
SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

QUICKSORT WITH EQUAL KEYS 241

Quicksort is a "divide and conquer" approach to this problem. For some key
with value v, the file is rearranged so that A [/’] v for some], 1 _-<] _-< N, all of the
keys to the left of A[/’] are <v and all of the keys to the right of A[]] are >v. This
process is called partitioning, and it turns out that it can be performed efficiently.
After partitioning, the key A[]] is in its final position in the sorted file and need
not be considered further. If the same procedure is applied recursively to the
subfiles A [1],. ., A [/" 1] andA[f + 1],. ., A[N], then the whole file becomes
sorted. The following program is an implementation of the method, and the
partitioning process is spelled out explicitly.

PROGRAM 1.
procedure quicksort (integer value l, r);

comment The array A is declared to be A 1 N+ 1]; with A[N+ 1] oo;
ff r > then

:= l;/" := r+l; v := A[l]
loop:

loop: := + 1; while A [i] < v repeat;
loop: := j-1; while A[j]>v repeat;

until j < i"
A[i] :=: A[/];

repeat;
AE1] :=: A[/’];
quieksort(/,/’- 1);
quicksort(i, r);

endif;
(This program uses an exchange operator :=’, and the control constructs
loop. repeat and if. then. endif, which are like those described by D. E.
Knuth in [I0].) The leftmost element is chosen as the partitioning element, and
then the rest of the array is partitioned on that value. This is done by scanning from
the left to find an element >v, scanning from the right to find an element <v,
exchanging them, and continuing the process until the scanning pointers cross.
The loop always terminates with/" + 1- i, and it is known at that point that
All + 1],... ,A[]] are <v and A[] + 1],..., A[r] are >v, so that the exchange
A[l] :=: A[/’] completes the job of partitioning A[l],..., Air]. The procedure
call "quicksort(1, N)" will therefore sort A [1],. , A[N]. Figure 1 shows the
operation of the program on the first 9 distinct digits of

3 1 4 5
2 1()5

123

92687
94687

4@9687
76 S(
6 () 8

456789
FIG. 1

A number of different partitioning methods have been suggested for the
implementation of Quicksort, and the particular method described above is

242 ROBERT SEDGEWICK

motivated fully in [14]. There are, however, some facets of the implementation
which should be noted here.

The loops which implement the pointer scans are the "inner loops" of the
program--most of the execution time is spent there. (This fact comes from the
analysis, which is discussed more fully below.) Some efficiency is achieved in the
inner loops by introducing two redundant comparisons to avoid the necessity for
checking if the pointers have crossed each time a pointer is changed. The last
comparison in each of the loops is redundant: the last := + 1 makes f and it is
known that A [/’] > v at that point (provided that AIN+ 1] is greater than all the
other keys--this is the meaning of the notation A[N+ 1] oo); the last/" :=/"- 1
makes/’=i-1 and it is known that A[i-1]<=v at that point. Program 1 uses
N+ 1 comparisons on the first partitioning stage when only N- 1 are absolutely
necessary, but its inner loop is much more efficient as a result.

Although the above program gives a very efficient implementation of parti-
tioning, there are a number of ways that the program as a whole can be made more
efficient. It turns out that efficiency can be gained by choosing the partitioning
element based on a small sample from the file; by removing the recursion and
always sorting the smaller of the two subfiles first; and especially by handling small
subfiles differently. All of these improvements are documented in [9] and [14],
and they apply uniformly to all of the programs that we will consider.

We can derive exact formulas fbr the total average running time of Ouicksort
by solving recurrence relations which describe the average number of times the
various statements in the program are executed. In this paper, we shall be
concerned chiefly with the average number of comparisons" the average number
of times the tests "A[i] < v" and "A [/’] > v" are performed during the execution
of Program 1 on a randomly ordered input file. If we denote this quantity by CN,
we find that it is described by the recurrence

1
C=N+I+ E (C,_+CI_,),

l<=k<__N

2 E Ck-iN+ 1+1-

N_>_2

with Co C1 0. The N+ 1 term represents the number of comparisons used on
the first partitioning stage, and the other term represents the average number of
comparisons used for the subfiles. By writing this recurrence, we have made the
important assumption that the partitioning process preserves randomness in the
subfiles: if the original file is a random permutation of its elements, then the left
and right subfiles will also have this property. It is easy to prove that the
partitioning method in Program 1 preserves randomness, but there are partition-
ing methods which do not (see 10], 14]).

To solve the recurrence, we first multiply by N and then eliminate the
summation by differencing (subtracting the same equation for N-I). After
rearranging terms, we get

NCN=(N+I)CN_I+2N, N>-3,

QUICKSORT WITH EQUAL KEYS 243

which, after we divide by N(N+ 1), telescopes to the solution

2
T-* E

3_-<_-< k + 1

or

CN 2(N+ 1)(Hu+x --), N=>2.

This shows that Quicksort achieves the theoretical minimum of O(NlogN)
comparisons on the average. In a similar fashion, the average number of times
each of the other statements in Program 1 is executed can be calculated exactly. If
the time taken to execute each statement is also known, then we can get an exact
formula for the total expected running time of Program 1 (see [9] and [14]).

In studying the performance of Quicksort with equal keys, we will deal chiefly
with the average number of comparisons, not with the total running time. Analysis
shows that the comparisons do dominate (though there is about one exchange for
every three comparisons) and the calculations become tedious when dealing with
the total running time. We will be comparing the relative performance of a
number of very similar variants of Quicksort, and we can be fairly certain that
conclusions that we draw based on the number of comparisons will carry through
to the total running time. It is nearly always the case that if one version of
Quicksort uses a lower number of comparisons than another, then the frequencies
of execution of all of the other instructions are also lower.

