HIDDEN WORD STATISTICS
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ABSTRACT. We consider the sequence comparison problem, also known as
“hidden” pattern problem, where one searches for a given subsequence in a
text (rather than a string understood as a sequence of consecutive symbols).
A characteristic parameter is the number of occurrences of a given pattern w
of length m as a subsequence in a random text of length n generated by a
memoryless source. Spacings between letters of the pattern may either be
constrained or not in order to define valid occurrences. We determine the
mean and the variance of the number of occurrences, and establish a Gaussian
limit law and large deviations. These results are obtained via combinatorics
on words, formal language techniques, and methods of analytic combinatorics
based on generating functions. The motivation to study this problem comes
from an attempt at finding a reliable threshold for intrusion detections, from
textual data processing applications, and from molecular biology.

1. INTRODUCTION

String matching and sequence comparison are two basic problems of pattern
matching known informally as “stringology”. Hereafter, by a string we mean
a sequence of consecutive symbols. In string matching, given a pattern W =
wiws ... wm, (of length m) one searches for some/all occurrences of w as a block
of consecutive symbols in a text T' = t1ta...t, (of length n). The algorithms by
Knuth-Morris-Pratt and Boyer—-Moore [11] provide efficient ways of finding such oc-
currences. Accordingly, the number of string occurrences in a random text has been
intensively studied over the last two decades, with significant progress in this area
being reported [5, 20, 21, 32, 33, 34, 41]. For instance Guibas and Odlyzko [20, 21]
have revealed the fundamental réle played by autocorrelation vectors and their asso-
ciated polynomials. Régnier and Szpankowski [33, 34] established that the number
of occurrences of a string is asymptotically normal under a diversity of models that
include Markov chains. Nicodéme, Salvy, and Flajolet [32] showed generally that
the number of places in a random text at which a ‘motif’ (i.e., a general regular
expression pattern) terminates is asymptotically normally distributed.

In sequence comparisons, we search for a given pattern W = wyws . .. wp, in the
text T, = t1to . . .t, as a subsequence, that is, we look for indices 1 < i1 < iy < --- <
im < n such that t;, = w1, t;, = wa, -+, t;,, = wy,. We also say that the word w
is “hidden” in the text; thus we call this the hidden pattern problem. For example,
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date occurs as a subsequence in the text hidden pattern, in fact four times, but
not even once as a string. We allow the possibility of imposing an additional set of
constraints D on the indices 41,2, .. ., %, to record a valid subsequence occurrence:
for a given family of integers d; (d; > 1, possibly d; = c0), one should have
(¢j41 — i) < d;. In other words, the allowed lengths of the “gaps” (ij41 —i; — 1)
should be < d;. With # representing a ‘don’t-care-symbol’ (similar to the unix
‘*’-convention) and the subscript denoting a strict upper bound on the length of
the associated gap, a typical pattern may look like

(1) abftsrHacHattddtadbrita;

there, # abbreviates #., and #; (which glues adjacent letters together) is omitted;
the meaning is that ‘ab’ should occur first contiguously, followed by ‘r’ with a gap
of < 2 symbols, followed anywhere later in the text by ‘ac’, etc. The case when
all the d;’s are infinite is called the (fully) unconstrained problem. When all the
d;’s are finite, we speak of the (fully) constrained problem—in particular, the case
where all d; reduce to 1 gives back classical string matching as a limit case.

Motivations. Our original motivation to study this problem came from intru-
sion detection in the area of computer security. The problem is important due to
the rise of attacks on computer systems. There are several approaches to intrusion
detections, but, recently the pattern matching approach has found many advocates,
most notably in [3, 31, 42]. The main idea of this approach is to search in an audit
file (the text) for certain patterns (then known as “signatures”) representing sus-
picious activities that might be indicative of an intrusion by an outsider, or misuse
of the system by an insider. The key to this approach is to recognize that these
patterns are subsequences because an intrusion signature specification requires
the possibility of a variable number of intervening events between successive events
of the signature. In practice one often needs to put some additional restrictions
on the distance between the symbols in the searched subsequence, which leads to
constrained version of subsequence pattern matching. The fundamental question
is then: How many occurrences of a signature (subsequence) indicate a real attack?
In other words, how does one set a threshold so that real intrusions are detected
and false alarms are avoided? It is clear that random (unpredictable) events oc-
cur and setting the threshold too low will lead to an unrealistic number of false
alarms. On the other hand, setting the threshold too high may result in missing
some attacks, which is perhaps even more dangerous. This fundamental problem
initially motivated our studies of hidden pattern statistics. By knowing the most
likely number of occurrences and the probability of deviating from it, we can set a
threshold such that with a small probability we miss real attacks (cf. Remark after
Theorem 3 for a solution).

Molecular biology provides another important source of applications [35, 40, 41].
As a rule, there, one searches for subsequences, not strings. Examples are in abun-
dance: split genes where exons are interrupted by introns, starting and stopping
signal in genes, tandem repeats in DNA, etc. In general, for gene searching, the
constrained hidden pattern matching (perhaps with an exotic constraint set) is the
right approach for finding meaningful information. The hidden pattern problem can
also be viewed as a close relative of the longest common subsequence (LCS) prob-
lem, itself of immediate relevance to computational biology, but whose probabilistic
aspects are still surrounded by mystery [37].
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We, computer scientists and mathematicians, are certainly not the first who in-
vented hidden words and hidden meaning [2]. Rabbi Akiva in the first century
A.D. wrote a collection of documents called Maaseh Merkava on secret mysticism
and meditations. In the eleventh century Spanish Solomon Ibn Gabirol called these
secret teachings Kabbalah. Kabbalists organized themselves as a secret society ded-
icated to the study of the ancient wisdom of Torah, looking for mysterious connec-
tions and hidden truth, meaning, and words in Kaballah and elsewhere (without
computers!). Recent versions of this activity are knowledge discovery and data
mining, bibliographic search, lexicographic research, textual data processing, or even
web site indexing. Public domain utilities like agrep, grappe, webglimpse (de-
veloped by Manber and Wu [43], Kucherov [30], and others) depend crucially on
approximate pattern matching algorithms for subsequence detection. Many inter-
esting algorithms, based on regular expressions and automata, dynamic program-
ming, directed acyclic word graphs, digital tries or suffix trees have been developed;
see [8, 12, 30, 43] for a flavour of the diversity of approaches to algorithmic design.

In all of the contexts mentioned above, it is of obvious interest to discern what
constitutes a meaningful observation of pattern occurrences from what is merely
a statistically unavoidable phenomenon (noise!). This is precisely the problem
addressed here. We establish subsequence statistics, i.e., precise probabilistic infor-
mation on the number of occurrences of a given pattern W as a subsequence in a
random text 7T, generated by a memoryless source—this, in the most general case
covering the constrained and unconstrained versions as well as mixed situations.
Surprisingly enough and to the best of our knowledge, there are no results in the
literature that address the question at this level of generality. An immediate con-
sequence of our results is the possibility to set thresholds at which appearance of a
(subsequence) pattern starts being meaningful.

Results. Let Q(T) be the number of occurrences of a given pattern W as a
subsequence in a text 7. By number of occurrences is understood the number of
ways the pattern together with its distance constraints can be embedded in the text.
We investigate the general case where we allow some of the gaps to be restricted,
and others to be unbounded. Then the most important parameter is the quantity
b defined as the number of constrained blocks, that is, the number of unbounded
gaps (the number of indices j for which d; = oo) plus 1.

Throughout this article, the text is assumed to be generated by a memoryless
source, also known as Bernoulli source, i.e., symbols are drawn independently ac-
cording to some fixed probability distribution over letters of the alphabet. For a
random text T' of length n under this model, the combinatorial parameter (T')
becomes a random variable that is then naturally also denoted as 2. We prove
in Theorem 1 that the number of occurrences 2 in a random text of size n has
expectation and variance given by

b
E[0) ~ 3 Dr(W), Va0l ~ o (W) 02,

with E and V denoting the mean and variance operators, while the subscript n
indexes the probabilistic model of use. There D is the product of all the finite
constraints d;, (W) is the probability of W, and o?(W) is a computable constant
that depends explicitly (though intricately) on the structure of the pattern W and
the constraints. Then we prove the central limit law by moment methods, that is,
we show that all centered moments (Q — E,,[Q])/n?~% converge to the appropriate



4 P. FLAJOLET, W. SZPANKOWSKI, B. VALLEE

moments of the Gaussian distribution (Theorem 2). We stress that, except in the
constrained case, the difficulty of the analysis lies in a nonlinear growth of the mean
and the variance so that many standard approaches to establishing the central limit
law tend to fail.

For the (fully) unconstrained problem, one has b = m, and both the mean and the
variance admit pleasantly simple closed forms. For the (fully) constrained case, one
has b = 1, while the mean and the variance become of linear growth. To visualize the
dependency of o?(W) on W, we observe that, when all the d; equal 1, the problem
further reduces to traditional string matching, which was extensively studied in the
past as witnessed by the (incomplete) list of references: [5, 20, 21, 32, 33, 34, 41].
It is well known that for string matching the variance coefficient o2 is a function
of the so-called autocorrelation of the string. In the general case of hidden pattern
matching, the autocorrelation must be replaced by a more complex quantity that
depends on the way pairs of constrained occurrences may intersect (cf. Theorem 1
and Section 3.3).

Methodology. The way we approach the probabilistic analysis is through a
formal description of situations of interest by means of regular languages. Basically
such a description of contexts of one, two, or several occurrences gives access to
expectation, variance, and higher moments, respectively. A systematic translation
into generating functions is available by methods of analytic combinatorics deriv-
ing from the original Chomsky-Schiitzenberger theorem. Then, the structure of the
implied generating functions at the pole z = 1 provides the necessary asymptotic
information. In fact, there is an important phenomenon of asymptotic simplifi-
cation where the essentials of combinatorial-probabilistic features are reflected by
the singular forms of generating functions. For instance, variance coefficients come
out naturally from this approach together with, for each case, a suitable notion
of correlation; higher moments are seen to arise from a fundamental asymptotic
symmetry of the problem, a fact that eventually carries with it the possibility of
estimating moments. From there Gaussian laws eventually result by basic moment
convergence theorems. Perhaps the originality of the present approach lies in such
a joint use of combinatorial-enumerative techniques and of analytic-probabilistic
methods.

