
An average-case analysis of basic parameters of

the suffix tree

Julien Fayolle

ABSTRACT: The LZ’77 algorithm offers one of the best available rates
for lossless data compression. It is based on the suffix tree structure. Our aim is to
obtain the asymptotics of the mean size and external path length of a suffix tree by
comparing them to those of a trie or digital tree. The core problem lies within the
set on which we build the suffix tree. This set is correlated, so we cannot use the
methods that have proved efficient for the trie. The proof relies on combinatorics,
generating functions, and complex analysis.

1 Introduction

The trie or digital tree data structure [7, 8, 9] manages efficiently dictionaries.
Queries for an existing word or insertion of a new word in the dictionary can
be performed in expected logarithmic time in the number of items stored in the
dictionary.

While the LZ’78 data compression algorithm is based on digital search trees,
we will focus on suffix trees, a particular kind of trie which lies at the very heart of
the popular and efficient LZ’77 [11] lossless compression algorithm. This algorithm
is behind the gzip software.

In a groundbreaking article, Jacquet and Szpankowski [6] have developped
a sophisticated “string ruler” approach to obtain results on the asymptotics of
parameters of suffix trees. This paper uses Jacquet and Szpankowski’s lead idea:
asymptotically the mean size and external path length for a trie built on n words
and for a suffix tree built on n suffixes are very close.

This paper’s aim is threefold: first to provide simpler proofs of Jacquet and
Szpankowski’s results than they do, second to obtain more accurate results, and
third to lay the groundwork for a study of suffix trees under a broader model.

1.1 Tries

We first define recursively a trie on a set X of infinite words on the m-ary alphabet
A = {a1, · · · , am} as

trie(X) =

∅ if |X | = 0,

• if |X | = 1,

〈•, trie(X\a1), ..., trie(X\am)〉 else,

where X\α is defined as the set of words starting with the letter α whose first
letter is removed.

From now on the alphabet will be binary A = {0, 1}, a choice that entails no
loss of generality.

1

1.2 Source model

How do we obtain the infinite words constituing the set X? By a device, called
source, producing randomly symbols from the binary alphabet regularly in time.

The type of source we are dealing with has two main characteristics: it is
probabilised, symbols are emitted with probabilities; and memoryless, the emission
of a symbol at a given time is independent of the symbols already emitted. In
this work, the probability of occurrence of a symbol is independent of when it is
emitted. This specifies the memoryless source model a.k.a. Bernoulli model.

Definition 1.1 The probability that the source emits a sequence of symbols start-
ing with the pattern w is noted pw, and called occurrence probability. For a mem-
oryless source, pw is the product of the probabilities of the letters composing w.

We note p the probability of emitting the symbol 0 and q the probability
of emitting 1. A source is said to be symmetric if p = q = 1/2 and biased oth-
erwise. For convenience, we adopt the convention that p is the largest of the two
probabilities.

1.3 Parameters under the spotlights

For each internal node of a trie, the successive left (encoded by 0) or right (encoded
by 1) steps taken to go from the root to the node encode the prefix associated to
this node. An internal node exists within the trie (relatively to an infinite complete
binary tree) if there are at least two words in X starting by the prefix associated
to this node.

For a pattern w, Nw(X) is introduced as the number of words of X starting
by w. Sometimes, we note Nw for Nw(X).

Let the parameters S and P denote the size and the external path length.
Both can be rewritten in terms of Nw for a trie built on the set X by

S(X) :=
∑

w∈A?

[[Nw(X) ≥ 2]],

P (X) :=
∑

w∈A?

Nw[[Nw(X) ≥ 2]],

where [[P]] = 1 if P is true, 0 else. This is Iverson’s bracket notation.

1.4 Suffix trees

Let y be an infinite word on the alphabet A and Yn the set of the first n suffixes
of y (we consider y to be its own suffix). The suffix tree of index n based on y is
nothing but the trie built on Yn (this operation is valid since Yn is a set of infinite
words over the alphabet A).

Since tries and suffix trees are based on the same recursive decomposition,
the expression for the parameters S and P under consideration are identical. For
a trie on a set X , Nw means the number of words starting with the pattern w, so
for a trie on the set Yn (suffix tree on y) it coincides with the number of suffixes
(amongst the n first of them) of the word y for which w is a prefix, or equivalently,
the number of occurrences of the pattern w in the n first positions of the word y.