It is intuitive that Quicksort performs best when the partition happens to be
near the middle of the file at each stage, and worst when the partition falls near the
ends. (The exact analysis of the best and worst case for practical versions of the
program is interesting and complex, but not particularly relevant to the study of
Quicksort with equal keys.) For Program 1, it turns out that the worst case for the
number of comparisons (and for the whole algorithm) occurs when the file is
already in order, and partitioning does nothing but take one key from the left end
of the file at each stage. The total number of comparisons in this case is
2<_k<__N(k d- 1) 1/2(N+ 4)(N- 1). This O(N2) worst case is often viewed as Quick-
sort’s weakness, but there are many ways to avoid it in practical situations. It will
be a concern when we begin to consider equal keys. On the other hand, the best
case occurs when the file is split exactly in half at each stage, and the total number
of comparisons taken turns out to be less than N lg N (lg-log2). A complete
discussion and derivations of exact upper and lower bounds for Quicksort may be
found in [14].

In summary, the operation of Quicksort on files of distinct keys is very
completely understood. Unfortunately, few of the results carry over to the case
when equal keys are present. Before examining the question of actually imple-
menting a program to handle equal keys properly, let us look more carefully into
the analysis, so that we may get some idea of how well we might expect to do.

2. Basic assumptions. The first problem that we face in trying to analyze any
sorting method with equal keys is the formulation of an appropriate model
describing the input file. Suppose that the N keys to be sorted have n distinct
values. Since we only use the relative values of the keys in sorting, we may as well

244 ROBERT SEDGEWICK

assume that the values are 1, 2, , n. If we also know that there are xl ones, x2
twos, etc., then we might consider each of the N! permutations of the multiset
{xl. 1, x2.2,...,xn, n} (where x+...+xn =N) to be equally likely as input
files. If this additional information is not available, a second possibility would be to
assume that each of the nN ways of making an input file of lengthNfrom n distinct
values is equally likely. (Notice that many of the possible input files have less than
n distinct values in this model.) While one or the other of these models might be
appropriate for some particular sorting applications, neither is entirely satisfac-
tory as a general model. We shall work to some degree with both. When we speak
of sorting a random permutation from a multiset, we will be referring to the first
model; when we refer to a random n-aryfile, we will be working with the second.

Now, if we wish to use Quicksort to sort a file containing equal keys, we must
decide how to treat keys equal to the partitioning element during the partitioning
process. Ideally, we would like to get all of them into position in the file, with all
the keys with a smaller value to their left, and all the keys with a larger value to
their right. Unfortunately, no efficient method for doing so has yet been devised,
so we shall have some keys equal to the partitioning element in the left subtile and
some in the right. We shall use the term Quicksort program to describe any
program which sorts by recursively subdividing files of more than one element into
three subfiles" a (nonempty) middle subtile whose elements are all equal to some
value/’; a left subtile with no elements >f; and a right subtile with no elements <f.
The only further restrictions are that the value s must be chosen by examining one
element from the file, and that if the input file is randomly ordered, so must be the
subfiles. With these assumptions, we can write down a recurrence for the average
number of comparisons to sort a random permutation from the multiset
{x 1,. , x n} (with x +. +x N) for any Quicksort program:

1
C(Xl,’’’, Xn) N+ 1+ (C(x,’’’, xi-1, a)N! all permutations

of{xl 1,’",Xn n}

+c(, x+, x,)).

(The notation C(/3, Xi+l,’’’ ,x,) is defined to mean C(/3) when/" n.) This
formula assumes that N+ 1 comparisons are used in the first partitioning stage.
The keys equal to the partitioning element are distributed among the subfiles in
some way, as described by the parameters ce and/3, which are functions of the
partitioning method and the particular permutation being sorted. (By assuming
that at least one element is put in position, we are assuming that ce +/3 < xi.) We
will use various initial conditions in the derivations below to complete this
recurrence.

3. Lower bounds. From this formula we can begin to derive a lower bound
on the number of comparisons, for, as we have already noted, the best that we can
do with any partitioning method is to get all of the keys equal to the partitioning
element into position at each partitioning stage. If the partitioning element is
chosen randomly, then each of the xi(N-1)! permutations for which/" is the
partitioning element will be divided into a left subtile which is a random permuta-
tion of {x. 1, , xi_a. (/’- 1)} and a right subtile which is a random permutation

QUICKSORT WITH EQUAL KEYS 245

of {X]+I" (]-[" 1),...,x,,. n}. This means that a lower bound on the average
number of comparisons used is certainly described by the recurrence

1
C(X1,"’,Xn)--N-I+ E x(C(x, x_) + C(x+, x,,)),

for N and n ->_ 1, with C(0) C(1) 0. (As remarked above, only N- 1 compari-
sons are absolutely necessary for the first stage.) To solve this recurrence, we will
try to eliminate the summation by differencing, as we did above. If we multiply
both sides by N, and then subtract the same equation for {x2" 1, , x (n 1)},
we get

(I<]<nX])C(xI’ Xn)--(2<=]<_nX]) C(x2’ Xn)

=Xal--Xi q"2X1 x]’--x1C(x2, ,Xn)
2<]<=n

+ E x(C(x," ",xi_)-C(xa,’",x]_)) for n >1.

After rearranging terms and defining
C(x, , x,,), this equation becomes

G(x1,’." ,In)’-- C(XI,"" ",Xn)

E x])G(xI," ",Xn)--x-xl-l-2Xl

+ xG(xl,"’,xi_I) forn>_-l.
2]n

Now we difference again, except this time we subtract the same equation for
{x. 1, x. 2,. .,x_. (n-l)} to yield

2XlXn "Jv XnG(X1, Xn-1) for n >_- 2,

or

G(x1, Xn)= G(x., Xn-’) + 2XlXn
X .nt- .-[-. Xn

This equation telescopes to

G(x, x,) G(Xl) -[- E 2xlxi
2<_]<=n X " "[- X]

(This formula assumes that xlxi/(xl+’"+x])=O if x=xi=0, even if
x2,’’’, x_ are also 0. We shall adopt this convention throughout this paper.)