An extended abstract of this article has appeared in the proceedings of the
ICALP’2001 Colloquium [14].

2. FRAMEWORK

We fix an alphabet A := {ai,as2,...,a,}. The set of all possible texts is A*
(the set of words over the alphabet 4), and a text of length n is an element T =
tity - -t, of A". A particular matching problem is determined by a pair (W, D)
called a “hidden pattern” specification: the pattern W = wy - - w,, is a word of
length m; the constraint D = (dy,...,d,, 1) is an element of (N* U{oo})™ 1. The
case D = (00,...,00) models the unconstrained problem; at the other end of the
spectrum, there lies the case where all d; are finite, which we name the constrained
problem.

Positions and occurrences. An m-tuple I = (i1,i9,...,0m5) (1 <41 < iz <
-++ < iy,) satisfies the constraint D if ;41 —4; < dj, in which case it is called a
position. Let P, (D) be the set of all positions subject to the separation constraint
D, satisfying furthermore i, < n. Let also P(D) = |J,, Pn(D). An occurrence
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of pattern W subject to the constraint D is a pair (I,T) formed with a position
I = (i1,i9,...,im) of Pp(D) and a text T = tyty---t, for which ¢;, = wy,t;, =
w2, ...,t,, = wn. Thus, what we call an occurrence is a text augmented with the
distinguished positions at which the pattern occurs. The number Q) of occurrences
of pattern w in text T' subject to the constraint D is then a sum of characteristic
variables

WT) = Z X(T), with X1(T) := [w occurs at position I in T7.
IE'P|T‘ (D)

There, Iverson’s bracket convention is used:

) 151 {

Blocks and aggregates. In the general case, the subset F of indices j for which
d; is finite (d; < 00) has cardinality m —b with 1 < b < m. The two extreme values
of b, namely, b = m and b = 1, thus describe the (fully) unconstrained and the
(fully) constrained problem respectively. The subset U of indices j for which d; is
unbounded (d; = c0) has cardinality b—1. It then separates the pattern W into b in-
dependent subpatterns that are called the blocks and are denoted by Wi, Wa, ... W.
All the possible d; “inside” any W, are finite and form the subconstraint D,, so
that a general hidden pattern specification (W, D) is equivalently described as a
b-tuple of fully constrained hidden patterns ((Wy, D1), (W2, D2), ..., Ws, Ds)).

1 if the property B holds,
0 otherwise.

EXAMPLE. With the example (1) described in the introduction, namely,
ab#or#acHa#dH#saFbria,
one has b = 6, the six blocks being
Wi =aft1b#ar, Wa = aftic, Ws= a, Wa= d#f4a, Ws=b#1r, Ws= a.

In more figurative terms, this is described as follows (with springs —J/- representing un-
bounded gaps, e representing bounded gaps, and gaps < 1 omitted):

lafblezlr] g Lale] 4 [a] g [dlozla] g [o]r] 4 [a].

The decomposition of the hidden pattern problem into blocks is a fundamental tool in
what follows. O

In the same way, an occurrence position I = (i1,42,...,i,) of W subject to
constraint D gives rise to b suboccurrences, 11, 1121 T the rth term IT"] rep-
resenting an occurrence of W, subject to constraint D,. The rth block B!"l is the
closed segment whose end points are the extremal elements of ZI"l, and the ag-
gregate of position I, denoted by «(I), is the collection of these b blocks. In our
example, the position

I=(6,7,9,18,19, 22,30, 33,50, 51, 60)

satisfies the constraint D and gives rise to six subpositions,

il 72l i3l 74l 7181 rlel
— — AN~ /A AN
(6,7,9), (18,19), (22), (30,33), (50,51), (60);
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accordingly, the resulting aggregate a([),
Bl B2 Blsl B4 Bl5] Blel
Vot B sudne Tt R sutus T st Nt
[6,9], [18,19], [22], [30,33], [50,51], [60],
is formed with six blocks. O

Finally, for a totally constrained hidden pattern (W, D), we associate two quan-
tities: the length of a constraint, and the product of a constraint,

(D)=1+)» di, D(D):=]]ds

this is extended to a general hidden pattern specification as

b
(D)= _4D;),  D(D):= ][] D(D).
] =1

Probabilistic model. As regards the probabilistic model, we consider a mem-
oryless source that emits symbols of the text independently from the fixed finite
alphabet A = {a;,as,...a,} and denote by p, (0 < ps < 1) the probability of
the symbol a € A being emitted. For a given length n, a random text, denoted
by T, is then drawn according to the Bernoulli model corresponding to the product
probability on A™:

(4) m(T)=n(ty---ty) = Hpti.

The pattern W = wy - - - wo, of length m is fixed, and the quantity 7(W) = [T} Pu»
the pattern “probability”, surfaces throughout the analysis. Under the randomness
model, the restriction of Q to A™, denoted by 2, whenever dependency on size needs
to be made explicit, becomes a random variable defined on A™. Then, 2, is itself a
sum of correlated random variables X (defined in (2)) for all allowable I € P,,(D).

Generally speaking, we shall use in the sequel other parameters defined on A*,
namely = defined in (11) and = defined in (24). For any such parameter, say U,
we shall adopt similar notations: U is the parameter defined on A*, U,, may be
used to mark the restriction of U to A", and the subscript n appended to P,E,V
indicates that the probabilistic model is the product probability on A™.

Generating functions. We shall consider throughout this paper structures
superimposed on words. For a class C of structures and given a weight function v
from C to the set of reals, we introduce the generating function of the weighted set,

C(z) = Z Cp2™ = Z y(w)z,
n weC
where |w| denotes the size of structure w. In particular, the usual counting gener-
ating function corresponds to the constant weight v = 1. Then!, C,, = [2"]C(2) is
the total weight of all structures of size n in C.

For structures arising from words the number of letters involved in the structure
will determine the size of the structure. The weights will be induced by the prob-
abilities of individual letters. As we shall see in the next section, the collection of
occurrences can be described by means of regular expressions extended with disjoint

IThe notation [2™]f(z) represents the coefficient of 2™ in the series f(z).
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unions, and Cartesian products. Thus a minimal set of rules must first be given in
order to translate such basic constructions; see [16, 36, 38] for a general framework.
Take A, B,C to be weighted sets with respective weights «, 8,. Here is a brief
summary of translation rules from weighted sets to generating functions:
— Disjoint unions. Assume that C = AUB where the union is disjoint (ANB =
(), and that the weight v on C is inherited from the weights a, 8 on A, B:

| aw) fweA
Yw) = { Blw) ifweB.

Then, the corresponding generating functions satisfy
C(z) = A(z) + B(2).

The proof is a one-liner, given the definitions:

Z)ZZv(w)z“'=<Za )(ZB 'wl) A(2) + B(2).

wel w€EA weB

Disjoint unions in such contexts are also called combinatorial sums and
denoted by the symbol ‘+’.

— Cartesian products. Assume that C = A x B is a Cartesian product and
that the weight v on C is defined multiplicatively from the weights «a, § on
A, B: v({z,y)) = ax)-B(y). Then, the corresponding generating functions
satisfy

since one has

z>=27<w)z“=<2 'w') (ZB 'w'> A(z) - B(2).

wel wEA weB
(A similar translation by products of generating functions holds for unam-
biguous concatenations of formal languages.)

For an alphabet A weighted by letter probabilities, the generating function is simply
z. By the rules above, the generating function of all words of length n under the
Bernoulli model is 2" and the generating function of the entire language A* is

1

l+z+42%2+-
l—z

As we shall see, the constructions recalled above suffice to express moments of
occurrence counts. Consequently, all the resulting generating functions are rational,
of the special form F(z) = (1—z)~*+1) P(%) for some integer k > 0 and polynomial
P. This in turn entails precise coefficient asymptotics, namely,

k
(5) [zn]$ = T P(1) +0 (n*).

3. MEAN AND VARIANCE ANALYSIS

In this section, we assemble definitions and methods described in Section 2 in

order to derive estimates of the mean and variance of the number of occurrences
(Theorem 1).
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3.1. Mean value analysis. The first moment of the number of occurrences is
easily obtained by describing the collection of all occurrences in terms of formal
languages.

We recall that an occurrence of pattern VW subject to the constraint D is a pair
(I,T) formed with a position I = (i1,42,...,im) of Pn(D) and a text T' = t1t2 - - -ty
for which t;, = w1,t;, = wa,...,t;,, = wy. We consider the collection of position-
text pairs

m

0:={(IT) ; I€Pr(D)},
with the size of an element being by definition the length n of the text T". The
weight of an element of O is taken to be equal to X (T)n(T). (Here, n(T) is the
probability of the text), In this way, O can also be regarded as the collection of
all occurrences weighted by probabilities of the text. The corresponding generating
function of O equipped with this weight is

6 Ok)= Y Xi(Dn(T)T=3" Y. XD | m(D)T,

(I,T)e0 T \I€P|7(D)

and, with the definition of €2,

(7) 0(z) =Y _QD)n(T) " = E.[Q2"
T n

As a consequence, one has [2"]0(z) = E,[Q], so that O(z) serves as the generating
function (in the usual sense) of the sequence of expectations E,[Q].

On the other hand, each occurrence can be viewed as a “context” with an initial
string, then the first letter of the pattern, then a separating string, then the second
letter, etc. The collection O is then described combinatorially by

(8) O = A* x{w1} x AN x {wa} x A< x ... x {wy 1} x ASPm=1 x {w,,, } x A*.
There, for d < o0, A<d denotes the collection of all words of length strictly less d,
ie., A<t :=J,.4 A, whereas, for d = oo, A<™ denotes the collection of all finite
words, i.e., AS® = A* = |, <oo A?. Since the source is memoryless, the rules
discussed at the end of the last section can be applied, and they give access to O(z)
from the description (8). The generating function functions associated to A<?¢ and
A< are

1—2¢ 1
T AS®(z)=1+42+42>+--- =

Thus, the description (8) of occurrences automatically translates into

b+1 m d;
9) O(z) = ZIE”[Q] z" = (1 i z) X (pr,.z> X (H 11—_zz ) .

n>0 i€F
With w(W) the probability of the pattern W, one finds finally from (5) and (9):

b 1
(10) E,[Q) = [")0(z) = = [ [[ i ] =) (1+0(=)),

bl \ - n

iEF

and a complete asymptotic expansion could be easily obtained. This symbolic
derivation of mean values extends the case of standard string matching exposed
in [36, p. 366]. Its full significance is revealed when it is applied to higher moment
estimates.