We introduce N̂w(y; n) as the number of occurrences of the pattern w in the first

2

n positions of y, and we express the size S and the external path length P of a
suffix tree as

S(y; n) :=
∑

w∈A?

[[N̂w(y; n) ≥ 2]], (1)

P (y; n) :=
∑

w∈A?

N̂w(y; n)[[N̂w(y; n) ≥ 2]] (2)

1.5 Plan

We recall the results obtained by Knuth [7] on the mean size and external path
length for a trie built on n strings:

E
t
n(S) =

n

h
(1 + ε′(n)) + O(log n), (3)

E
t
n(P) =

n logn

h
+ (K + ε(n))n + O(log n), (4)

where ε and ε′ are oscillating function of very small amplitude around 0. These
results were proved in a less intricate way in [1].

The purpose of the next section is to obtain, via Guibas and Odlyzko’s work
and complex analysis, an asymptotic expression of the mean size, En(S), and
mean external path length, En(P), for suffix trees built on n suffixes. There are
two probabilistic models on tries: one can build them on a set of size n (fixed-size
model a.k.a. Bernoulli) or on a set which size follows a Poisson law of parameter
z (Poisson model). The difference between mean size for tries under Poisson of
parameter n and Bernoulli of parameter n models is fairly small (of order log n),
this is also true for mean external path length. Section 3 is dedicated to studying
the difference ∆ between mean path length for tries under the Poisson model of
parameter n, E

t
P(n)(P), and for a suffix tree built on n suffixes, En(P). Our aim

is to show that ∆ is small. Section 3 focuses on the external path length but the
same techniques can be used for size.

2 Asymptotics

Since we know from the previous part the expression for the size S and the external
path length P of a suffix tree, we write down the mean over suffix trees built with
n suffixes for both parameters:

En(S) =
∑

w∈M?

En([[N̂w ≥ 2]]) =
∑

w∈M?

Pn(N̂w ≥ 2)

=
∑

w∈M?

1 − Pn(N̂w = 0) − Pn(N̂w = 1),
(5)

En(P) =
∑

w∈M?

En(N̂w[[N̂w ≥ 2]]) =
∑

w∈M?

En(N̂w) − Pn(N̂w = 1). (6)

This part is dedicated to finding the asymptotic value for the two probabilities
appearing in the formulæ.

3

2.1 Combinatorics

The expressions for the mean size and external path length of a suffix tree make

use of the probabilities Pn(N̂w = 1) and Pn(N̂w = 0), that is the probabilities to
obtain one (resp. zero) occurrence of the pattern w in the first n + |w| − 1 letters
of an infinite word (i.e., an occurrence of w starting at one of the first n letters of
the infinite word).

In order to obtain these probabilities, we introduce ordinary generating func-
tions counting the number of texts with a given number of occurrences of the
pattern w according to their size: let Ow(z) =

∑
n≥0 onzn be the ordinary gener-

ating function (ogf) counting texts with w occurring only once according to their
size and Nw(z) the ogf counting texts with no occurrence of the pattern w.

The possible overlap of the pattern w with itself causes problem in the enu-
meration of occurrences of a pattern in a text. This phenomenon is called autocor-
relation. The pattern w of size k has an overlap of size j if 1 ≤ j ≤ k and the prefix
of size j, Pj , and the suffix of size j, Sj , of w coincide (Pj = Sj). Graphically, an
overlap of a pattern (white rectangles) looks like this:

,

where the two black boxes are the prefix and suffix matching one above the other.
For example w=001001001 has overlaps of size 3 and 6; |w| is always a valid
overlap.

The autocorrelation of a pattern is encoded by the autocorrelation polyno-
mials: the combinatorial one is

cw(z) =

k−1∑

i=0

ciz
i

and, since our symbols are produced by a probabilistic source, the probabilistic
version that we need is

ĉ(z) =

k−1∑

i=0

ciz
i
P(wk−i+1 · · ·wk)

where ci = [[Sk−i = Pk−i]], meaning there is an overlap of size k − i.
For the memoryless sources we are dealing with, the probabilistic autocorre-

lation polynomial satisfies a neat and useful relation:

Lemma 2.1 ∑

w∈Mk

ĉw(1) = 2k + k − 1.

