PERIODIC OSCILLATIONS IN THE ANALYSIS OF ALGORITHMS

HELMUT PRODINGER

ABSTRACT. A large number of results in analysis of algorithms contain fluctuations.
A typical result might read “The expected number of ...for large n behaves like
log, n+ constant + 4 (log, n), where §(z) is a periodic function of period one and mean
zero.” Examples include various trie parameters, approximate counting, probabilistic
counting, radix exchange sort, leader election, skip lists, adaptive sampling. Often,
there are huge oscillations to be noted, especially if one wants to compute variances.
In order to see this, one needs identities for the Fourier coefficients of the periodic
functions involved. There are several methods to derive such identities, which belong
to the realm of modular functions. The most flexible one seems to be the calculus
of residues. In some situations, Mellin transforms help. Often, known identities can
be employed. This survey shows the various techniques by elaborating on the most
important examples from the literature.

1. INTRODUCTION

A surprisingly large number of results in analysis of algorithms contain fluctua-
tions. A typical result might read “The expected number of ... for large n behaves like
log, n + constant + 0 (log, n), where () is a periodic function of period one and mean
zero.” Examples include various trie parameters, approximate counting, probabilis-
tic counting, radix exchange sort, leader election, skip lists, adaptive sampling; see the
classic books by Flajolet, Knuth, Mahmoud, Sedgewick, Szpankowki [20, 14, 15, 16, 21]
for background.
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FIGURE 1. &y(x) and 63 (x)

As one can see from the picture, dp(z) has mean zero (the zeroth Fourier coefficient
is not there). On the other hand, §2(z) is still periodic with period 1, but its mean is
not zero. Why should we worry about a quantity apparently as small as ~ 10727

Key words and phrases. Periodic oscillations, residues, Mellin transform, Dedekind’s eta functions,
modular functions, analysis of algorithms, tries, approximate counting, geometric random variables.
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The reason is the variance of such parameters, as it naturally contains the term

“—expectation?,” and as such also —42(z). That might not be a sufficient motivation
for a casual reader if it were not the case that often substantial cancellations occur. In
order to identify them, one has to know more about 6%(z). If one ignores these terms,
one gets wrong results, and the results are not wrong by ~ 107'2, but by an order of
growth! Path length in tries, Patricia tries, and digital search trees [7, 13, 9] are such
cases: the variance is in reality of order n only, but ignoring the fluctuations would
lead to a (wrong) =~ n? result.

Questions like that occurred in several writings of this author (together with various
coauthors), as can be seen from the references. The techniques are extremely interest-
ing, as one has to dig deep into classical analysis. So far, it seems that the calculus
of residues is the most versatile approach in this context. Another approach is to use
(modular) identities due to Dedekind, Ramanujan, Jacobi and others (which can often
be proved by Mellin transform technlques) however, often they do not quite fit. The
residue calculus approach directly addresses the formula that is ultimately needed.

In this survey paper, we discuss all these methods by looking at various examples.

Oscillating functions are usually given as Fourier series f = Zkﬂ] ape®™*e  thus
representing a periodic function of period 1, and since the term ag is missing, oscillating
around zero. We often refer to the coefficient a; by writing [f].

Here are some examples from the literature.

Approximate counting. [5, 10, 18, 19]
After n successive increments the average content C,, of the counter satisfies:
_ ¥ 1
Cp ~logyn+ — —a+ = — dy(log, n),
L 2
with X
o 27rzk:1:
a=> zr—g and da Z (=
k>1 k;éO

with L =log2 and x; = 2”““

. The identity that one needs is

) ™ 11 2 —1)rt
[02], = Zer Xk) = 6L2_E_ZZ%' (1.1)

k#0 h>1
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Maximum of a sample of n geometric random variables. [22, 11]

Assume that X is a geometric random variable such that P{X = k} = 27F (for
simplicity, we only discuss this case, not the slightly more general P{X = k} = (1 —
q)¢*1). We consider n independent trials and look for the maximum of them. This
is a natural parameter which is also useful in the analysis of various algorithms (e.g.,
skiplists [12]).