AUy =1+ 2427+ +207 1 = T
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3.2. Variance analysis. For the analysis of variance and especially of higher mo-
ments, it is essential to work with a centered random variable = defined, for each n,
as

(11) Ep = Q=Ko [ = > Yy,  with  Yy:= X/ —E[X/] = X;—n(W).
IeP, (D)

The second moment of the centered variable = equals the variance of  and with

the centered variables defined above by (11), one has

(12) E 2= > E[MY)l
1,JeP,(D)

~

From this last equation, we need to analyse pairs of positions (I,T),(J,T) =
(I, J,T) relative to a common text T. We denote by O, this set,

02 = {(I>J7T) 5 Ia J € 7D|T|(2))}7

and we weight each element (I, J,T) by Y;(T)Y;(T)w(T). The corresponding gen-
erating function, which enumerates pairs of occurrences, is

O02(2):= > YT)Y/(T)n(T)2I" =) Y viMYT) | w(T)z"!

(I,J,T)€Os T \I,JEP1(D)

and, with Equation (12),

02(2) =) > EMYj2"=) E,[E*]2"

n>0 I,JeP,(D) n>0

The process entirely parallels the derivation of (6) and (7), and, one has [2"]02(z) =
E,[Z?], so that O2(z) serves as the generating function (in the usual sense) of the
sequence of moments E,,[Z2].

There are two kinds of pairs (I, J) according as they intersect or not. When I and
J do not intersect, the corresponding random variables Y; and Y are independent,
and the corresponding covariance E[Y;Y;] reduces to 0. As a consequence, one
may restrict attention to pairs of occurrences I,J that intersect at one place at
least. Suppose that there exist two occurrences of pattern W at positions I and J
which intersect at £ distinct places. We then denote by Wrns the subpattern of W
that occurs at position I N J, and by 7(Wrnys) the probability of this subpattern.
Since the expectation E[X1X ] equals 7(W)?2 /7 (Win.), the expectation E[Y7Y;] =
E[X[X ;] — #(W)? involves a correlation number e(7,.J)

(13)  EWVY)]=120V) (), with e(I, )= —— 1

™ (WI nJ )
Remark that this relation remains true even if the pair (I,.J) is not intersecting,
since, in this case, one has T(Wjny) = 7(e) = 1.

Aggregates and degrees of freedom of pairs of positions. As it turns
out in the analysis, asymptotic behaviour is driven by the overlapping of blocks
involved in I and J, rather than plainly by the cardinality of I N J. In order to
formalize this, define first the (joint) aggregate a(I,J) to be the system of blocks
obtained by merging together all intersecting blocks of the two aggregates a(I) and
a(J). The number of blocks 8(, J) of a(I, J) plays a fundamental réle here, since
it measures the degree of freedom of pairs; we also call 5(I,J) the degree of pair
(I, J). Figure 1 illustrates graphically this notion.
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| | [ I | 1
] 1 0 C— 1 &

< > < > < >
< > < > - < >

FIGURE 1. A pair of occurrences I,J with b = 6 blocks each
and the joint aggregates; the number of degrees of freedom is here
B(I,J)=4.

ExXAMPLE. Consider the pattern W = ‘ aFtsbFar ‘#‘ aftac ‘ composed of two blocks. The
text aarbarbccaracc contains several valid occurrences of W including two at positions
I = (2,4,6,10,13) and J = (5,7,11,12,13). The individual aggregates are a(l) =
{[2,6],[10,13]}, a(J) = {[5, 11],[12,13]} so that the joint quantities are: a(l,J) = [2,13]
and B(I,J) = 1. This pair has exactly degree 1. a

When I and J intersect, there exists at least one block of a(I) that intersects
a block of a(J), so that the degree 5(I,J) is at most equal to 2b — 1. Next, we
partition s according to the value of B(I, J) and write

OF .= {(I,7,T) € 05 ; B(I,J)=2b—p}

for the collection of intersecting pairs (I, J,T') of occurrences for which the degree
of freedom equals 2b — p. From the preceding discussion, only p > 1 needs to be
considered and

Os(z) = OY(2) + O (2) + O (2) + - - .
As we see next, it is only the first term of this sum that matters asymptotically.

Full pairs. In order to conclude the discussion, we need the notion of full pairs:
a pair (I, J) of Py(D) x Py(D) is full if the joint aggregate (I, J) completely covers
the interval [1, g]; see Figure 2. (Clearly, the possible values of length ¢ are finite,
since ¢ is at most equal to 2¢, where £ is the length of the constraint D.)

ExAMPLE. Consider the pattern W = af#fsb#asr#aftsc. The text aarbarbccaracc
also contains two other occurrences of W, at positions I' = (1,4,6,12,13) and J' =
(5,7,11,12,14). Now, I’ and J' are intersecting, and the aggregates are a(I') = {[1, 6], [12, 13]}, a(J') =
{[5,11],[12,14]} so that o(I',J') = {[1,11],[12,14]. We have here an example of a full
pair of occurrences with a number of blocks 3(I', J') = 2. O

There is a fundamental translation invariance due to the independence of symbols
in the Bernoulli model that entails a combinatorial isomorphism (= represents
combinatorial isomorphism)

ngl o (A*)%*p-i-l % ng]’

where ng I'is the subset of Oy formed of full pairs such that (I, J) equals 2b — p.
In essence, the gaps can be all grouped together (their number is 2b — p + 1, which

1 I I ] [
] C—1 4O C—J O©&4d

<> >
<P »-

Y

< >l
-

FicUure 2. A full pair of occurrences I, J with b = 6 blocks each.
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is translated by the prefactor (A*)2b_p +1), while what remains constitutes a full
occurrence. The generating function of (’)gp i accordingly

0 R AR
O (z) = (E) x BIP(2),

Here, ng ](z) is the generating function of the collection ng I and from our earlier
discussion, it is a polynomial of degree at most 2¢(D). Now, an easy dominant pole
analysis entails that [z"]O¥! = O(n20—?).

This proves that the dominant contribution to the variance is given by [z”]Ogl],
which is of order O(n2b=1). Then, the variance E[Z2] involves the constant B (1)
that is the total weight of the collection Bg]. Recall that this collection is formed
of intersecting full pairs of occurrences of degree 2b — 1. The polynomial Bg] (2)

is itself the generating function of the collection BE], and it is conceptually an
extension of Guibas and Odlyzko’s autocorrelation polynomial [20, 21]. We shall
later make precise the relation between both polynomials (see Section 3.3).

We summarize our findings in the following theorem.

Theorem 1. Consider a general constraint D with a number of blocks equal to b.
The mean and the variance of the number of occurrences Q of a pattern W subject
to constraint D satisfy

i = (T o) (o)

jid;j<oo

Vo] = oW (1+0(%)>,

where the “variance coefficient” o®(W) involves the autocorrelation k(W)

2 _ 7Tz(]/v) 2 . 2 . 1
(14) o*(W) = @—1i " W) with W)= > } (m - 1)_
(I,7)eB,

The set Bgl] is the collection of all pairs of occurrences (I,J) that satisfy three
conditions: (i) they are full; (ii) they are intersecting; (iii) there is a single pair
(r,s) with 1 < r,s < b for which the rth block Bl"l of a(I) and the sth block C!l
of a(J) intersect.

Remark. From Theorem 1 and Chebyshev’s inequality we conclude that
Q Vo[ ( 1 )
Piodle=—=—-1>ep < ———=0{—].
{ En[Q] ‘ 6} = E%[Q] n

Therefore, the random variables Q/ E,[§2] converge to 1 in probability, that is,

Q
— -1l <ep=1.
En[€] ‘ }

Bourdon and Vallée in [9] have recently provided a follow-up to Theorem 1 and
shown that the statement is fairly robust: it extends to a somewhat larger class
of patterns with gaps; more importantly perhaps, concentration of distribution

is shown in [9] to hold for a wide class of sources encompassing memoryless and
Markov sources—the dynamical sources in the sense of Vallée [10, 39].

(15) for any € > 0, lim P, {

n—oo
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3.3. Generalized autocorrelations and variances. In this subsection, we re-
examine the variance coefficient, for which formulze have been provided earlier;
see (14) of Theorem 1. As we now explain, the variance coefficient turns out to
be computable in a time that is polynomial in the size of the pattern specification.
Structurally, it relates to a generalization of Guibas and Odlyzko’s autocorrelation
polynomial originally introduced for classical string matching (cf. [20, 21, 38]).

The general case. The computation of the autocorrelation k(W) reduces to b
computations of correlations k(W,., W), relative to pairs (W,., Ws) of blocks. Note
that each correlation of the form k(W,, Ws) involves a totally constrained problem
and is discussed below. Precisely, one has

a6) W) =00) Y g (T (M0 v,

1<r,s<b

where k(W,., Ws) is the sum of the e(I,J) taken over all full intersecting pairs
(I,J) formed with an occurrence I of block W, subject to constraint D, and an
occurrence J of block W, subject to constraint D,. Let us explain the formula
(16) in words: for a pair (I,.J) of the set BE], there is a single pair (r, s) of indices
with 1 < r,s < b for which the rth block BI"! of a(I) and the sth block C[*] of
a(J) intersect. Then, there exist 7+ s — 2 blocks before the block a(Bl"], Cl*]) and
2b —r — s blocks after it. We then have three different degrees of freedom: (i) the
relative order of blocks Bl(i < r) and blocks Cll(j < s), and similarly the relative
order of blocks Bli(i > r) and blocks CUl(j > s); (i) the lengths of the blocks
(there are D, possible lengths for the jth block); (¢i7) finally the relative positions
of the blocks BI"l and C'#].

The fully unconstrained case. In the unconstrained problem, the parameter
b equals m, and each block W, is reduced to the symbol w,. Then the “correlation
coefficient” k%(W) simplifies to

an =¥ (")) me=wd (1),

1<r,s<m wr

The totally constrained case. To complete the discussion relative to the
variance coefficient, we need to show how to compute the correlation coefficient
k(R,S) between two totally constrained hidden patterns (R,C) and (S,D). (For
general hidden patterns, R and S will be blocks of the original patern W.) This is
achieved by methods of dynamic programming. Assume that the 1-block pattern
R has i symbols, so that constraint C is of the form C = (¢1,¢a,...,¢;—1); in the
same vein, the 1-block pattern S has j symbols, so that constraint D is of the form
C= (dl,dg, c. ,dj_l).