After substituting for G, we get another telescoping recurrence,

C(Xl, Xn) C(x2, Xn) "[- C(X1) -[- 2
XlX

-at-. "-!- X]

246 ROBERT SEDGEWICK

which leads to the result

C(x,...,x)= Y, C(x)+2 E x,x
l<=]<_n l<_k<j<=n Xk q"" -I-XI

This derivation was suggested by the analysis given by Burge [3] for a similar
problem which we will discuss below. The formula is surprisingly simple, and it can
tell us exactly how well we can expect to do in a variety of situations. For example,
if xj x for 1 _-<] _-< n, then we have

C(x, x N- n +2
X

l<=k <<=,, j k + 1

=N-n+2
N Y y 1
n l<]<__n l<k<_i k

+2N_ n-k+l
=N-n

n l<k<_n k

2(1 + 1/n)NH,,-3N-n.

If we take x 1 (and therefore n N), then we have analyzed Program 1 with
distinct keys, and this result differs from the answer in the previous section only
because we used the lower bound of N-1 comparisons for the first partitioning
stage.

We can proceed further, and use the general result for a random permutation
of a multiset to derive a lower bound for a random n-ary file. If CNn is defined to be
the average number of comparisons taken by a Quicksort program on random
n-ary files of length N, then we have

Cu, -w Y C(x, x,).
n x.+...+xrt=N Xl Xn

This is true because the probability that a given input is a permutation of a
particular multiset {Xl 1, , xn n } is

Therefore, our lower bound is given by

n--- C(x, + 2
x.+"’+xr=N Xl Xn 1=

XkXyY +-:::+<--k <j<=n Xk X]

The first term is easy to evaluate, since C(Xk) Xk 1 for Xk > 0 and C(0) 0. We

QUICKSORT WITH EQUAL KEYS 247

have

1
nN l"-b’" ""-X N

N) C(Xk)
X1, Xn

1
n Xl-i-...+x =N

N) E (Xk--l+x,O)
Xl, Xn lk<_n

N- n +--- <<n 1= Xl+’"+xn=N X1, X
=0

=N--n +(n--1)N/nN-1

=N-n+n(1-1/n)N.

The second term is more difficult, but it can also be simplified through the use of
the multinomial theorem. After interchanging the order of summation, we have

2 (N) xkx
nN E

i<-k</<--_n xl+...+xn=N XI, Xn Xk "
The first step is to split the sum and the multinomial coefficient in two parts:

l<=k<i<--n xa+...+Xk_l+i+xi+a+...+xn=N X1, Xk-1, i, Xi+l X

xk +...+xj=i Xk, Xi/
Xk,X

(Here we have also taken note of the.fact that all of the terms with Xk or xj 0
vanish.) Now,

(IXkXj (i l)(i--2)Xk, Xi/ Xk-- I, Xk+I, Xi-I, Xi--1

SO we can apply the multinomial theorem to the innermost sum, which leaves us
with

nu Z (i-1)
l<--_k<i<=n xa+’"+Xk_l+i+xi+l+...+xn=N X1, ", X,-1, i, Xi+l, ", X,

i2

(/-k + 1)i-2"

The inner sum now reduces to three terms, one for the case 0 and two more
resulting from splitting the first factor, all of which can be evaluated with the

248 ROBERT SEDGEWICK

multinomial theorem. We have

Xl+’"+Xk_l+i+Xi+l+’"+x =N
i(N
X1, Xk-1, i, Xj+I, x.)(j-k + 1)’-

N N-1

]-k+l
n

,x.)(Y-k+l)-

and

}-,. (N)(]_k + 1)i_2
Xl+...+Xk_l+i+xi+l+...+Xn=N Xl Xk-l i, x+l, , x.

and finally

1 y.
(]-k + 1)2 xl+"’+xk-l+x,.l+’"+x.=N (

N)Xl, Xk-l X]+I Xn

1
(j-k + l)2nN

1
(j- k + 1)2

(n -] + k 1)N.

Substituting all of these into our expression for the lower bound, we have
simplified it to

N n+n(1)N (N 1 1
+2 y,

-j k+---f-(] k+)lk<j<_n

1 (/’-k+l)N)+.j(_k+l)2 1-
n

As we saw when we evaluated C(x, , x), we know that

2 f(j-k+l)= Y. F. f(k)= (n-k+l)f(k),
l_k<j<--n l<jn l<k<--j l<k<--n

so we now have

(nl-)N-n+n 1- +2 (n-k+1)
N1 1 1 k

<__<, k /t- 1-

This sum appears difficult to evaluate explicitly, mainly because of the last term.
However, we may use this expression to prove:

THEOREM 1. Any Quicksort program must require, on the average, at least

N- n + 2 , XkXi
Nk <] <---n Xk "-l- "t- Xj

comparisons to sort a random permutation ofthe multiset {x 1, , x. n} (where

QUICKSORT WITH EQUAL KEYS 249

X -[-" -[- Xn "--N) and at least

2N(1 + 1/n)H,-3(N+n)
or, for large n, at least

2(N+ 1)HN-4N+ 2(N/n)(HN- 1)+ O(N3/n 2)
comparisons to sort a random n-ary file of length N.

Proof. The result for multisets is proved in the discussion above, except that
the theorem avoids some complications by using the fact that l_k<_n C(Xi)--
21k <--n (Xk "" 1 + 6xkO) >N- n.