Proof: On a binary alphabet there are 2j patterns of size j for any j < k and
from each of these v, one can build a unique w of size k such that cj,w = 1 and v
is its suffix of size j. So there are at most 2j patterns of size k with a given suffix
of size j and satisfying cj = 1. Furthermore, there is no way two different suffixes

4

of size j can create the same word of size k, so there are exactly 2j patterns of size
k satisfying cj = 1 and this for every j between 1 and k − 1. Hence,

∑

w∈Mk

ĉw(1) =
∑

w∈Mk

k−1∑

j=0

cj,wP(wk−i+1 · · ·wk)

=

k−1∑

j=0

∑

w∈Mk: cj,w=1

P(wk−i+1 · · ·wk),

but since we just proved that the suffix of size j is enough to obtain a word w of
size k with cj = 1 (and c0,w = 1 for all w ∈ Mk),

∑

w∈Mk

ĉw(1) = 2k +
k−1∑

j=1

∑

v∈Mj

P(v1 · · · vj)

= 2k +

k−1∑

j=1

1 = 2k + k − 1

In [4, 5], Guibas and Odlyzko devised a combinatorial method based on formal
languages in order to obtain the generating functions counting the number of texts
with a fixed number of occurrences of a given pattern w according to their size. It
leads to the generating function Ow(z) and Nw(z)

Ow(z) =
zk

(c(z)(1 − 2z) + zk)2
,

Nw(z) =
c(z)

c(z)(1 − 2z) + zk
,

where k is the length of w.
When no ambiguity arises, we abbreviate Ow(z) and Nw(z) by O(z) and

N(z). Basing ourself on Guibas and Odlyzko’s method, we obtain the probabilistic
versions O(z) and N (z) of O(z) and N(z), these generating functions count texts
with their probability, so

O(z) :=
∑

n≥0

Pn(N̂w = 1)zn =
pwzk

(ĉ(z)(1 − z) + pwzk)2
, (7)

and

N (z) :=
∑

n≥0

Pn(N̂w = 0)zn =
ĉ(z)

ĉ(z)(1 − z) + pwzk
. (8)

The next step will be to extract the coefficient of order n in these probabilised
generating functions.

2.2 Complex analysis

In order to isolate the dominant pole ρ of the generating functions Ow and Nw,
we use Rouché’s theorem. The adequate contour is a circle C centered at the

5

origin with a radius R depending on the position of the first non-trivial 1 in w’s
autocorrelation polynomial.

For example, if c1 = 1 we choose R = 0.5(1 + 1/p), then the disc of radius R
contains ρ as unique pole of the generating function. No general formula has yet
been devised for the radius, but we are assured of its existence by Pringsheim’s
theorem.

The contour is also the one we use for an application of Cauchy’s theorem.
There is only one pole to the generating function O(z) (or N (z)) inside the disc
so that

1

2iπ

∫

C

O(z)

zn+1
dz = Res

(O(z)

zn+1
; 0

)
+ Res

(O(z)

zn+1
; ρ

)
, (9)

where Res(f, a) means the residue of the function f at a.
The modulus of O(z) can be bounded on the circle C. Furthermore, the

residue in 0 of O(z)/zn+1 is the coefficient of order n of O(z). By developping the
generating function in Laurent serie near the pole ρ, we obtain the residue at ρ:

Res

(O(z)

zn+1
; ρ

)
=

2−k

F ′(ρ)3
ρk−n−2((k − (n + 1))F ′(ρ) − ρF ′′(ρ)),

where F (z) = ĉ(z)(1 − z) + pwzk.

2.3 Approximation

This subsection is dedicated to finding a good approximation for the value of the
dominant pole ρ. We recall that ρ is defined as the solution of smallest modulus of

F (z) = ĉ(z)(1 − z) + pwzk = 0. (10)

Furthermore, due to Pringsheim’s theorem [3], we know that ρ is positive real.
Since F (1) = pw is close to zero on all but a few patterns (the probability

decreases exponentially with the size of the word w), and we are dealing with
polynomials, ρ is greater than 1 but close enough to it.