When a pattern T occurs at a position I and K C [ is any subposition of I, T
denotes the subpattern of 7 that occurs at position K. We consider the set B of
pairs (I, J) that satisfy four conditions: (¢) I is an occurrence of R with constraints
C; (i1) J is an occurrence of S with constraints D; (i4i) the two subpatterns Ry
and Siny are equal; (iv) (I,J) is full. Now, the correlation coefficient x(R,S)
involves the set B is equal to

1
k(R,S) := e(l,J with e(l,J)= —— — 1.
(R,S) (I’JZ)EB( ) I, J) T Rany)
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The computation of k := 7(R)7(S)k(RS) reduces to that of A, C:
k=A—n(R)r(S)C.

The quantities C, A are determined from auxiliary arrays Y, X:

£(C)+£(D) £(C)+£(D)
(18) C= > VYltvig, A= Y X[tv,ijl
t,o=1 t,v=1

Arrays Y, X are themselves computed by recurrence with subsets C(t, k), D(v, £),

(19) Ct,k) = {wl<u<t—lu>t—cp_1}
Dv,f) = {wjl<w<v—-1,w>v—di_1}.
Y[t,v,k, f] = Z Yu,v,k — 1,4 fort>wv
w€EC(t,k)
Y[t,v,k, l] = Z Y[t,w,k,£—1] fort<w
(20) wED(v,L)
Y[t,v,k, €] = [re = se] Z Y[u,wk—1,¢0—-1] fort=v
u€C(t,k)
wED(v,£)
X[t,v, k, ] = plre) Z X[u,v,k—1,7 fort > v
u€C(t,k)
X[t,v,k, f] = p(se) Z X[t,w, k, £ —1] fort <w
(21) wED(v,L)
X[t,v,k, ] = plre)[re = sd] Z X[u,w,k—1,£—1] fort=w
32%((2’,?)

The initialization conditions are

(22) Y[1,0,1,0] :=1; Y[0,1,0,1] :=1; Y[1,1,1,1] := [r1 = s1];
X[1,0,1,0] :==p(r1); Y[0,1,0,1] :=p(s1); X[1,1,1,1] :=p(r1) [r1 = s1],
and, for (¢,v) # (0,1) and (¢,v) # (1,0)
(23)
X[t,v,1,0] = Y[t,v,1,0] = X[t,v,0,1] = X[t,v,0,1] =Y[t,v,1,1] = X[t,v,1,1] = 0.

bl

FIGURE 3. The formulae summarizing the computation of the
variance coefficient.

Remark that the condition for the pair (I, J) to be intersecting can be dispensed
with, since non-intersecting pairs give rise to a term e(I,J) equal to zero. An
alternative expression of k := 7(R)7(S)k(R,S)

k=A—-7(R)r(S)C with A= Z T(R1S)u,n), C= Z 1

(I1,J)eB (1,J)eB

involves the pattern (R 1 S)(1,7) obtained by merging the two patterns R at posi-
tion I and S at position J. This merging is a sort of shuffle with possible collisions
at position I N J.

From now on, the main formulse of this subsection are grouped inside Fig. 3
which can be taken as an algorithm for determining variances. We consider the set
B[t,v, k, ] of pairs (I,J) that satisfy the following: (i) I is a valid occurrence of
prefix Ry whose last component iy, satisfies i, = ¢, (44) J is a valid occurrence of



14 P. FLAJOLET, W. SZPANKOWSKI, B. VALLEE

prefix Sy whose last component j, satisfies j, = v, (i44) If I and J are intersecting,
the equality Rins = Sins holds, (iv) the pair (I,J) is full. Notice that the set
Blt,t,k, ] is empty except if the last symbol ry of Ry equals the last symbol sy of
S¢. Since the pair (I,J) is full, the indices ¢,v vary between 0 and ¢(C) + £(D).
Index k is a cursor relative to pattern R (which varies between 0 and 4), while
index £ is a cursor inside pattern S, (which varies between 0 and j). Two variables,
Y[t,v,k, €] and X[t, v, k, ], are used. The first one represents the cardinality of the
set B[t, v, k,£] and is used for computing the second term C of k, while the second
one is the total weight of this set and is used for computing the first term A of «;
see Equation (18) of Fig. 3.

The fundamental formulae for Y[t,v,k,£] and for X[t,v,k, ] used for dynamic
programming are of the same vein. For each of them, there appear three cases
depending on the relative position of ¢ and v (remark that equality ¢ = v is only
possible if the equality r; = s¢ holds). They both involve sets of indices defined
from constraints C and D specified in Eq. (19) of Fig. 3, and auxiliary variables
Y, X determined by the recurrences (20) and (21) respectively. (The formula for
X is similar to that for Y, safe that it involves the probability of the last symbol
read.) The variables must be initialized by (22). Moreover, since the pair (I, J) has
to be full, except for (t,v) = (1,0) or (t,v) = (0,1), one sets the values as given in
Fig. 3, Eq. (23).

The case of a string and the relation with autocorrelation polynomials.
Here W = wiwa ... wy, is a string of length m, and all the symbols of ¥} must occur
at consecutive places, so that a valid position I is an interval of length m. For 1 <
i < j < m, we denote by W[i, j] the substring w;w;41 ... w;. The autocorrelation
set Ky C [1..m] involves all indices k such that the prefix W[1, k] coincides with
the suffix W[m — k + 1, m]. Here, an index k € Ky is relative to a intersecting pair
of positions (I, J) and one has W[l..k] = Win,.

Classically, two autocorrelation polynomials, Ay, and Cyy, are defined from Ky, .
The polynomial Cyy is the uniform autocorrelation polynomial while Ayy is the
weighted autocorrelation polynomial and involves suffix probabilities:

CW(Z): Z szk,
ke Ky
Ap() = S aWVE+ Lm])emF = 2(W) S —— L mk
e 2 2 SO

Since the polynomial BE] involves coefficients of the form

9 1
T (W)[m - 1],

this polynomial can be written as function of the two autocorrelations polynomials
Ay and Cyy,

B (2) = 7 (W)2™ [Aw(2) — 7(W) Ow(2)]-

Put simply, the variance coefficient of the hidden pattern problem extends the
classical autocorrelation quantities associated with strings.
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4. CENTRAL LiMIT LAaws

Our goal is to prove that the sequence (2, appropriately centered and scaled
tends to the normal distribution. We consider the following standardized random
variable Z which is defined for each n by

En Q, —E,[Q]

nTTopbh—1/2 T ph-1/2 7

[11?

(24)

where b is the number of blocks of the constraint D. We shall show that E behaves
asymptotically as a normal variable with mean 0 and standard deviation . By
the classical moment convergence theorem (Theorem 30.2 of [7]) this is established
once all moments of En are known to converge to the appropriate moments of
the standard normal distribution. We remind the reader that if G is a standard
normal variable (i.e., a Gaussian distributed variable with mean 0 and standard
deviation 1), then for any integral s > 0

(25) E[G*]=1-3---(2s—1), E[G*"']=0.

We shall accordingly distinguish two cases based on the parity of r, r = 2s and
r = 2s + 1, and prove that

(26) En[E2s+1] — O(n(28+1)(b_1/2)), ER[EZS] ~ 023 (1 .3... (28 _ 1)) n28b_s,

which implies Gaussian convergence of Z,.

Theorem 2. The random variable Q over a random text of length n asymptoti-
cally obeys a Central Limit Law in the sense that its distribution is asymptotically
normal: for oll x = O(1), one has

Q—-E,[Q 1 5”
(27) lim P, 2 En[) <zp= —/ e~t/2 g
n—oo Vo[ V21 J —oo
Proof. The proof below is combinatorial; it basically reduces to grouping and enu-
merating adequately the various combinations of indices in the sum that expresses
E,[E"]. Once more, P,(D) is formed of all the sets of positions in [1,n] subject

to the constraint D and we set P(D) := |J,, Pn(D). Then totally distributing the
terms in =7 yields

(28) En[E7] = > E[Y, ---¥1,].
(I1,...,In)EPL(D)

An r-tuple of sets (I,...,I.) in P"(D) is said to be friendly if each I} intersects at
least one other I, with £ # k and we let Q(")(D) be the set of all friendly collections
in P"(D). For P", Q") and their derivatives below, we add the subscript n each
time the situation is particularized to texts of length n. If (Iy,...,I,) does not lie
in Q(")(D), then E[Y7, ---Y7,] = 0, since at least one of the Y;’s is independent of
the other factors in the product and the Y;’s have been centered, E[Y;] = 0. One
can thus restrict attention to friendly families and get the basic formula

(29) EE]= ) EML-Vil,
(It,...,I,)eQS) (D)

where the expression involves fewer terms than in (28). From there, we proceed
in two stages. First, restrict attention to friendly families that give rise to the

dominant contribution and introduce a suitable subfamily ol" ¢ Q(); in so doing,
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moments of odd order appear to be negligible. Next, for even order r, the family

,(f) involves a symmetry and it suffices to consider another smaller subfamily

,(&) C QS(T) that corresponds to a “standard” form of occurrence intersection; this

last reduction precisely gives rise to the even Gaussian moments.

Odd moments. Given (Iy,...,I,) € Q) the aggregate a(I, I5,...,I,) is
defined as the aggregation (in the sense of the variance calculation above) of
a(lj) U---U «a(l;). Next, the number of blocks of (I1,...,I,) is the number
of blocks of the aggregate a(l1,...,I.); if p is the total number of intersecting
blocks of the aggregate a(I1,. .., I,.), the aggregate a(I1, I, . .. I,.) has rb—p blocks.
Like previously, we say that the family (I1,...,I,) of Q,(f) is full if the aggregate
a(l, I, ...I.) completely covers the interval [1,q]. In this case, the length of the
aggregate is at most rd(m — 1) + 1, and the generating function of full families is a
polynomial P,.(z) of degree at most rd(m — 1) + 1 with d = max;jcrd;. Then, the
generating function of families of Q™) whose block number equals k is of the form

(liz)kﬂ x Py(2),

so that the number of families of Q) whose block number equals k is O(n*).
This observation proves that the dominant contribution to (29) arises from friendly
families with a maximal block number. It is clear that the minimum number of
intersecting blocks of any element of Q") equals [r/2], since it coincides exactly
with the minimum number of edges of a graph with r vertices which contains
no isolated vertex. Then the maximum block number of a friendly family equals
rb— [r/2]. In view of this fact and the remarks above regarding cardinalities, we
immediately have

E, [E**1] =0 (n(2s+1)bfsfl) -0 (n(2s+1)(b*1/2))

which establishes the limit form of odd moments in (26).