The expected value is given by

v 1
En~10g2n+f+§—50(log2n)

with the same periodic function as before.
Tries. [10, 7]
The expected number of internal nodes in a trie built from n random data
n
[, ~ =+ no(log,n),
I o(log,n)

with

1 .
=7 ZXkF(l — xg) X

k0

The formula that one needs is

2
_g_1_ 1,2 S
(") L 12 Lz; (j+1) ]—1(21—1)

Partial match queries in tries. [§]

The average cost (defined in the paper [8]), for random tries constructed from n
random data, is

b VA(VEY2 o (log, Vi),

where the fluctuating function 7(z) =3, 7.€2*™% has the Fourier coefficients

=g (1 VR0 (55 (55, (12

The formula one needs is

2, = % - m(3 +2V2) + _L2\/§F(L) + 2—?}?(;)

with
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2. PROOFS BY RESIDUE CALCULUS

The following approach to evaluate [0?], seems to be the easiest and most flexible.
We start with the following example:

1 Tikx
= EZF(—Xk)62 k.
k#0

Find a function F(z) so that [d3], is (apart from a few extra terms) the sum of the
residues along the imaginary axis. Here, take

L
P(z) = - T(=2)T ()
If we set )
1 5 Fi0o
Il = % _7200 F(Z)dZ,
then by shifting and collecting residues,
1, -
1 —5+i00 71.2 LQ
I, = — d ['(—xx) - - —.
B e F(z) Z+Z (=xk) T (xx) 6 12
2 k#0
Now one writes
r 1
er—1 e~ —1
and gets, by a simple change of variable z := —z,
1 *%Jrioo 7.‘.2 L2
L =—— D(—2)(2)dz — I I'(—xx)T - - —
1 omi i (=2)l(2)dz — I + Z (=xx)T (xx) 6 12
2 k#0
The integral
1 —%-l—ioo
I, = ~5 S [(—2)(z)dz
can be computed by collecting the negative residues right to the line Rz = —%, Viz.
1 — 3 +ico (—1)!
I =—— L(—2)l(2)dz = [—1)!'=—-L.
i= 5 [, TEATEE = -

Altogether we have

71.2 LQ
21 = =L+ T(—xu) () — 5 1
k70

On the other hand, integral I, is also the sum of the negative residues right of the line
Rr=11ie
29 )
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This is the identity we wanted.

With not much more effort one can also compute the coefficients [63],, for k # 0.
For this, one works with the function

One obtains

02, = = 37 T(=x)T(=xe + 1)
Jj#0, #k
- —Z D 2w () +9).

We omit the details.

Guy Louchard, who is interested in higher moments, asked to compute the coeffi-
cients [d3],. Here is the instance k = 0, the general case is very involved and not too
attractive:

5 (-1)'H, ,  2log3
190l = —1 L2Z (2 —1) L
(—1)H+ 1 1 I+
PIY zﬂ)(zl—n[za—l*zﬁl—lK j )

l>1

(In this formula, the harmonic numbers H, := Y, .., + appear.)

This has been tested numerically as well and gives 9.42817763095796606421903 x
1072,

Let us straight ahead do another example, which also occurs often:

1 .
.ZU) = Z ZX’CF(_l — Xk)GZWZkI.

k#0
Here, we take

L
F(z) = =2 T(=1 = 2)0(-1+2)
Then
1 —%-l-ioo
L= 2mi 1 F(2)dz + ZXk(_Xk)F(_l —x)l(=1+ xx) +1
2 k40
and
2l = LI, + ZXk(_Xk)F(—l — X)) T (=1 +xx) +1
k40
with
1, -
1 —3Hieo (—1)+1 I
I=—— PT(=1—2)0(~1+2)dz =Y [ [— oy~
2= 5 o ( 2)0(—=1+ z)dz Z 0 1)!( )+4
2 1>2
(=) 1 1 1
Z(z+1)(1—1) ity T3

>2
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Therefore
L
26 = —L* + 3t ZXk(_Xk)F(_l = xe) (=14 xx) + 1.
k0
But I; is also
L [2 ( 1)l+1 )l+1l
I =—2 412 [ - 2:—— L*+L :
L=yt Zzl_l(z+1)( ) TR ; z+1)(z_1)
Putting things together, we find
L
2, = —L* + 5t D Xk (=xe)T (=1 = xi) (=1 + i)
k0
I (—1)H1
= —— +2L*+2L +1
2 DZQ - DH(I+1)({-1)
or
(_1)l+1l

ZXk(_Xk)F(_l —x)(=14+xx) =—-1-L+ 3L% + 2LZ

k#0 1>2

“DI+nI-1)

which is the identity in question, as it expresses the quantity L?[c?]y in two different
ways.