Let’s introduce α1 such that ρ = 1 + α1. We know that α1 is positive, and
satisfies

ĉ(1 + α1)α1 + pw(1 + α1)
k = 0. (11)

It is hard to solve this equation to get α1, so we introduce α such that

ĉ(1 + α)α + pw = 0.

α is close to α1 since only small terms have been omitted from (11).
Using Rolle’s theorem, we obtain

ĉ(1 + α) = ĉ(1) + αĉ′(β) = ĉ(1) + pw
ĉ′(β)

ĉ(1 + α)
,

for β ∈]1, 1 + α[. Since the quantity ĉ′(β)/ĉ(1 + α) is bounded by a constant, and
pw is very small compared to ĉ(1), one has

ĉ(1 + α) ' ĉ(1).

Finally, in the residue from the previous section, the ρ−n term becomes

ρ−n = (1 + α1)
−n ' (1 + α)−n ' exp(−nα) ' exp

(
−npw

ĉ(1)

)
.

6

3 Splitting in four

From now on, we only deal with the external path length parameter since the
methods used for this parameter apply similarly to the size.

Let ∆ be the difference between the mean of the external path length P for
a trie under Poisson model of parameter n and for a suffix tree on n suffixes:

∆ := E
t
P(n)(P) − En(P).

Collecting results from preceding sections, we obtain

∆ =
∑

w∈M?

Pn(N̂w = 1) − P
t
P(n)(Nw = 1),

where P
t
P(n)(Nw = 1) is the probability of the event Nw = 1 taken over all tries

built on set of size z, where z follows the Poisson law P(n) of parameter n. The

previous section has provided the asymptotic behavior of Pn(N̂w = 1) and known
results from poissonisation [2, 9] allow us to write informally

∆ '
∑

w∈M?

npw

(
exp

(
−npw

ĉ(1)

)
− exp(−npw)

)
. (12)

Remark: Since ĉ(1) ≥ 1, ∆ is a positive quantity, hence asymptotically and
on average the path length is longer for a trie than for a suffix tree.

The remainder of this section consists of a delicate subdivision of the set of
all patterns in order to control the asymptotic growth that each of these subsets
brings to the sum (12). In [6], it was shown that the sum ∆ was of order O(n1−ε)
for some unspecified ε > 0, and we want to obtain an explicit bound.

The function x → x exp(−x) dominates the behavior of the sum ∆. A perusal
of this function’s graph induces a three-part splitting of the set of all patterns on
whether npw tends to infinity, to zero or remains “almost constant”; the latter will
also be cut into two according to how ĉw(1) is close to 1.

3.1 Small sizes

First, we focus on patterns of small sizes, which are in relatively small number.
Bounding crudely their contribution to the sum ∆ by the product of their number
by the worse they grow will be sufficient to prove they do not contribute much in
∆’s growth.

We define the small-sized words as those complying with

|w| = k ≤ 5

6
log1/q n =

5

6
Cq log n =: ks(n),

for Cq := (log 1/q)−1.
Intuitively, a pattern of small size is one that satisfies npw → ∞; or in a more

quantitative approach
npw ≥ n1/6. (13)

I call a slice of patterns the set of all patterns of a given length. It is more com-
fortable to handle slices, so the definition for small-sized patterns means those in
slices satisfying (13).

7

We have a binary alphabet, thus the number of patterns of size smaller than
ks(n) is of order n5Cq/6 and for any small-sized pattern

npw

(
exp

(
−npw

ĉ(1)

)
− exp(−npw)

)
≤ n1/6 exp(−n1/6/ĉ(1))

≤ n1/6 exp(−(1 − p)n1/6).

Finally, the patterns of small size contribute to ∆ less than

n5Cq/6n1/6 exp(−(1 − p)n1/6),

and due to the dominance of the exponential decrease, to o(1) (this suffices for our
goals).

3.2 Large sizes

This part deals with patterns of large size, defined as those whose respective slices
satisfies the property npw ≤ 1√

n
. The intuition is to catch patterns with npw → 0,

but we refine this condition quantitatively into npw ≤ 1√
n

before resorting to slices.

