[ ] the expectations of the number
of key comparisons, that are made by cutting an obJect of 31ze n of the families A, B and C

according to the key j + 5 L with j € Z and 0 < j < n.

To get recurrences we decompose the object families w. r. t. the first element %k of a random
permutation. When the tree is cut at the position k + %, that means that j = k, then k
is compared with the key a second time, whenever the node with key k& has a predecessor
with nonempty right subtree. In the following recurrence this fact leads in opposition to the
recurrence (74) for the insertion algorithm to the additional functions rq(n,j), re(n,J) and
T3(n7j)-

We have forn>land n >35> 0

J

Elc]]:% ch ki—k T Z ( e 1]+Hn k)-l-h(nj) ; (80a)
k=1 k=j+1
J

BL(:;]:% Z(Agl]k] k—l—?)—l— Z ( e 1]—|-1)—|—r2(n]) , (30b)
k=1 k=7+1
J

7[5]]:1 ch kj—k T Z ( il 1]+Hn k‘|‘2)‘|‘7‘3(n]) , (80c)

o
Il
—

k=7+1

with

%j for1<j<n-1,
otherwise,

for1<j<mn-1,

1
0 otherwise ,

Lj for1<j<n-1,

3

_1 ,_Jx_\ —_— ,_J\_\

otherwise
and the initial values 0(;3 ] =1 and C[ 0] =1.
Introducing the usual generating functions Al°l(z, u) = Zpo Zn>] z "ul ete. these re-

currences lead (by multiplying with nz"~'w/ and summing up) to the followmg system of
differential equations,

J U 1

hay|iel (€] _— gla

5, (z,u) = uzC (z,u)+ = ZB (z,u)+ fi(z,u), (81a)
J U 1

Y glal (€] _ -~ pgla

P (z,u) s uzA (z,u)+ = ZB (z,u) + falz,u), (81b)
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0 u 1
havglicl - (€] = alal
820 (z,u) = = uzC (z,u) + T ZA (z,u) + f3(z,u) (81c)
with
1 1 uz u 1
iz ) = (1—2)2(1 — uz) log (1 - z) + (1—2)(1—uz) 1—uz log (1 - z) 7
ol u) = 2u 1 uz

S0 —w ) =2 (-w)  (I=2(l=uz)’

1 1 2 uz
B = T e 8 (1 - z) T e Um0 )

U | 1
T—uz B\1-2)"
We get the following solution for the generating function
2 11 1(u—1)2\ [ 1 1
AlC] = Zuz—Zu—=+-= / log | —— |} dt
(z:0) (3“2 3" 3+3(1—z)u) o =020 —ar? B\1T=7
(1 u 1 1 o2 L
30— u)(l-w  3(1-2(1-w,) 2 \1-2
(1(2uz—u—1)u
_I_

1 L7 )
3 (1—u)? 3

B %(1 —(2,;(61)11 u)) log 1:2)

+ (_é (QUZ_—UU;?UU B %(1 i z)) log (1 —1uz)
+

2uz —u+1 2 1 1 4u—+1 1
3 1—-wu 31—uz 3(1—-2u 3(1-2)%u

and, by extracting the coeflicients, the following theorem.

(82)

I .
L]j of the number of key comparisons, that are made by

cutting a p-tree of size n with the algorithm Cut w. r. t. to an element with keyj—l—% is given
by

Theorem 8.1. The expectation A

Al = = T oHL A (- | et (54 5 ) Hy
n,j 3 Z k +3 nej T 3 3y - 3+3j !
k=7+1
702 252 2j(G-1) 1 2 2j24+3j-1 (83)
! & «J £ Hn_‘—_H —
+(3+3j+3n 3 n—1 S B 3n
_I_Z(J—l)(ﬁ‘l)_l_l L _L._|_lf0r1§j§n—1,
3 n—1 3n—j7+1 35 3

An?nzl fOI’nZ 17 AE%ZWAES(]):QHn—l fOI’nZ 1.
We have the following asymptotic equivalents

Corollary 8.2. The expectation Al of the number of key comparisons, that are made by

n7]
cutting a p-tree of size n with the algorithm Cut w. r. t. to an element with key j + % is for
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n — oo asymptotically given by

AESJ] = 2logn 4+ O(1) for fixed 7, (84a)
1 7 1 1 1

A= S S - o ~) for fixed [ =n—j 4b

ng = g0+ gHi= g BT 4 gy + O ) forfixed = -, (84b)
1 2, 2 2 7 2 2

A1y s (__2 2 T2 = log(1 — ) 8!

ni = glogtnt | —2p+op oyt o+ glogpt plog(l—p) )+ O(1) (34¢)

forj=pnand 0 < p<1.

Furthermore we state

Corollary 8.3. The expectation A%O] of the number of key comparisons, that are made by

cutting a p-tree of size n with the algorithm Cut w. r. t. to a randomly chosen element from
the set {%, %, ey %} is given by
10 1 .2 19n + 46

1
A0 =tz g Lpe) 19046
w1ty et = 3~ 5r0 )

3 3 forn > 2, A[lc]zl. (85)

9. THE NUMBER OF NODES WITH 0, 1 AND 2 CHILDREN

In this section we consider the number of nodes in a randomly generated p-tree with 0, 1 or
2 internal nodes as successors. First we state the following nonobvious relation between the
p-trees and binary search trees.