To prove the results for n-ary files, we follow the discussion above and start
with the expression

N-n+n 1- +2 (n-k+1)
N1 1 1. ++ 1-

The first sum obviously evaluates to 2N(1+1/n)(H,-1)-2N(1-1/n), as
above; the second sum can be bounded by noticing that

n-k+1 1
E k2 =(n+l) Z -n-H,<n,l<kn lkn

since ZI, (1/kz)<zg (1/k2)=2/6; and the third sum is even smaller in
absolute value than the second, so it won’t weaken our bound much to ignore it. If
these expressions are all substituted in, and the n (1- 1/n)U term is also ignored,
we get the expression 2N(1 + 1/N)H,- 3(N+ n), as desired.

For large values of n, we can get a somewhat better bound, if we are content
with an asymptotic answer. For example, the binomial theorem tells us that

()u ()() (N)(_ 1)
N-n+n 1- =N-n+n Z Z -OiN l<iN

e notation O(N/n2) can be assigned a precise meaning, but here it will suffice
to say that the terms represented by this notation can be ignored for n >> N. Now,
to evaluate the sum, we begin in the same way, applying the binomial theorem to
get

-k+--+ 1- 2 k-

After rearranging terms slightly, our lower bound becomes

<i ni 2
+O

Now, we know from Euler’s summation formula that

2 k_=+n B i-2 ni--
1 i-a]- 1

250 ROBERT SEDGEWICK

where Bj are the Bernoulli numbers. Therefore,

2(n+l) Y, (7)ki-2(-1)i
l<--_k_n l<i<-N n

l<__j__<v-2ni+li+2__<i_<_N 1
(-1)i

"-2(1 "[") "</<N (/N)(-1)ii_l
=2(n+l) Y, Bi ((N))

l<--J <-N-2 jni+1(-1)
j+l N-j-

j + 1

+ 2(1+ n1-) <<N (7)(-1).i-1
__-2(1/ nl_)I</<N (/N)(-1) I(N 1__ (2N))/ O(nN_)i-1 n

(The inner sum evaluated on the second line of this derivation is tricky, but
involves only elementary identities from Knuth [8, 1.2.6].) Similarly, we find
that

l<k<_n l<i<=N -Putting these results together gives a rather simple expression for our lower
bound:

1 N (-1)+2 y,,
i/

+O2 1+ 1" i-1 l<iN

Finally, we can evaluate these sums by applying an identity given by Knuth [8,
1.2.7, Ex. 13].

--=x H.+ Z n (x-1)
<_in <=k <=n k k

If we take x 0 in this formula, we get an identity for evaluating our first sum; if
we integrate the equation from 0 to t, we get

2 =g.t+ Z n (t-l)k+l

l<:i<n i(i + 1) l<=k k k(k + 1) Z
n (-1

lk.<n k k(k-T,--1-)
which, evaluated at 1, gives an identity for evaluating our second sum. The
stated result follows immediately.

The lower bounds given in Theorem 1 are particularly weak for small values
of n. For example, when n 2, they grow linearly with N. As we will see, many
practical implementations of Quicksort do not do so well for binary files. In fact,
many implementations use O(N2) comparisons for binary files, and we can raise
our lower bound for such programs.

QUICKSORT WITH EQUAL KEYS 251

COROLLARY. If a Quicksort program requires, on the average, more than

) comparisonsfor unary or binaryfiles oflength N, then it will require at least

2N(n+)H. 4N 3 +(1) 2/

comparisons on the average, for n-ary files of length N.
Proof. The result for unary files follows directly by not evaluating C(Xk)

immediately in the derivation of Theorem 1" the bound is just

, (4CNn >-" ., ., C(Xk + 2 1+ H,, 4N- 2n.
n lk<=n XI+...+Xn=N Xl, Xn)

To bound this ferm, we shall use the general identity

nvl y, (N](Xk,’’’Xk+m_l),
Xl+...+xn=N Xl, Xn/ t

=-wn Xl+’"+Xk+l+i+Xk+m+’"+Xn=N Xl

Xk+’"+Xk+m--l=i Xk Xk+m-1

=n Xl+’"+Xk--l+i+Xk+m+"’+xn=N Xl

m m

If C(x)>(}, then we may take m= 1, t=2 to get the result

Xk-1, i, Xk +m, Xn

U-,)Xk-1, i-t, Xk+m, X

Clv. > 2N(1
which implies the stated bound.

For binary files, we follow exactly the derivation of Theorem i except that the
telescoping recurrences for C and G can each be stopped one step sooner to yield

C(xI, ", Xn)-- Z C(xk, Xk+l)-- C(Xk+l)
l<=k<_n-1 l<=k<_n-2

+2 XkXj

3_--<k +2_--<j =< Xk +" +X
When we average over all multisets on N elements, the calculations are similar to

those in the proof of Theorem 1. If C(xk+)> a, 2
then the proof for unary

files proves the corollary. Therefore we may assume that C(xk/)--5 a, 2
and

252 ROBERT SEDGEWlCK

xk "Jt-Xk+l) The identity above then tells us thatC(Xk, Xk/) > a
2

n--- 2 .,
1NkNn--1 Xl+’"+xn=N XI Xn

and

1 (N
l=<k_--<n-2 xl+..o+xn=N Xl Xn n/n\2]

(m 2, t-- 2)

(m 1, 2).

Evaluating the third term exactly as for Theorem 1, we find that

CN, > 2N(1 +)H, --17 5N(_+1-)3a(Nn+g n n 2/’

which implies the stated bound.
From the corollary, we conclude that if a Quicksort program is quadratic for

binary files, then it is quadratic for all n-ary files when n is small. This type of effect
arises often in the study of Quicksort, since all files are eventually partitioned to
yield degenerate ones. It will be even more prominent in the next section, when we
deal with upper bounds.