These patterns indeed are of large sizes: for a symmetric source, for example,
npw = n2−k ≤ 1/

√
n, implies that k, the length of w, satisfies k ≥ 1.5 logn. This

definition translates on the length of the patterns into

k ≥ 1.5 log1/p n = 1.5Cp log n =: kl(n).

With this definition, all large patterns obey npw → 0; so a Taylor expansion of
the function x → x exp(−x) near zero yields

∑

k≥kl(n)

∑

w∈Mk

npw

(
exp

(
−npw

ĉ(1)

)
− exp(−npw)

)
'

∑

k≥kl(n)

∑

w∈Mk

(npw)2
(

1 − 1

ĉ(1)

)
.

Obviously there are an infinite number of large patterns, which prevents us
from using a brute-force majoration like for the small-sized patterns. However, one
has

∑

w∈Mk

p2
w =

k∑

i=0

(
k

i

)
(piqk−i)2

= (p2 + q2)k =: Ak
p ,

(14)

for a constant Ap smaller than 1 and depending only on p.
Furthermore we have already seen that 1 ≤ ĉ(1) ≤ 1/(1 − p), hence

∑

k≥kl(n)

∑

w∈Mk

npw

(
exp

(
−npw

ĉ(1)

)
− exp(−npw)

)
= O

∑

k≥kl(n)

n2Ak
p

 . (15)

The largest
∑

k≥kl(n) n2Ak
p can grow is in the case of a symmetric source.

This case brings asymptotically an O(
√

n) contribution to the sum ∆; but for
other letter occurrence probabilities, we can improve up to a O(1/n) growth.

8

3.3 Periodic patterns

We introduce Bk := {w : |w| = k, ĉ(1) ≥ 1 + 2−k/2} as the set of periodic
patterns of size k. This part aims at patterns of intermediate size (neither small
nor large) with the additional constraint they are periodic. We will abusively refer
to these patterns as periodic.

A periodic pattern has the first non-trivial 1 in its autocorrelation polynomial
for a small index j, and therefore w is formed of repetitions of its suffix of length
j. For these patterns, the second term in ĉ(1) is the probability of the suffix of size
j of w. But since j is small, the probability is large and ĉ(1) is relatively far from
1.

There are relatively few periodic patterns in Bk:

Lemma 3.1
#Bk < k2k/2. (16)

Proof: We start by partitionning the patterns of size k into two:
∑

w∈Mk

ĉ(1) =
∑

w∈Bk

ĉ(1) +
∑

w 6∈Bk

ĉ(1).

For the patterns in Bk, ĉ(1) ≥ 1+2−k/2 and for the others, ĉ(1) ≥ 1. Using Lemma
1, we get

∑

w∈Mk

ĉ(1) = 2k + k − 1 ≥ #Bk.(1 + 2−k/2) + 1.(2k − Bk) = #Bk2−k/2 + 2k

From there we bound the contribution of intermediate and periodic patterns

∆p :=

kl(n)∑

k=ks(n)

∑

w∈Bk

npw

(
exp

(
−npw

ĉ(1)

)
− exp(−npw)

)

≤
kl(n)∑

k=ks(n)

#Bk max
w∈Bk

{
npw exp

(
−npw

ĉ(1)

)}

< K

kl(n)∑

k=ks(n)

k2k/2,

where K is any upper bound on the function x → x exp(−x/ĉ(1)) on positive reals.
We finally obtain a contribution of order O(n0.75Cp log n) for the periodic

patterns. Since we are looking for a sublinear contribution to ∆, this necessitates
0.75Cp < 1, hence p < 2−0.75 ' .5946035575.

The 2−0.75 limiting value for p depends on the arbitrary (but smaller than
1) factor defining the bound kl(n) (here for example this factor is 1.5). We could

extend the boundary value of p to 1/
√

2 at the expense of a worse error term.

3.4 Aperiodic patterns

The aperiodic patterns are those remaining, they are of intermediate sizes (between
kl(n) and ks(n)) and not belonging to the set Bk. For these, ĉ(1) is very close to
1 hence the difference between npw exp(−npw) and npw exp(−npw/ĉ(1)) is small.