Theorem 9.1. The distribution of the number of nodes with 0, 1 or 2 children in a p-tree
of size n is equal to the distribution of the number of nodes with 0, 1 or 2 children in random
binary search trees of size n.

Proof. At first we remark, that to prove the theorem it is enough to show, that the number
of leaves in p-trees and binary search trees are identically distributed. If we denote in an
arbitrary binary tree of size n with ng, ny resp. ny the number of nodes with 0, 1 and 2
children, then we have by counting the nodes and the edges in the tree the following relations

ng+ny+ny=mn and n; +2no=n-—1.
Therefore ny and ny are obtained from ng via
np=n+1-—2ng and ng =ng—1.
Now we show, that the number of leaves in p-trees and binary search trees of the same size

are identically distributed. We denote here by I, ,, the number of binary search trees of size
n with exactly m leaves. They fulfill for n > 2 the following recurrence

Frm = =33 Bt Bt (36)

k=1 I=1
with initial values I =1 and F;; = 1.

Introducing the bivariate generating function F'(z,v) of the F, .,

F(z,v) = Z Z Fomz"v™

n>0m>0
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the above recurrence (86) leads (by multiplying with nz""!

differential equation

v” and summing up) to the linear

%F(zw):F?(z,v)—l—v—l, F0,v)=1. (87)

Now it suffices to show, that the generating function A(z,v) of the number A, ,, of p-trees
of size n with exactly m leaves fulfill the same differential equation.

Decomposing the objects of the families A, B and C w. r. t. the first element k of a random
permutation with n elements, the probabilities A,, ,,,, By, resp. C 1, that an object of size
n of the corresponding family has exactly m leaves leads for n > 1 to the following recurrence

An,m - %Z ch—k,i : Bk—l,m—i s (88&)

k=1 =0

Bn,m - %Z Z An—k,i : Bk—l,m—i s (88b)
k=1 1=0

Cn,m = % kz: ch—k,i . Ak—l,m—i (88C)
=1 :=0

with initial values Ag,, = 00,m, Bom = 1, and Co = 0o .

Introducing the usual generating functions A(z,v) =Y <0, 50 Anm2 0" etc. the above

recurrences lead by multiplying with n2”~1v™ and summing up to the following system of
differential equations

%A(Z7 v) = B(z,v) C(z,v), (89a)
%3(27 v) = A(z,v) B(z,v), (89b)
%0(27 v) = A(z,v) C(z,v), (89¢)

with the initial values A(0,v) =1, B(0,v) = v and C'(0,v) = 1.
Differentiating equation (89a) with respect to z leads to

d d
@A(Z, v) = aB(L v) C(z,v)+ B(z,v) 50(27 v). (90)

Now we substitute £ B(z,v) and Z£C/(z,v) in (90) by the corresponding right sides of the
equations (89b) and (89¢). Then we get
92

@A(% v) = 2A(z,v) B(z,v)C(z,0). (91)
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Substituting the factor B(z,v)C(z,v) in this equation by %A(z, v) according to (89a), we
get the following nonlinear differential equation of order 2 for A(z,v):

2

0
@A(Zv U) = 2‘4(27 U) %A(Zv U) )

d
A(0,v) =1, 514(2, v) T v. (92)

This differential equation is of the type A = f(A, A/)7 that means the variable z does not
appear explicitly. To handle such an equation, we define a function ¢(A,v) of A and v, with
Z A(z,v) = q(A,v) (see e. g. [15]). We get then from (92) a differential equation for the
function ¢ by the following procedure:

dg dq dz dq 1 0? 1

AT T OA T =—A—=2A.
dA ~ dzdA ~ dz AT 927 T4 (93)
This differential equation has the solution
q(A,v) = A(z,v)* + 1 (v) (94)

with a function ¢ (v).

With ¢(A,v) = £ A(z,v) and fitting to the initial conditions we get the same first order
differential equation for A(z,v) as we obtained for F(z,v)

%A(% v)=A(z,0) = (1-v), A(0,v)=1, (95)

and this suffices to prove the theorem.

Of course this differential equation can be solved, and we get

201 —w
Alz,v) =vV1—v— .
(z:v) v—(l—l—\/l—v)Qe_Qvl_“Z

(96)
O

Therefore we can apply theorems that were proved by Devroye in [5] for the distribution of
the nodes with 0, 1 and 2 children in binary search trees to the instance of p-trees. Denoting
the random variables for the number of nodes with 0, 1 resp. 2 children in p-trees of size n

with L(zo), L(ll) and 17(12), we get

Theorem 9.2. For the expectations E (L(f)) and the variances V (L(f)) with 0 < ¢ < 2, we

have the following asymptotic expansions for n — oo
) 2 Ly " @) 2
E(10) 3,E(In) 3,E(In) T
2 8 2
0 ~ = (M) ~ 2 (2)) ~ =
V(In) 45n,V(In) 4n,V(In) n.
Furthermore the sequence of random variables

OO

n n
n 3 n 3

b
/2 /8 /2
a5 a5 a5
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is for n — oo weakly convergent to the standard (Gaussian) normal distribution N'(0,1).

(1]

[10]
[11]
[12]
[13]
[14]

[15]
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