Even moments. We are thus left with estimating the even moments. The
dominant term is relative to friendly families of Q(>%) with an intersecting block
number equal to s, whose set we denote by Qgs). In such a family, each subset I,
intersects one and only one other subset I;. Furthermore, if the blocks of a(I}) are
denoted by B}[,L“], 1 < u < b, there exists only one block B,[c“’“] of a(I}) and only one
block BEW] that contains the points of I NI,. This defines an involution 7 such that
7(k) = £ and 7(£) = k for all pairs of indices (¢, k) for which I} and I, intersect.
Furthermore, given the symmetry relation E[Yr, ---Y7,,] = E[Y1,,, -+ Y7,,,] it

p(2s)
suffices to restrict attention to friendly families of Qizs) for which the involution 7
is the standard one with cycles (1, 2), (3,4), etc; for such “standard” families whose
set is denoted by Q,(?*S), the pairs that intersect are thus (I, Is), ..., (Ias—1, I2s)-
Since the set a5 of involutions of 2s elements has cardinality Kas = 1-3-5---(25—1)
(cf. [16]), the equality

(30) Z E[Yh o 'YIZS] = K Z E[Yh T YI25:|7
ol o)

entails that we can work now solely with standard families.
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1 1

:DLD :Lh
ZLL %%%

FIGURE 4. Various types of families of occurrence positions for

r = 2s = 6: (i) an unfriendly family in P7; (i) a friendly family in

Q("); (iii) a friendly family with maximal number of joint blocks in
(2s).
*

; (iv) a friendly family with maximal number of joint blocks

and of standard type in Q3%.

The class of occurrences relative to standard families is A* x (A*)250=s=1 x Bl x
A*; this class involves the collection BLSS] of all full friendly 2s-tuples of occurrences

with a number of blocks equal to s. Since Bgss] is exactly a shuffle of s copies of BE]
(as introduced in the study of the variance), the associated generating function is

1 2sb—s+1 Bgl] s
<l—z> (255 = 3)! <(2b—(i))!> ’

where BE] (2) is the already introduced autocorrelation polynomial. Upon taking
coefficients, we obtain the estimate

(31) SB[V, - Vi, ] ~ 0@ g2,
ol
In view of the formulae (28), (29), (30), and (31) above, this yields the estimate of

even moments and leads to the second relation of (26). This completes the proof
of Theorem 2. O

The even Gaussian moments eventually come out of the number of involutions,
which corresponds to a fundamental asymptotic symmetry present in the problem.
In this perspective the specialization of the proof to the fully unconstrained case
is reminiscent of the derivation of the usual central limit theorem (dealing with
sums of independent variables) by moments methods: compare with pp. 408410
in Billingsley’s book [7]. Proceeding along different tracks, Janson [26] has related
this particular case to his treatment of U-statistics via Gaussian Hilbert spaces;
see Chapter XI of Janson’s book [25] for the type of method employed.
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5. THE FuLLy CONSTRAINED CASE

This section develops the special case of a (fully) constrained pattern specified by
a word W = wyws - - - w,, and the attached between-letters spacings corresponding
to the constraint D = (dy,ds,...,dm_1), where all the d;’s are finite. Like before,
we set D =[], d;, and £ =}, d;. The alphabet is A = {a1,...,a,}, and, in order
to avoid trivialities, we assume its cardinality to be at least 2. Also, 0 denotes
the parameter “number of occurrences of the pattern (W, D)”, so that, for some
text T', the symbol Q(T") denotes the number of occurrences of the pattern (W, D)
in T. We can then use € to denote the corresponding random variable over the
probability space A" equipped with the Bernoulli (memoryless) model.

The mean and variance of ) are, from earlier theorems, known to be of order
O(n). The central limit theorem is then applicable to this case. However, quite a
bit more is available as expressed in the following statement:

Theorem 3. Consider a fully constrained pattern with mean and variance coeffi-
cients Dr(W) and o*(W).

(i) The random variable Q satisfies a Central Limit Law with speed of convergence

1//n:
B ) a0 ().

(32) sup

€T
(ii) Large deviations from the mean value have exponentially small probability: there
exist a constant n > 0 and a nonnegative function I defined throughout (0,n) such
that I(x) > 0 for x # Drn(W) and

1 Q
ILm - log P, - <z)| = =I(z) if0<z<Dr(W)
1 Q : ’
nlgréo . log P, - >z = —I(x) fDr(W)<z<n

except for at most a finite number of exceptional values of x. Precisely, I(x) can
be computed as a function of an eigenvalue of a matriz (cf. Equation (48) below).

(iii) Finally, for patterns called primitive (cf. Definition 1 below), a Local Limit

Law holds:
I T il I D N v
@) swp|a (1= = S| =0 (7)o = R

For patterns that are not primitive, it can be proved that, with d the period of the
pattern, there exists a bounded quantity a (depending solely on the beginning and
end of the text) such that

Q—a
d
satisfies a local limit law in the sense of (34).

Q=

We proceed to establish this theorem in stages. First, we introduce a finite-state
model: a deterministic finite automaton with weighted edges may be used to count
all the occurrences of the pattern in texts. In fact, this automaton possesses a
definite structure as it is a weighted variant of the classical de Bruijn graph. The
finite-state property is then a reflection of the finiteness of all the gaps in the fully
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constrained case under study. This implies the existence of a matrix representa-
tion for our problem, a fact related to the technique of transfer matrices [6]; see
Section 5.1). Then Perron-Frobenius properties and their perturbed versions ap-
ply, as detailed in Section 5.2; see especially Lemmas 2 and 3. A quasi-powers
approximation (in the sense of Bender and Hwang [4, 23, 24]) for the probability
generating function of (2 is then inferred, see Eq. (45). As developed in Section 5.3,
this suffices to establish the central limit law (32) by a well-known process that
parallels the usual proof of the central limit theorem for sums of independent ran-
dom variables [4, 17, 23, 24]. Speed of convergence estimates expressed by (32)
arise in this context from the Berry-Esseen inequalities. A similar analysis provides
large deviation estimates as represented in a simplified form by (33). Additional
strong positivity properties that are available when the pattern is primitive then
induce estimates for the probabilities themselves (and not just for the cumulative
distribution function), as expressed by (34).

Before embarking into technical developments, we briefly comment on the method-
ology employed in this section. The shape of our results is not unexpected since the
central and local limit theorems that we obtain are closely related to matrix recur-
sions developed in an important paper of Bender, Richmond, and Williamson [6].
The de Bruijn graph is classically associated with the combinatorial construction of
de Bruijn sequences, and an early use of it in the context of word enumeration ap-
pears in [15]. Bender and Kochman in [5] make an implicit use of this construction
combined with the central and local limit theorems of [6] to derive a very general
class of estimates for subword counts. This shows the shape of the results that are
to be expected in such situations, and our statement in Theorem 3 is definitely
along these lines. However, the rather abstract character of the statements of [5]
renders the specialization to our case somewhat unclear (to us at least), since a
number of auxiliary technical conditions regarding nondegeneracy and aperiodic-
ity would need to be established. For these reasons, we opt for a treatment that
clearly draws its spirit from previous works [5, 6, 15, 23, 24], while remaining largely
self-contained.

5.1. The de Bruijn graph model. First, we construct a matrix representation
for the problem.

Lemma 1. Consider a pattern (W, D), and let § = 3, d; = {(D) — 1 be the total
length of all the gaps. Denote by A the quantity r°. There exist a matriz T (u) of
dimension A x A and two column vectors x(u), y of dimension A such that the
probability generating function of the number of occurrences, ) satisfies, for n > 9,

E,(u?) = x(u)* T(u)"y.

The entries of T'(u) and x(u) are polynomials in u with nonnegative coefficients.
The vector y = (1,...,1)t is the column vector whose entries are all equal to the
constant 1.

Proof. The basic idea amounts to constructing a device that scans the text t1t5 - - - t,,
and, at each stage, keeps in its (finite) memory the last § letters read from the text.
Formally, the de Bruijn graph is a finite automaton with state space B = A%; the
transition from a state b € B upon scanning letter a is 7(ba), where 7(f) for a
word f just erases the leftmost symbol of f (this is a left shift of b concatenated
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F1GURE 5. The de Bruijn graph corresponding to the binary al-
phabet A = {0,1} and to block size equal to ¢ has 2¢ vertices
(associated to blocks of length £) and 2¢+! edges: the cases dis-
played are £ = 3 (left) and £ = 7 (right).

with a). A text of length n > § is then associated to a path of length n — § that
begins at the state b formed with the first 4 symbols of the text.

The de Bruijn graph lends itself to pleasant graphic renderings when vertices
are ordered by lexicographic order and represented at regularly spaced points on a
circle, with edges corresponding to nonzero entries in the transition matrix. Figure 5
exemplifies the case of a binary alphabet (r = 2) when the block size equals 3 or 7.

One can easily equip the automaton with a counter that gets incremented each
time a transition is effected; this, in such a way that the value of the counter when
the text is exhausted will contain the number Q of occurrences of W. Indeed,
consider a transition (b,a) — ¢ of the automaton; this requires ¢ = 7(ba) or
equivalently ba € Ac. When this transition is effected, one can “cash in” all
the “new” occurrences of W which arise when reading the last letter a, i.e., all
the occurrences of the pattern that end at the letter a. Precisely, for a transition
(b, @) — c of the automaton, the number of occurrences of the pattern W contained
in ba and ending at the letter a is determined by either the pair (b, «) or the pair
(b, ¢); we denote this number by ¢(b,a) or (b, c), depending on context, so that
d(b,a) = (b, c) whenever ¢ = 7(ba). Since the length of word ba exactly equals
d+1=£(W), all the occurrences of W that end at a are contained in a text of the
form ba with b € A% so that the relation ¢(b, @) = Q(ba) — Q(b) holds. We build a
matrix T'(u) indexed by B x B as follows ([-] is Iverson’s bracket):

(35) (T (u)),. = Pau? OV ba € Ac] = pautt¥ O [ba € Ac].