4. Upper bounds. The derivation of a general upper bound on the number of
comparisons needed by any Quicksort program proceeds in much the same
manner as for the lower bound. However, some extra care will be necessary for
two reasons. First, a bound is needed for the number of comparisons used to
partition Nelements. We will be content to useN+ 1, since we shall later see some
programs that use exactly that many. Other programs might use more, but if the
number of comparisons that they use grows linearly with N, we can still apply our
results by multiplying through by a constant. Another problem arises because, as
we have seen, some partitioning methods can perform badly with files that only
have a few distinct values. For the present, it will be convenient to restrict these
problems to a single term by defining

I(Xl, x,) Z C(Xk, xk+l, xk+z)-- Z C(xk+l, xk+2)
l_k_n--2 lk<=n-3

where C(xl,’’ ’, xn) is the maximum number of comparisons needed, on the
average, to sort a permutation of the multiset {Xl 1, , xn n }. We will look at
assumptions about our programs to help bound 1(xl,’", x,) after we have
proved

THEOREM 2. Any Quicksortprogram which partitions Nelements with N+ 1
comparisons will require, on the average, no more than

2 Y xkxi ’I(xl,’", x,)
4Nk+3_i<--n 1 / Xk+ -Jr-" + X]-I

comparisons to sort a random permutation ofthe multiset {x 1, , x,} and no more

QUICKSORT WITH EQUAL KEYS 253

2 1-1 H-3N+2N- 9 -7--5n n

or, for large values of n, no more than

2N(HN + 1)-2 + O(NZ/n)
comparisons to sort a random n-ary file of length N.

Proof. Arguing the same way as in the derivation for the lower bound, we
start by noticing that an upper bound is certainly described by the recurrence

1
C(Xl,...,x,)=N+l+ Y x(C(x,...,x-l)+C(x,...,x,)), n>l.

Proceeding exactly as before, we dittcrcncc twice" first subtract the same equation
for {X2 1," ", x, (n- 1)}; then define G(xa,. ", Xn) C(x1, ,, Xn)-
C(X2, , x,) and subtract the same equation for {x 1, , x,-1 (n 1)}. This
leaves

(
2xx, +x,G(x, , x,_a, x, 1), n > 3

(Notice that this equation does not hold for n 2 or 3 as was the case for the lower
bound.) In order to get this equation to telescope, we multiply both sides by

(x2+’’ .+x,- 1)!
Xn!(X2q-"

which gives

x,, x,,-1
(G(x, x,- 1) +2Xl)

Xn

Now every place that x, appears on the left side, x, 1 appears in the first term on
the right, so this equation telescopes to yield

(X2"--" "---Xn) a(Xl, ,xn)(x2-’" "--Xn)a(xl, ,Xn_l)
Xn Xn

+2X1(X2+’’’+xn)x 1
or

G(xa, ,Xn)=G(Xl, Xn-)+ 2XlXn
1 q"X2q-" "q-Xn_

n>3.

Substituting G(x, , x,) C(x, , xn)-C(x2, Xn) and telescoping
once more leads to the desired result for permutations of multisets.

254 ROBERT SEDGEWICK

To complete the proof, for random n-ary files of length N, we will first
evaluate

2 (N)
Xl+...+xn=N X1, Xn 4=<k+3/’_<n 1 +Xk+ "Jr-" "Jr’Xj_l

Continuing as before, we interchange the order of summation and then split the
inner sum and the multinomial coefficient to get

n---ff Z
4_--<k+3_--<-i_--<n xa+...+x+i+xi+...+xn=N Xl ", X,, i, Xi, ", X,,

+ 1 Xk+l+...+xi_a=i Xk+l, X.i-1)

The multinomial theorem applies to the inner sum, and the remaining multino-
mial coefficient simplifies, leaving

4_--<k+3-i_--_.n Xl+...+xk+i+xi+...-t-xn=N Xl, Xk 1, + 1, x 1, , x.
(i-k-)

After replacing by 1, including a term for 0, and applying the multinomial
theorem twice, we are left with

n 4Nk+3N-iNn j k 1 j k 1
1

n

or

n 2k-----n--2

If n is not large we will not weaken our bound much by ignoring the second term,
so the result

2N(1-1/n)H,,_x-4N+6N/n

follows immediately. If n is large, then we expand (1- k/n)U-a by the binomial
theorem to get

_2N_n-k-ly.. (N-l)(_)in 2<_k<=n-2 k l<=i<_N-1

which reduces, after evaluating the sum on k with Euler’s summation formula just
as above, to

-2N Y, (N-l) (-1)i- 2N Y. (N-l](-1)i+O(N/n).
I<=i<_N-I l<=i<=N--1 / + l

The second term turns out to be 2(N- 1), and the first is just 2NHN, so we have

2N(Hv+ 1)- 2 + O(NZ/n).
Finally, we must average I(xl,"., x,.,) over all multisets of length N. First,

since a Quicksort program usesN+ 1 comparisons and gets at least one element in

QUICKSORT WITH EQUAL KEYS 255

place on each partitioning stage, a trivial upper bound is

C(x,’",x,) <- (k+I)=1/2(N+4)(N-I)<(2N)+2N.
2kN

Therefore, we must certainly have

I(xl, Xn) <
l<=kn-2 2

and, applying the identity given in the proof to Corollary 1 of Theorem 1, we then
find that

1 (N) ()(n9_(2N) N)n--- Y’. I(X l, x,) < 1- +
Xl+’..+xn=N Xl Xn

and, in particular, for large n, the right-hand side is O(N2/n).
The theorem now follows immediately from the results in the preceding two

paragraphs. [-1

Notice that if n is O(1), then the bound becomes O(N2). Again, this is a result
of the recursive structure of Quicksort, and it is due to the fact that some
Quicksort programs are inefficient for files with a small number of key values. On
the other hand, not all Quicksort programs have this problem, and if the method
works well for binary files, we can eliminate the quadratic term.