9

Since w 6∈ Bk, one has

1

ĉ(1)
≥ 1

1 + 2−k/2
≥ 1 − 2−k/2,

so that

npw

(
exp

(
−npw

ĉ(1)

)
− exp(−npw)

)
≤ npwe−npw

(
enpw2−k/2 − 1

)
.

We are going to use a Taylor expansion of the exponential function near zero,
but in order for the expansion to apply we need npw2−k/2 → 0 for all aperiodic
patterns; this leads to the condition p < p0 ' 0.5469205467, where p0 is the unique
real solution to

(
p√
2

)5/6

+ p − 1 = 0.

So, for p < 0.54, we can use a Taylor expansion and since Bk < 2k, we derive

∆a :=

kl(n)∑

k=ks(n)

∑

w 6∈Bk

npw

(
exp

(
−npw

ĉ(1)

)
− exp(−npw)

)

≤
kl(n)∑

k=ks(n)

2k(npw)2e−npw2−k/2

≤
kl(n)∑

k=ks(n)

β2k/2,

where β = 4e−2 is the maximum value of x → x2 exp(−x) over the positive reals.
Hence the contribution of the aperiodic patterns to ∆ is O(n0.75Cp). Similarly

to the periodic case, we could increase the upper bound on p up to 2−
√

2 ' 0.5857
at the expense of a less precise error term.

4 Conclusion

Each subset of patterns contributes less than O(n0.85) to the difference ∆. Hence
the asymptotic for the external path length (resp. size) of a trie and of a suffix
tree only differ by a small quantity. Therefore we have obtained:

Theorem 4.1 For a suffix tree built on the first n suffixes of a string produced by
a memoryless (p,q)-source, and for p < 0.54, the mean of the external path length
satisfies asymptotically

n log n

h
+ (K + ε(n))n + O(n0.85), (17)

and the size
n

h
(1 + ε′(n)) + O(n0.85). (18)

where ε and ε′ are oscillating functions of very small modulus centered in 0.

10

Future research related to this work includes: providing a larger range for the
probability p (if possible the whole [0,1] interval); applying this method to other
parameters of the suffix tree like the fill-up level, the profile or the height; finally,
extending the source model to the powerful dynamical framework introduced by
Vallée [10], as it has been done for tries in [2].

References

[1] Clément, J. Arbres Digitaux et Sources Dynamiques. Thèse de doctorat,
Université de Caen, Sept. 2000.

[2] Clément, J., Flajolet, P., and Vallée, B. Dynamical sources in in-
formation theory: A general analysis of trie structures. Algorithmica 29, 1/2
(2001), 307–369.

[3] Flajolet, P., and Sedgewick, R. The average case analysis of algorithms:
Complex asymptotics and generating functions. Research Report 2026, In-
stitut National de Recherche en Informatique et en Automatique, 1993. 100
pages.

[4] Guibas, L. J., and Odlyzko, A. M. Periods in strings. Journal of Com-
binatorial Theory, Series A 30 (1981), 19–42.

[5] Guibas, L. J., and Odlyzko, A. M. String overlaps, pattern matching,
and nontransitive games. Journal of Combinatorial Theory. Series A 30, 2
(1981), 183–208.

[6] Jacquet, P., and Szpankowski, W. Autocorrelation on words and its ap-
plications: analysis of suffix trees by string-ruler approach. Journal of Com-
binatorial Theory. Series A 66, 2 (1994), 237–269.

[7] Knuth, D. E. The Art of Computer Programming, vol. 3: Sorting and Search-
ing. Addison-Wesley, 1973.

[8] Mahmoud, H. M. Evolution of Random Search Trees. John Wiley, New
York, 1992.

[9] Szpankowski, W. Average-Case Analysis of Algorithms on Sequences. John
Wiley, New York, 2001.

[10] Vallée, B. Dynamical sources in information theory: Fundamental intervals
and word prefixes. Algorithmica 29, 1/2 (2001), 262–306.

[11] Ziv, J., and Lempel, A. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, IT-23 (1977), 337–343.

Julien Fayolle
INRIA, Projet ALGO
78153 Le Chesnay Cedex
France
julien.fayolle@inria.fr

11