Here is a third example, dealing with the function
1 - Tikx
7 ZF(J — xx)e’™"

k>0

for j > 1 and the computation of the constant term of its square. The technique should
be familiar by now. Consider the function

DG+ 20 — 2)

L
el — 1

Therefore we have

ZFU + x)T( — xk) = L /‘+i°° LG +2)T = Z)dz
k20

(T(5)? is the residue at z = 0.)

Now we use again the decomposition
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for the second integral and get

L [T 42T - 2)

- d
210 J 1 oo elz —1 :
1., 1, -
D[ L[ raarg - 2)
= (5 I'(j—2)dz + — d
2mi 1o (4200 = 2)dz+ 27i —ico el —1 :
Lo[atee F(j — )0 +2)
:—/ I'(j+2)l j—z)dz—i—Q—m - - dz.
Therefore
. 2
> _ITG + x|
k0

2L [FH®T(j+ 2)(j — 2)
elz — 1

L 100
— I'(q I'(7 — —T(4)?
=5 ], .. o / TG+ PG - 2)de = TG)

=L +1L,-T()>
Integral I; is evaluated by shifting the contour to the right and collecting the negative
residues, which gives
1)3 —m+1

m—j)!

2L} BLT_”;

m>j

and with m =h +j

oy (h+2j — (=" 1

h! 2hti — 1
h>0

—20(2j - 1! <_sj> ﬁ

h>0

Integral I, is of interest for itself and appears already in early references to the Mellin
transform technique as by Nielsen [17, p. 224]. (It could, however, by computed as in
the previous examples.)

We start with the function .
i
flz) = TR

and perform its Mellin transform (see, e.g., [6] for definitions)

— /Uoo flx)z*~lde = B(j+5,j—s) = i +;();;(); al)

with the Beta function B(z,w) (compare [1]). The fundamental strip is (—j, j). There-
fore the inversion formula for the Mellin transform gives

1 ZOO F . -
1 / (J+ S)F.(J 8) ~s i,

flx) =
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Now we may evaluate at x = 1 and get the formula
1 100 )
— L(j+s)T(j — s)ds = T'(25)27%.

2711 —ioo

This produces the formula

Zf(j + X)L — Xk)

k#0
=2L(2j — 1)1 2y __ L L(2j — 1)I127% — (j —1)!%
=\ b )ori—1

Remark. The computation of the integral I, (as in the examples above) sometimes
leads to series like
> (-1

I>1
There is nothing wrong here. The correct interpretation is as an Abel limit
—t 1
. 14l _ _ _ =
Jim (=1 JAm (1+1¢)? 4’

3. USING THE MELLIN TRANSFORM

Let us start with our running example (1.1) and show how this can be proved using
the Mellin transform. This technique is very prominent in the analysis of algorithms,
and we refer to [6] for a nice survey.

We might for instance start with the series
S

h _
1 h(2 1)
and interpret it as ¢g(log2) with

-1 h—1 -1 h—1 b
9(@) ‘:Zh((ehr)—n -y e

h>1 hyk>1

Now one computes the Mellin transform g¢*(s):

g(s) =Y %e—hkw => le_lh—szg—sr(s) = (1 —27%)¢(s + 1)C(s)D(s).

hk>1 hk>1

Using the inversion formula for the Mellin transform, one gets

%+ioo
o) =5 [ =2+ DT () s
71.2 L T 1 f%+ioo B B
e I SCR SOOI

—1400

122 2 24 2mi -3

3

5 “+100

(2~ 1)C(s + 1)C(s)ﬁr () r(EL)eas.

w2 L T 1
— - +—
12¢ 2 24  2mi

3

—5—too
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This form was obtained by taking 3 residues out and invoking the duplication formula
of the [-function. (Observe that the exponential smallness of the I'-function along
vertical lines justifies the shifting of the line integral.) We now use the functional
equation for ((s), namely

r(5)cts) :wsér(lgs)gu — ), (3.1)

and continue:

90 =5 "3 T m
1 _§+ioo(2s 1)1 23‘11“(1_8)@(1 )F<_S>C( Vo=*d
_ —TT 2 — S —_— —S)T S
2mi ~3 oo 2 2
B 2 L+ T
12z 2 24
1 +zoo -8 —25— 1+S S s
e g (G
71-2 L z 1 2o —5)\,-—2s 59—s8
Ti2r 2 2 2m s (1= 27772 (1 4 )(s)T(s)2°27"ds,
and so
2 L T 272
- 24T .2
9(t) = 15y ~ 5t o g( ) (3:2)