COROLLARY. If a Quicksort program can sort a random binary file of N
elements with less than 2NHN comparisons, on the average, then it will require no
more than

1) N_H
N

39N
2 1-- Hn_l-4N+6 +--

n 2 n’

comparisons to sort a random n-ary file ofNelements.
Proof. The expression given is a crude approximation intended only to show

that the bound is not quadratic, so our estimates will be somewhat rough. First, we
can remove the term describing ternary files by noticing that, from our most
general recurrence, we certainly must have

(Xl-’X2 nt-x3)C(Xl, x2, x3) < 2(x1+x2+x3+1)2
-[-xIC(XI’X2’X3)

-]-x2C(x 1, X2) "[- x2C(x2, x3) -[- x3C(x 1, x2, x3).

From this it follows that

3 (X1+X2+x3+l)C(x’xz’x3)<xz+ 1 2
-C(xl’x2)-C(x2’x3)’

256 ROBERT SEDGEWICK

and, therefore,

I(Xl,’’’,x,)<3 1(Xk+Xk+lq-Xk+2d-1) V+
<_-. X/1 + 1 2 X, X/.

l<_k<=n_

By hypothesis, we certainly have C(Xk, Xk/1) < 2(Xk q- Xk+1)HN. The calculations
involved in averaging this over all multisets of N elements are similar to those we
have seen many times before. It turns out that the first term is less than (N/n),
and the second is equal to 6(N/n)Hn, so the desired result follows directly.

The upper and lower bounds that we have derived for the number of
comparisons give some indication of how well we can expect to do when imple-
menting a Quicksort for files with equal keys. If n is very, very large, then the
bounds differ by only 6N-2Hv- 2, so we have verified the traditional argument
that equal keys are unlikely to occur in this case and their effect Can be ignored. If
n O(N), then the upper and lower bounds differ only slightly, and we should not
expect one method for dealing with equal keys to differ substantially from
another. And if n is small, then the bounds tell us that we should take care to
ensure that our method operates efficiently for binary files.

5. Implementations. Although it is tempting to contemplate sophisticated
algorithms for dealing with equal keys during the partitioning process, we shall be
content to study three methods which require virtually no overhead for their
implementation. We shall see that one of these performs very well, and it is
unlikely that it would be worthwhile to incur any extra overhead in Quicksort to
deal with equal keys.

The first method that we shall consider is of course Program 1 as it stands,
which sorts properly and efficiently when equal keys are present. If we replace
"<" by "_-<" and ">" by "_->" in the discussion following the program, we find that
it applies as well when equal keys are present, except for one subtle point. It is
possible for the condition f to occur outside the inner loops, so that the pointer
scans ultimately terminate with j + 2, and the two keys A [/’] and A [/" + 1] are
put in place by partitioning. (Although we do an extraneous exchange
A[i]:=: A[/’] when i, it is much less efficient to exit the loop when because
not only is the chance to get two elements in place missed, but also when the left
subtile is later partitioned, the partitioning element chosen will be the largest in
that subtile.) It is important to notice such anomalies if the analysis is to be correct.
In any case, although Program 1 clearly works, it is reasonable to ask if there is a
more efficient method of distributing the keys equal to the partitioning element
into the subfiles.

Another possibility is to change the < and > signs in the inner loops of
Program 1 to -< and ->. If a key smaller than all the others is chosen as the
partitioning element, the f pointer will scan past the left end of the file, so we need
to protect against this case by setting A[0] :=-. Even worse, it might be
possible for the pointers to access elements far outside the array bounds
A[1],..., Air] during intermediate partitioning stages. This situation could be
avoided by putting tests in the inner loops to check the pointers, but it is more
efficient to put -o and o in All- 1] and Air + 1] before partitioning and restore

QUICKSORT WITH EQUAL KEYS 257

them afterwards. This leaves us with
PROGRAM 2.

procedure quicksort (integer value l, r);
comment The array A is declared to be A [0:N+ 1] with A [0] -oo and

A[N+ 1] =oo;
if r>l then

All- 1] :=: A[0]; Air + 1] :=:d[N+ 1]
:= 1;] := r+l; v := A[I];

loop:
loop" := + 1; while A [i] _-< v repeat;
loop" j := j-1; while A[j] >-_ v repeat;

until j < i"
A[i]:=:A[]];

repeat;
if]> then A[1]:=:A[]];] :=]- 1; endif;
A[I-1]:=:A[O]; A[r+ I]:=:A[N+ I];
quicksort (l,]);
quicksort (i, r);

endif;
Notice that after partitioning we have A[I],... ,A[j-1]<-A[j]=A[]+I]

A[i-1]<-A[i], ,A[r], with l <-_i,] <-N+ l, so that a number of keys
can be put into position on one partitioning stage.

Finally, we might consider allowing equality in only one of the inner loops of
Progam 1, and leave the other inequality strict. The two possibilities are basically
symmetric, and we will consider

PROGRAM 3.
procednre quicksort (integer value l, r):

comment The array A is declared to be A[i :N+ 1] with A[N+ 1]=;
i r>l then

A[r+I]:=:A[N+I];
:= l;] := r+l; v := A[/];

loop:
loop: := + 1; while A [i] _-< v repeat;
loop:] := j-1; while A[j]>v repeat;

until] < i"
A[i]:=:A[]];

repeat;
A[I]:=:A[]];
A[r+I]:=:A[N+I];
quieksort (1, i 1);
quieksort (/" + 1, r);

endif;
This program always puts exactly one partitioning element into position.