By construction and by usual combinatorial properties of matrix products, the
entry of index b, ¢ of the power T'(u)* cumulates all terms corresponding to starting
in state b, ending in state ¢, and recording the total number of occurrences of
the pattern W found upon scanning the last k letters of the text which allow the
transition from state b to state c,

(36) (T()*),, = Z () uN-20).

feEA* | bfeAkc
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Now, the entry of index b of the vector x(u) is simply to be taken as
(x(u)), = m(b) u )

Then, the summation of all the entries of the row vector x(u)*T(u)* is achieved
by means of the vector y so that the quantity x(u)*T(u)*y gives the probability
generating function of Q taken over all texts of length § + k. The statement follows
upon setting n = § + k. O

Here is for instance the matrix associated with the pattern a#sb corresponding
to (W, D) = (ab,2), that is, occurrences of ab separated by at most one letter:

aa ab ba bb

aa Pa Db w 0 0
(37) T(u)= ab 0 0 Pa Dol

ba Pa pru O 0

bb 0 0 Pa Do

5.2. Spectral properties of transfer matrices. Perron-Frobenius theory to-
gether with its analyticly perturbed versions provides valuable information on the
growth of quantities attached to matrix powers. We develop here a basis of facts.
In essence, the developments that follow are generic (i.e., applicable to any strongly
connected graph equipped with a “fow” ¢ defined on edges by integer weights).
For the sake of simplicity, however, we only develop the theory on the particular
instance of the de Bruijn graph.

Let Aj(u), for j = 1..A be a numbering of the eigenvalues of T'(u) taken so that
[Ar(w)] > [A2(w)] > -+ > |Aa(u)]. The spectral radius of T'(u) is defined as usual
as the maximum modulus of eigenvalues, p(u) = |A1(u)|. As it is well-known, the
spectral radius governs the asymptotic growth of quantities involving 7T'(u)™, since,

for any matrix norm | - |, one has the property
(38) p(u) = lim |T(u)"|"/™.
n—oo

The following lemma summarizes some of the main properties of the dominant
eigenvalue of T'(u) that intervene in the proof of Theorem 3.

Lemma 2. Consider the matriz T'(u) relative to a fully constrained pattern (W, D).
The following properties hold.

(1) for u > 0, the matriz T (u) has a unique dominant eigenvalue strictly positive
denoted by A(u) and a dominant eigenvector a(u) whose entries are all strictly
positive. There exists a complex neighborhood of the real positive axis on which the
mappings u — Au),u — a(u) are well-defined and analytic; in addition, all the
entries of a(u) are non zero.

(i7) At u =1, the function A(u) satisfies

(39) A1) =1, N(1) = Dn(W), N(1) +N(1) = N(1)2=a*(W).

For any cycle C of the de Bruijn graph, denote by (C) := Z(b,c)EC (b, c) the total
weight of C relative to the pattern (W, D). One has also

. uN(u) . uN(u) Y(C)
4 1 = 1 —p = AN )
(40) Jim, ) 0, Jm ) 7 := max ] C a cycle

(#i1) For positive u, the function u — \(u) is strictly increasing and its logarithm
is strictly convex.
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Formula (40) expresses information on the order of growth of A(u), namely, A(u) <
u® (near 07) and A\(u) < u” (near +00). Formula (39) and (40) are best understood
when expressed in terms of the function A(s), which has the character of a cumulant
generating function:

A(0)=0,  A(0)=Dz(W),  A"(0)=0*(W),
. 1 _ . ! —
Sm A =0 I e =
(The Quasi-Powers approximation of (45) can be similarly interpreted in terms of
cumulant generating function.)

Proof. (i) Take u real positive. Then, the matrix T'(u) has nonnegative entries, and
for any exponent L > §, the Lth power of matrix T'(u) has strictly positive entries.
This results from the fact that, for any L > §, there is always a path in the de Bruijn
graph of length L connecting two states b and c¢; see also Equation (36). Then, the
classical Perron-Frobenius theory of nonnegative matrices applies to matrix T'(u)
(see, e.g., [18, Ch. 13]), to the effect that there exists an eigenvalue that dominates
strictly all the other ones. Moreover this eigenvalue is simple and strictly positive.
In other words, one has

(41) Aw) == i) > ()] > Pa(u)] > - .

as well as p(u) = A(u) for positive u. Also, by this theory, the eigenvector a(u)
corresponding to A(u) has all its components that are strictly positive. Then, by
classical (analytic) perturbation theory [27, Ch. IT], there exists a neighbourhood of
the real positive axis where the functions u — A(u),u — a(u) remain well-defined
and analytic in u. (In fact, A(u) is a branch of an algebraic function since it satisfies
the characteristic equation det(AI — T'(u)) = 0; an alternative direct proof of (i)
could be given based on this observation.)

(#4) For u = 1, the matrix T'(u) is stochastic, so that A(1) = 1. Two differen-
tiations at u = 1 of the Quasi-Powers approximation, (45) below, show that the
mean and variance of ), are related to the first two derivatives of A(u) at 1. This
establishes the relations (39).

We next prove the relation (40). We shall only do so for the maximum, de-
scribing the behaviour of A\(u) as u — oo, since the dual relation at 0 follows from
similar arguments (based on the minimum of the v values along cycles). Let p,(u)
denote E,(uf?). The maximum relation in (40) is equivalent to asserting the co-
incidence of the combinatorially defined “cyclic index” 7 of the flow ¢ with an
analytically defined “Puiseux index” w, as we now explain.

The cyclic indez is defined as

=  max Y9

¢ : simple cycle || )

Any path in a graph decomposes into a short header, a short trailer, and a collection
of simple cycles—the construction is akin to the loop-erasing random walk. As a
consequence, the cyclic index is seen to satisfy

(42) 7= sup ¢_(P)Z sup M

¢ path [p| c cycle le|

In other words, the cyclic index determines the worst-case behaviour of ¢ on long
paths.
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The Puiseux index is defined as
log A(u
wi= lim 8% ( ),
u—oco logu
its existence being guaranteed by general properties of algebraic functions (the
Newton—Puiseux theorem). The coincidence of w and 1 then derives from the fact
that there exist two positive constants A, B such that, for n > ng and all u > 1,
one has

(43) u A" < p,(u) < 2B U™,

where Cy,C5 are (unessential) constants. Indeed, taking nth roots in (43) and
passing to the limit, one finds for any u > 1,

Au" < Au) < Bu",

an inequality that is incompatible with @ # 7.

There only remains to justify (43). For the upper bound, observe that the i-value
of any path of length n is at most nn+ Cs (for some C5) by previous considerations,
while the total number of paths of length n is bounded from above by A"*! and the
probability of any such path is at most P", where P is the largest of all the edge
probabilities. For the lower bound, observe that there is at least a path of length n
having weight nn+ O(1) (obtained by repeating a maximal simple cycle), this path
having probability at least P, with P the smallest of all edge probabilities.

(#41) The increasing property for A(u) depends on the well-known fact that if A
and B are nonnegative irreducible matrices such that A; ; > B; ; for all (4, j), then
the spectral radius of A is larger than the spectral radius of B. (This easily results
from the matrix norm property (38).)

By a well-known property, any (nondegenerate) probability generating function
f(u) is strictly log-convex at positive points within its domain of convergence,
namely

2
for a # b. This relation is a fortiori valid for the probability generating function
pn(u) = E,(u%) given by Lemma 1, which satisfies the Quasi-Powers approximation

of (45) below. Taking nth root and passing to limit shows convexity properties to
be inherited by A(u). O

log £ (“57) < 3 (o8 f(@) + log £).

For the continuation of our analytic treatment, the notions of primitivity and
period must be introduced.

Definition 1. Let again (C) be the total weight of cycle C in the de Bruijn graph
relative to the pattern (W, D). The quantity 1oy py = ged{¢(C); C a cycle} is
called the period. Accordingly, a pattern is said to be primitive when its period is
equal to 1.
Lemma 3. The following additional properties of the spectral radius of T (u) hold.
(iv) For any 6 €]0,2x[, one has p(re??) < p(r).
(v) Let d = v p) be the period of pattern (W, D).
(v.a) When d =1, then p(re?) < p(r) for all § €]0,27].
(v.b) When d > 1, then p(re?) = p(r) if and only if § = 2kn/d. In this
case, the characteristic polynomial det(M\ — T (u)) of matriz T (u) is a
polynomial of Rlu?, \].
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Proof. We denote by p;; the probability of the transition j — i.

(fv) This part easily results from domination properties of matrices (cf. the
argument used for Part (i74) of Lemma 2). However, as a preparation to the later
part of the proof, we offer an alternative argument. For |u| = 1, and r real positive,
consider the two matrices *7(r) and *T'(ru). With (i), there exist a dominant
eigenvalue \ := \(r) strictly positive and a dominant eigenvector a := a(r) of *T'(r)
relative to A(r) whose all entries a; are strictly positive. Consider an eigenvalue y
of *T'(ru) and an eigenvector c relative to u. Denote by v; the ratio ¢;/a;. One
can always choose vectors a and ¢ such that max;<j<a |vj] = 1. Suppose that this
maximum is attained for some index i. One has

(44) il =1 pi; (re) Y90 ¢5) <D py; V90 a5 = Aa,
J J
so that |u| < A, and (iv) is established.

(v) Suppose now that the equality |u| = A holds. Then, the previous inequali-
ties (44) all become equalities. First, for all indices £ such that p;, # 0, we deduce
that |ce| = a4, so that vy has modulus 1. For these indices ¢, we have the same
equalities in (44) as previously for i. Finally, the transitivity of the de Bruijn
graph entails that that each complex v; is of modulus 1. Now, the converse of the
triangular inequality shows the relation,

for each edge (j,1), uw(j’i)vj = %Ui,
so that,
L
for any cycle of length L, (%) =0,

However, for any pattern W, there exists a cycle C of length one with weight
P(C) = 0: if B € A is distinct from the last symbol w,, of W, the cycle labelled by
8 that starts at 8° is convenient. This proves that p = A and that «¥(©) =1 for
any cycle C.