This is the formula we need, since we can also rewrite the left side of (1.1) in terms of
this g(x) function:

650 = ;F Xe)T Z ksmh(2k7r2/L Z k e%z —

with z = 27r2/L. But

1 k(25+1)z 1 —kjz 1 —2kjz
Z k(62kz _ Z E Z Ee -2 Z ﬁe
k>1 k>1, §>0 k>1, >1 k>1,j>1
_ (_1 ki —k:jz ( 1
k>1,5>1 k>1

and so
2 /272
2 [ JR—

Let us do a more complicated example in the same style: We want to rewrite [72],,
with the Fourier coefficients given in (1.2). Note that

e g (e ()
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Now we use the formula (reflection formula for the Gamma function, cf. [1]) ['(2)['(1 —

z) = m/sinmz and obtain

1 —xk 14 x& T T
F F = =
( 2 ) ( 2 ) sin(m/2 +ikn?/L)  cos(ikn?/L)
T efk7r2/L

=2
cosh(kn2/L) S

so that
—kn?/L

(7%, = L2Z(3+2\/_( ))@m.

k>1

Let us define two new functions

P =Y =T

1 e—2kx
k>1 + k>1

Then, (3.3) in terms of F(z) and G(z) becomes

9 s w2 \/_7r w2
= 50 (F) - e(T)-

We use a series transformation for F'(z) and G(x). We start with

Fla)=) (-1) Y e @ e =3 x(j)-

§>0 k>1 §>0

where
0  for j even,
x(j)=4¢1 for j =1mod 4,
—1 for 7 =3 mod 4.

T 1 w2
Fio= £ -3+ 20(2)
(x) 4x 4+x T

for x > 0, as we shall show soon, then G(z) = F(x) — 2F(2x), hence

Once we know

o) = +57(5) -1 (5)

Applying the above to (3.4) we finally obtain

3 —2V2 2v2 (L
27 _ 2 T A Ve (b
[ = 7 4L2(3+2f) SEER() + = F(5):
To prove (3.5) we proceed as follows. Let
1
Bls) =Y (—1) =
= (2j +1)
We have
—kzx

(3.3)

(3.4)

(3.5)
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so that the Mellin transform F*(s) = [* F(z)z*"'dz of F(z) becomes F*(s) =
['(s)C(s)B(s). By the Mellin inversion formula this yields

Fa) = 5= [ T80 s

Now we take the two residues s = 1 and s = 0 out from the above integral (observe
that 5(0) = 1/2 and 5(1) = /4, cf. [1]) and apply the duplication formula for I'(s) to
obtain

2

1,

11 e g |

Fla)=——~—4— [ —28—1r<8)r(5+
dz 4 2mi )1 VT 2

We now use the functional equations for ((s) and 3(s), namely

(3= (5 )

)7 C()B(s)ds.

and

1
s -sr(1-2) = 2281ns+%r(sg )B(s).
The first identity is Riemann’s functional equation for {(s), and the second an imme-
diate consequence of the functional equation for Hurwitz’s (-function ((s,a) (cf. [2]),

and the fact that
Bls) =475, 1) = ¢, ) |.
Substituting 1 — s = u, we get

3 .
1 1 §+ZOO
Flz)=— >+

e R M S N (DR L

3 .
57200
which proves (3.5).
Using the above scheme, several other identities which one needs in the analysis of
algorithms can be proved. We refer to Szpankowski’s book [21].

4. MODULAR IDENTITIES

Formula like (3.2) belong to the realm of modular functions. Many of them can
be found in the literature, and are due to Jacobi, Dedekind, Ramanujan and others.
Berndt’s book [4] contains a wealth of information about the subject, compare also [3].

Here is a little bit of background: Let H be the upper complex halfplane {z € C |
3z > 0}. Then the Dedekind 7 function is defined by

77(7_) _ 67riT/12 H (1 . eZm'n'r), r e H;
n>1
there is a transformation formula:
1 .
n(—=) = (=)0 ().
T
Ramanujan considered series

km
f(z):= Z ———, m an odd integer,

e2kz _ 1’
k>1
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and could relate them to f(7%/z). The instance m = —1 is equivalent to the functional
equation for Dedekind’s eta function.
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