In summary, Program 1 stops the pointers on keys equal to the partitioning
element, Program 2 scans over equal keys, and Program 3 puts them into the left
subtile. Clearly there is a version symmetric to Program 3 which puts them into the
right subtile. Versions of all of these approaches have appeared at one time or

258 ROBERT SEDGEWICK

another in the literature. Hoare’s original program scanned over equal keys [6],
[7], and several authors then adopted that approach [2], [5], [11], [13]. (However,
the later authors "improved" Hoare’s program to test if the pointers cross each
time they are changed. The reader will soon appreciate how unfortunate this
strategy is when, for example, all the keys are equal.) R. C. Singleton was the first
to suggest stopping the pointerg on keys equal to the partitioning element [15],
and the idea was accepted by others [4], [9], though no analytic justification was
given. The idea of putting all the keys equal to the partitioning element in one
subtile or the other appears in some versions of Quicksort [1], [3], though no one
has given any particular reason for doing so.

It is not at all clear a priori which of the programs should be recommended,
for there are situations in which each performs better than the others. Figure 2
illustrates this by showing the operation of the programs on three different files,
along with the number of comparisons used. (The differences between the
progams are most apparent in the second example, which shows all three
"sorting" seven equal keys.) Program 1 expends a few extra exchanges to get
balanced partitions, Program 2 can get more than one key into place on one
partitioning stage, and Program 3, due to its asymmetrical nature, can produce
unbalanced partitions. In the following sections, we shall attempt to quantify these
remarks by looking at the analysis of the programs. We shall see exactly how many
comparisons they use, on the average, for unary and binary files, and then we shall

Program Program 2 Program 3

4 3 5 2 2 4 3 5
1(2435 121 (’4 3 5

@21
@435 1

2 2 4 3 5
2 1(2")4 3 5

@2
@s

19 comparisons 20 comparisons 16 comparisons

1(1
11

16 comparisons

(’1 1

15 comparisons

_(1)

111

33 comparisons

2 5 3 4 2 2

21 124 3 5

3@s
15 comparisons

2 5 3 4 2 2
1(2")3 4 2 2 5

2 24 5

24 comparisons

2 5 3 4 2 2 1
2 2(2")4 3 5

1

@s
19 comparisons

FIG. 2

QUICKSORT WITH EQUAL KEYS 259

prove that Program 1 must be preferred because it tends to produce partitions
closer to the center.

There are a few more issues relating to the practical implementation of
Quicksort on equal keys which we shall treat before moving on to the analysis. The
first is a property called stability which is often of concern in practical sorting
programs. A sorting program is stable if it. preserves the relative order among
equal keys. Unfortunately, our programs are not stable, because no matter how
we treat keys equal to the partitioning element, the relative order of other keys
might be disturbed. The easiest way to provide stability, if there is extra space
available, is to append each key’s index to itself before sorting. For example, if we
are sorting small integers, this can be done by the statement

loop for 1 <-i <=N:A[i] := A[i],N+ i- 1 repeat;

This transformation makes all the keys distinct and preserves their relative order.
We have A[i]<A[j] before the transformation only if A[i]<A[j] after the
transformation; and if </" and A[i]=A[j] before, then A[i]<A[j] after. We
can now achieve a stable method by sorting the file and then transforming back to
our original keys"

loop for 1 <-i <=N:A[i] := A[i]/Nrepeat;

Of course, since this method is costly in terms of both time and space (each key
must be a little bigger), it should not be used unless stability is important. If the
extra space is not available, then Rivest has shown that a stable Quicksort
involving O(N(logN)2) comparisons can be devised [12]. This method is of
limited practical utility, but it is an important theoretical result.

The programs we have defined gain efficiency by using sentinel keys, -oo and
oo, to stop the scanning pointers from going outside the array bounds. For
Program 3 it is necessary for oo to be strictly greater than all of the other keys, and
for Program 2 it is also necessary for -oo to be strictly less than the others. It may
be difficult to define such keys in some practical situations. For example, if the
keys to be sorted can take on any value which can be represented in one word in a
computer, then by definition we cannot represent a key larger than all possible
values in one word. This is not a problem for Program 1, since it only requires that
oo be greater than or equal to all the other keys.

6. Unary files. Our derivation of the upper and lower bound suggests that
we should know how our programs perform in the degenerate case when only a
few distinct key values are present, so let us examine first what happens when all
the keys are equal.

Program 1 comes as close as possible to dividing the file exactly in half at each
stage. The number of comparisons used is described by the recurrence

CN=Nq- l q-2C(N_)/2, N>I,

with C 0. If N is of the form 2- 1, then this reduces to

k>l.

260 ROBERT SEDGEWICK

Dividing both sides by 2k, this immediately telescopes to the solution

CN (N+ 1) lg ((N+ 1)/2), when N= 2k 1, k > 1.

The solution for general N is somewhat complicated because it depends on the
binary representation of N, but it is easily shown by induction that CN<=
(N+ 1) lg ((N+ 1)/2) for all N, so that Program 1 performs acceptably on unary
files.

Program 2 is much easier to analyze, for it "sorts" all unary files in only one
partitioning stage. Each pointer scans all the way across the file, the left and right
subfiles are both empty, and a total of only 2N+ 1 comparisons are used.

On the other hand, unary files represent the worst case for Program 3. Each
partitioning stage only removes one element from the right end of the file to be
sorted, so ., (]+I)=1/2(N-1)(N+4)

2]N

comparisons are used.
It is interesting that these three programs, which seem to be so similar,

perform so differently when the keys are all equal. One uses O(N log N) compari-
sons, the second is linear, and the third is quadratic!

7. Binr les. Now let us consider the less degenerate case when binary
files are to be sorted. The analysis is more complex, but it does give us some more
insight into the relative performance of the programs.