Denote by 1 the ged of all the quantities 1(C). If the period of (W, D) equals 1,
Yy =1, then u =1 and (v.a) is proven.

As regards (v.b), suppose now that the period is some integer d > 1. Then,
for any integer k, the trace of the matrix T'(v)* is a polynomial in v?, so that the
characteristic polynomial whose coefficients can all be expressed with these traces
belongs to R[v?, z]. Consequently, the dominant eigenvalue A(v) is itself a function
of v<. O

Observe, as a consequence of the discussion of Part (v), that the period d is
effectively computable via the symbolic form of the characteristic polynomial of
matrix T (u).

We conclude by listing situations where the hidden pattern W is guaranteed to
be primitive. The conditions given in the following statement are likely to cover
most cases of practical interest, although a few patterns will be left out like, in the
Latin alphabet, “The quick brown foxes jump over lazy dogs” (!). (It might even be
the case that all patterns are primitive, but we do not have a proof of this fact.)

Lemma 4. The following are sufficient conditions for a pattern to be primitive:
(@) W is a string, that is, all spacings satisfy d; = 1;
(b) the pattern alphabet is incomplete: at least one symbol of the alphabet A
does not appear in W;
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(¢) the symbols wi,ws, ..., wnm—1 each differ from the last symbol w,,.

Proof. (a) Consider first a string W, and denote by ¢ the first index ¢ > 0 where
the autocorrelation polynomial has a non zero coefficient ¢;. If there does not exist
such an index, let ¢ := m. Then the cycle that starts at the state wyws ... wn—1
and whose successive edges are labelled by the i symbols w,, ;, Wy —it1s- - W1
of W has a total weight equal to one, since the first edge has a weight equal to 1
while all the other edges have a zero weight.

Consider finally a pattern (W, D) which is not a string. Since it possesses at
least one gap at least equal to 2, one has m < §. Let § = m + p,.

(b) Choose a letter z € A not occurring in the pattern. Consider the cycle
that starts at state b := 2P)}, and whose edges are labelled by successive
symbols of zT1W. Clearly this cycle has a weight equal to 1.

(¢) Suppose now that all the symbols wy,ws, . . . wy,—1 differ from the last sym-
bol w,,. Choose a letter z € A distinct of wy and w,,. Consider the cycle
that starts at state b := 2PV, and whose edges are labelled by successive
symbols of b. Clearly this cycle has a weight equal to 1.

O

5.3. Distributional properties. We now apply the results derived in the previous
subsections to fine characterizations of the law of the number of occurrences, that
is, we complete the proof of Theorem 3.

As already remarked, the spectral radius and the dominant eigenvalue dictate the
growth of all the entries of matrix powers T'(u)™. Then, by Lemma 2 (3), for v on or
near the positive real line, the matrix 7T'(u) has a dominant eigenvalue A\(u) which is
unique, and strictly dominates all the other eigenvalues. Consequently, there exists
a constant A < 1 such that |Az(u)|/A(u) < A < 1. More precisely, the spectral
decomposition of T'(u) when u lies in a sufficiently small complex neighbourhhod
of any compact subinterval of (0, +00) is of the form

T(u) = AMu)Q(u) + R(u)

where Q(u) is the projection under the dominant eigensubspace and R(u) a matrix
whose spectral radius equals |[As(u)|. Now, for any n > 1, the decomposition

T(u)" = A(u)"Q(u) + R(w)",
entails, with Lemma 1 granting E,[u®] = x(u)*T(u)" %y, the estimate
(45) En[u] = c(u)A(w)"° (1+ O(4™)),

for a nonzero analytic function c¢(u). A uniform approximation like (45) for a se-
quence of probability generating functions is known as a Quasi-Powers approzima-
tion. Its existence in regions around 1, 400, and on the unit circle are respectively
associated with central limits, large deviations, and local limits [4, 23, 24], as we
see now.

Central limit law. Given a Quasi-Powers approximation valid when u lies in
a complex neighbourhhod of 1, the classical proof of the central limit theorem for
sums of independent random variables [19] can be mimicked and convergence to the
Gaussian distribution results, following Bender and Hwang [4, 24]. The speed of
convergence is found to be O(1/4/n) as results from the Berry-Esseen inequalities;
see [24] for the general argument. In this way, Eq. (32) of Theorem 3 is established.
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Large deviations. We next consider large deviations and relate them to
the existence of a Quasi-Powers approximation along the positive real axis. We
concentrate on the left part of the distribution and write p,; = P,(Q = k),
pn(u) = B, (u$). First, by trivial bounds, one has elementarily

n Dn(w) pn(0)
(46) k;znpn,k = [ul*n]] 1y = (1—g)glen]’

for any fixed 6 € (0,1). Then, the Quasi-Powers approximation (45) applied to (46)
yields

(47) > Pak=0 (Aé()ezbn) :

k<zn

The next move consists in adopting in (47) the particular value of 8 that produces
the best upper bound in (47). To this effect, define

!
(48) I(z) = —log % with ¢ = {(z) € (0,1) defined by C))\\(g) =z
(The existence of ¢ is guaranteed by (4¢) and (¢ii) of Lemma 2.) Then, the upper
bound (47) becomes

(49) %log]P’n (% < x) < —I(z) + o(1).

There remains to prove that the upper bound coincides with the right rate. This
is done following a classical technique of Cramér, also known as “shifting the mean”.
To wit, introduce the shifted version Y; of ( defined by

Pn(Cu)
Ve : E(Y) = ,
¢ (™) Pn(C)
for the particular ¢ of (48). The shifted Y, satisfies a Quasi-Powers approximation
in the central region u ~ 1 and is thus asymptotically normal provided
1
(50) lim —V(Yp) = \"(¢) + N'(¢) = X'(¢)?

n—oc N

is nonzero. The limit quantity in (50) represents an analytic function of ¢ that is
nonzero at ( = 1 and hence can only vanish sporadically at most at a finite set of
isolated points. Except possibly for such isolated values, the quantity

1
(51) > sl
pn(c>xn—vﬁ<j§wn

then tends to a nonzero limit (expressible as a Gaussian error function). Since the
weights in (51) are all of the form (*"e9(V")  a lower bound on the Dn, i follows.
Thanks to this, the inequality in (49) can then be changed to equality, which is
what Theorem 3 asserts.

A mirror argument (with ¢ taken larger than 1) establishes the right part of the
large deviation estimate in Theorem 3. Observe that Conditions (i7) and (4i%) of
Lemma 2 guarantee the existence of a suitable value of { over the complete range
of the distribution of €2,,.

Local limit law. Stronger “regularity conditions” are needed in order to obtain
local limit estimates. Roughly, one wants to exclude the possibility that the discrete
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distribution is of lattice type, being supported by a nontrivial sublattice of the
integers. (For instance, we need to exclude the possibility for 2 to be always odd,
or of the parity of n, and so on.) Observe first that positivity and irreducibility of
the matrix T'(u) are not enough. For instance the matrix

1wt
(%)

has a spectrum that depends on u via u® only. In particular, the spectral radius is
a function of u3. It is precisely this type of pathological behaviour that is excluded
in the case when T'(u) stems from a primitive pattern.

Granted Lemma 3, one can estimate the probability distribution of Q by the
classical saddle point method in the case when W is primitive. This is similar to
what is done to establish local limit laws for sums of discrete random variables [19].
One starts from Cauchy’s coefficient integral,

1 du
(52) P(@=k) = oo l2[=1 Pn() JiFr
where k is now of the form k& = Dn(W)n + zo(W)/n. Property (v.a) of Lemma 3
grants us precisely the fact that any closed arc of the unit circle not containing
z = 1 brings an exponentially negligible contribution. A standard application of
the saddle point technique (details omitted) does the job. In this way, the proof of
the local limit law, Eq. (34) of Theorem 3 is completed.

Theorem 3 invitingly points to similar statements that would be applicable to
general hidden patterns. Guivarc’h (personal communication) has suggested the
use of the theory of random walks on nilpotent Lie groups, as the pattern count-
ing problem can be expressed as a product of random matrices that are nilpotent
deformations of the identity; see [22] for a survey of some of the relevant methods.
Also, Janson [26] has very recently obtained bounds for large deviations in the gen-
eral case of hidden-words statistics using a generalization of Hoeffding’s method for
dependent random variables.

6. EXPERIMENTS

It is of interest to try and assess the relevance of our analyses in contexts closer
to real-life applications. For this purpose, we have set up a small campaign of
experiments on “actual” data, in fact, pieces of English text. These experiments
have no pretense of constituting an exhaustive study. They are merely intended as
a coarse verification of some of the major phenomena inherent in hidden-pattern
matching. Since the source model considered, of the memoryless type, is rather
simplistic, one could be fairly satisfied with analytical results that correctly predict
at least the orders of magnitude of the observed phenomena.

The experiment have been conducted with our own dynamic programming imple-
mentation of (constrained and unconstrained) sequence comparison and start with
a brief discussion of the algorithmic complexity issues involved. Globally, both
the “recognition problem” (i.e., does a pattern occur or not?) and the “reporting
problem” (i.e., report the number of all occurrences and possibly a factored repre-
sentation of the occurrence places) may be considered. In the unconstrained case,
the recognition problem can be solved simply by a deterministic finite automaton
(DFA) with m states, so that its complexity is O(n). For the reporting problem,



28 P. FLAJOLET, W. SZPANKOWSKI, B. VALLEE

The machine corresponding to a single block
(b =1) is composed of wheels and of an out-
put counter ¥ as depicted on the left (the
number of blocks is b = 1 and the pattern
length is m = 4).

The wheel of index j is divided into
d; sectors that each keep the number of
valid occurrences of wi,...,w; at distance
0,1,...,(dj — 1) in the past (the ones that
have not yet expired); the attached quantity
S; is the sum of the values currently con-
tained in all the sectors of wheel j.

When a new character t is read from the
text, the active sectors are updated: if t #
wj, then the active sector of wheel j is set
to 0; if t = wj, then this sector is set to Sj—_1.
The running sum S; is updated accordingly.
Then the wheels are all rotated.

The top counter provides a continuous
source of 1’s. The bottom counter ¥ pro-
vides the number of occurrences of the con-
strained pattern seen so far: it maintains the
cumulated sum of all the values passed by
wheel m — 1, that is, of the Sp—1's.

The case where the number of blocks satis-
fies b > 1 is obtained by stacking b elemen-
tary machines corresponding to the individ-
ual blocks.

FIGURE 6. A hidden-pattern counting machine.

the basic dynamic programming algorithm has cost O(nm). (This is a simplifica-
tion of the Longest Common Subsequence algorithm.) In the constrained case, a
DFA can be set up so that the complexity of the recognition problem is O(n), but
the preprocessing and storage costs are exponential in the size of the pattern spec-
ification, which is certainly prohibitive in most practical application. Alternatives
exist: see, e.g., [30] for a flavour of the methods (Directed Acyclic Word Graphs
and suffix trees are useful) and Kucherov’s fast implementation called grappe of
the recognition problem. With d being the maximum gap allowed between letters,
the reporting problem can be solved by a suitable implementation of the dynamic
programming approach in total time O((n + d)m)—this is a simple programming
exercise in circular list management; see Figure 6.

We used a piece of natural language text both as a source of characters and as
a source of words. The complete works of Shakespeare are found under

http://the-tech.mit.edu/Shakespeare/.
We first extracted the full text of Hamlet stripped of all the comments:
Hamlet: Who's there? || Nay, answer me: stand, and unfold yourself. || Long live the
king! || Bernardo? || He. || You come most carefully upon your hour. [...]

In this, all nonalphabetic characters are suppressed and upper-case letters are nor-
malized to lower case. This gives us a (rather unpoetical looking) text that has one
long line with 150,372 characters:
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w = thelawisgaussian w = naissuagsiwaleht
d Expected (E) Occurred (Q) Q/E Occurred () Q/E
13 9.195E4-01 0 0.00 18 0.19
14 2.794E402 693 2.47 371 1.32
15 7.866E4-02 1,526 5.46 2,379 3.02
18 1.211E+04 31,385 2.58 14,123 1.16
20 5.886E4-04 124,499 2.11 41,066 0.69
25 1.673E4-06 2,527,148 1.51 1,277,584 0.76
30 2.57TTE+407 40,001,940 1.55 25,631,589 0.99
40  1.928E+09 2,757,171,648 1.42 2,144,491,367  1.11
50  5.482E+10 76,146,232,395  1.38 | 48,386,404,680  0.88
00 1.330E+-48 1.36554E+48 1.03 1.38807E+48 1.04

FIGURE 7. Observed occurrences () versus predicted values (ex-
pectations, E) in the alphabetical characters of Hamlet.

Ho: who s there nay answer me stand and unfold yourself long live [...]
Stripped of its spaces (‘ ’), the text now shrinks to n = 120, 057 characters:
H;: whostherenayanswermestandandunfoldyourselflonglive |.. . ]

This text, H;, is the one used for experiments.
As somewhat arbitrary patterns, we adopt the phrase, “The low is Gaussian”,
and its mirror image,

Wy = thelawisgaussian, Wy = naissuagsiwaleht,

corresponding to m = 16. Consider first the (fully) unconstrained case. If letters
were all equally likely the configuration n = 120,057, m = 16 and alphabet cardi-
nality r = 26 would lead us to expect a number of occurrences of Wy or W, about
5-1087. The observed counts, which are 1.365 10*® and 1.388 10*® respectively, are
much smaller. In fact, when estimated from the empirical distribution of letter
frequencies in the text, the expected number of occurrences drops to 1.33010%8,
so that the observed counts only deviate by less than 5% from what is expected.
Turning to the (fully) constrained problem, say we bound uniformly the separation
distance between any two letters by d. Analysis (based on the natural frequencies
of letters in the text) predicts that the pattern might start occurring near d = 10,
while its presence is unlikely for smaller values, d < 10. In the text, w starts occur-
ring at d = 14 while @ starts at d = 13—a deviation of some 30—40% from what the
model predicts. A table of observed versus predicted values when d varies is given
in Figure 7. This shows a fair fit between the theoretical model and the observed
data even though the text chosen is far from being “random” (and memoryless!).
Globally, as is perceptible from Figure 7, the less constrained patterns (d large
or even d = oo) are the ones in closest agreement with theory. Indeed, the fact
that sequences like “the” or “law”are naturally present in English seems to give
an advantage to pattern W for small values of d. (For instance, based on letter
frequencies, the string the would be expected to occur 85 times but is actually
present 1972 times in the text.) In contrast, the mirror image W, which has no clear
“natural” structure, tends to be more compliant to theory. (Such fine phenomena
would most likely be well captured by a Markovian model; see [9] for such an
extension.) Figure 8 further illustrates this by displaying the evolution of the ratios
Observed/Expected (Q/E) as letters in the text are scanned one by one.
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1.6 1.6
14 1.4
1.2 1.2

1 1

0.6 0.6
0.4 0.4
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0 20000 40000 60000 80000 100000120000 0 20000 40000 60000 80000 100000120000

FIGURE 8. The evolutions of Q/F for the 1 block patterns W
(left) and W (right) when the separation distance is d = 50.

As yet another test, we have examined the evolution of occurrence ratios Q/E
for two patterns, namely

Wy = fifff (d =25), W, = iamtheking (d = 50).

These are displayed by thick lines in Figure 9. The “advantage” of pattern W,
which is in the language is perceptible as the number of observed occurrences is
about twice what is expected. For comparison, we have also plotted the similar
evolutions, but now relative to 5 random permutations of the Hamlet text (dashed
lines): this conveys an impression of the ambient stochastic fluctuations, but also
shows at the same time that, for random text, both patterns conform comparably
well with what theory predicts.

The data so far have concerned events (letters) corresponding to characters in
the text. We next turn to a situation where elementary events are words (now
playing the role of individual letters) and a pattern is a succession of events satis-
fying various distance constraints. There is however a statistical difficulty as most
meaningful words have a rather small probability of occurrence, so that any rea-
sonably complex pattern is almost surely not observed at all. The text of Hamlet
comprises 30,316 words, of which 4490 are different (with related forms like close,
closely, closes, closet, or command, commanded, commandment, commands). In view
of possible data mining applications, where it is mostly rough “contents” (roots?)

0 20000 40000 60000 80000 100000120000 20000 40000 60000 80000 100000120000

FIGURE 9. The evolutions of Q/E for patterns Wy (left) and W,
(right): a comparison between the original text (thick lines) and 5
randomly permuted versions (dashed lines).
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FiGure 10. The Soundex-ed version of Hamlet. The patterns
are W3 = “to be or not to be” and W5 = “who is the king” taken
with distance d = 100.

of words that matter, we simplify the text of Hamlet by applying the Soundex algo-
rithm. (The Soundex algorithm as described by Knuth in [28] is intended to hash
words (in particular surnames) into a small space using a simple model which ap-
proximates the sound of the word when spoken by an English speaker. For instance,
Gauss and Gosh both hash to G200; Hilbert and Heilbronn to H416.) When sub-
jected to this transformation, Hamlet consists of “letters” in the form of compressed
words (each formed of four alphanumerical characters). Under this encoding, the
text of Hamlet (Hp) becomes the even less poetical string:
H,: W000S000 T600 NOOO A526 M000 S353 A530 U514 Y624 L520 L100 T000
K520 B656 H000 Y000 C500 M230 C614 U150 Y600 H600 T200 NOOQO |...]

The new text Hy now has length 30316 and its reduced vocabulary (“alphabet”)
consists of 1625 different “letters”. The patterns we consider here are

Ws = “to be or not to be” (T000B000 0600 N300 TO00 B00O)
Wi = “be it or not” (B000 1300 0600 N300)
Ws = “who is the king” (W000 1200 T000 K520)

With distances all taken at d = 100, the observed number of occurrences and the
observed/expected ratios Q/E are then found to be

Ws: Q=15767,Q/E =0.68; W;: Q=238,Q/E = 0.60;
Ws: Q= 1038,Q/E = 1.40.

Examples like the ones above could be multiplied ad libitum. The overall conclu-
sion of such observations is the following. For expected values well above 1, and for
gaps that are longer than the short-term correlations of the text, the mean value
estimates of the number of occurrences are quite faithful to reality; fluctuations
from the mean value do then help discriminate between “signal” and “noise” (e.g.,
compare the left and right graphics in Figures 8 and 9).

7. CONCLUSIONS

The general probabilistic aspects of the statistics of hidden words can now be
regarded as fairly well quantified. In particular, we can return to the question
that originally motivated the present study, that of finding reliable thresholds. For
instance, if false alarms are to be avoided, the problem is rephrased as one of finding
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a threshold ag = ap(W;n, ) such that
]Pn(Q > aO) S /Ba

where the data are the pattern €2, the length n of the text, and a given small g3
(say B = 107%). Based on frequencies of letters and the assumption that a mem-
oryless model is (at least roughly) relevant, one can calculate the mean value and
the standard deviation coefficients (W), o (W) by methods of Section 3.3. The
Gaussian limits granted by Theorems 2 and 3 then reduce the problem to solving
an approximate system, which in the (fully) constrained case reads

ao = nr(w) + zgo(W)V/n, B = \/LQ_w/ e 172 gt
zq

This system admits of the approximate solution (for 3 small):

(53) ag ~ nm(w) + o(W)v/2nlog(1/6).

In practical situations, where the probabilistic data model is unknown and data may
be rather irregular, some caution should be exercized in applying formula blindly
and experimentation with what one observes on real data is likely to be a necessity.
The moment, central limit, and large deviation results of this paper at least provide
a firm conceptual basis under which one can interpret the facts and should permit
a fine tuning of pragmatically developed threshold formula stemming from (53).

Concerning open problems, an intriguing question is that of quantifying the
speed of convergence to the Gaussian limit as well as large deviations in the (fully
or partly) unconstrained cases. The corresponding questions appear to be related to
products of random matrices and to the difficult case of random walks on nilpotent
Lie groups; see Guivarc’h’s paper [22] for context and references. An alternative
approach has been very recently proposed by Janson [26].

Finally, as already mentioned, some of the results developed here (the analysis
of the first two moments as well as concentration of distribution) have recently
been shown to hold [9] for Markovian sources and more generally for all dynamical
sources in the sense of Vallée. This points to possible extensions of the present
work in the direction of more realistic data models than the memoryless case that
has been considered here.
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