The easiest of the three to analyze is Program 2. We wish to find C, the
average number of comparisons to sort a binary file of length N, given that all 2
such files are equally likely. Suppose that the two values are 0 and 1, and define
C andC to be the averages for files that start with 0 and 1, respectively, so that

,(o)CN N +C)) First, we will find a recurrence for C by noticing that the
situation after the first partitioning stage is as follows ("x" denotes keys which
may be 0 or 1)"

k N--k- 0 0 0...0 1 x x x...x .
Partitioning required N+ k + 1 comparisons, and all that is left to be sorted is a

file of size N-k, random, except for its first key, which is 1. This leads us to the
recurrence

+ , (N+ k + 1 + C(1N)k).
l<=kN-1

By a similar argument, we can show that

2N+ 1C)=
-=i-+ E (N+ k + C(N)_k),

l<=k<_N--1

QUICKSORT WITH EQUAL KEYS 261

and therefore CN satisfies

2N+ 1
Cu -T-+ 2 (N+k+1/2+CN_,), N>0.

lkN--1

Multiplying by 2 and replacing k by N-k in the sum, we get

2NCN 4N+ 2 + Z 2k (2N- k + 1/2 + Ck).
1.<__k <=N-1

Subtracting the same equation for N- 1, we get the recurrence

N 7
C=C-1++ forN-_>2,

with the initial condition C1 3, which telescopes to the solution

1/4(N2 + 8N+ 3).

We might have expected that this average number of comparisons would be
proportional toN if we had noticed that two successive partitioning stages simply
exchange the leftmost 1 with the rightmost 0.

Program 3 may be analyzed in a similar fashion, but the calculations are
somewhat more complex. Alternatively, we can analyze Program 3 in much the
same way as we developed our upper and lower bounds. (Unfortunately, the other
programs don’t lend themselves as easily to this kind of analysis.) The number of
comparisons required by Program 3 to sort to random permutation of the multiset
{xl 1, , xn n } is described by the recurrence

1
xj(C(Xl,...,xj-1)+C(Xj+l,...,xn))C(Xl, ,Xn)=N+ l +

l<=j<=n

where N=l=i=,,x, and the notational conventions are the same as above.
Proceeding in exactly the same manner as for the derivation of the upper bound,
we find that

C(Xl,"’,x,,)= 1=<<= (x
+2)2 -n+2 x,x

lk<in I -[- Xk Av -[- Xj--1

This formula is due to Burge [3], although he develops a slightly different version.
For binary files, we get

+ -2+2
2 2

x(N-x)
l+x

The average is

0--<x =<N 0"<x =<N 2 x

--2+2N--1 0NxNN X 1 "[-" X

262 ROBERT SEDGEWICK

After application of the identities

N-2 1

and

N x(N-X)=N N-1

x l+x x x+l

this reduces to the solution

so Program 3 is also quadratic for binary files.
Fortunately, we can show that Program 1 does not perform so badly on binary

files, even though an exact formula for the average appears difficult to derive.
What we can do is derive an upper bound on the number of comparisons taken by
Program 1 on any binary file. This will of course also be a bound on the average.
The proof is based on a different method of counting comparisons than we have
been using. We know that each partitioning stage contributes one comparison to
the total for each element involved plus one extra comparison when the pointers
cross. But we can also count comparisons by counting how many partitioning
stages each element is involved in, then adding N for the pointer crossing
overhead (there can be no more than N partitioning stages). Notice that each
partition in Program 1 results in one subtile with all keys equal and another
"unsorted" subtile. The subfiles with all keys equal are clearly processed in a
logarithmic number of stages, since they are always split in the middle. Now
consider the unsorted subtile. After each partitioning stage, at least half of the
keys equal to the partitioning element must be removed. Therefore the unsorted
part of the file cannot last through more than 2 lg N partitions, and every element
in the whole file is involved in at most 2 lg N partitioning stages. Therefore the
total number of comparisons must be less than 2N lg N+N (and this is not a
particularly tight bound). This is substantially better than the quadratic perfor-
mance of Programs 2 and 3.

These results for binary files, coupled with the upper and lower bounds
developed above, represent strong evidence that Program 1 is the method of
choice when n is small. The corollary to Theorem 1 says that Programs 2 and 3 will
be quadratic; and the corollary to Theorem 2 says that Program 1 will still require
only O(N log N) comparisons, on the average, for small n. Of course, it must be
noted that if it is known that n will always be small, a special-purpose sorting
program written to take that fact into account might be more appropriate than the
general-purpose programs that we have been studying. For example, the best way
to sort a binary file is to effectively "partition" the file on the value 1/2: scan from the
left to find a 1, scan from the right to find a 0, exchange them, and continue until
the pointers cross. The whole file can be sorted withN+ 1 comparisons. Similarly,
if a file is known to be ternary (consisting of O’s, l’s and 2’s), it can be sorted with
2(N+ 1) comparisons by first partitioning on the value 1, then treating the binary

QUICKSORT WITH EQUAL KEYS 263

subfiles as above. In the same manner, a file with 2’ + 1 distinct values can always
be sorted with (t+ 1)(N+ 1) comparisons, if the values are all known. Another
example, which is most useful when keys to be sorted fall into a small range, is the
idea of distribution counting (see [9, 5.2]), where the file is sorted in two passes:
one to count the number of occurrences of each key, and a second to move the
keys into place according to the counts. Such special-purpose programs may be
made to outperform Program 1 under some conditions for small n but we have
shown that Program 1 does perform acceptably, and it can be expected to perform
better than other general-purpose sorting programs when many equal keys are
present.

8. The general ease. In the general case, the exact analysis of Programs 1
and 2 appears to become intractable, so we shall adopt a more indirect approach
to compare the programs. The idea is to notice that Quicksort performs best when
the partitions at each stage tend to be near the center. Consequently, we would
like to discover which of our algorithms produces partitions closest to the center,
on the ai,erage.

When Singleton first proposed stopping the pointers on keys equal to the
partitioning element [15], he claimed that it produces a "better split" than
Hoare’s original method of scanning over equal keys. However, he gave only
empirical justification, and it is not at all obvious that this is so. For example, given
the input file

2 2 2 2 1 1 1 2 2 3 3 3 3 3 3,

the first stage of Program 2 will produce the partition

while Program 1 results in the less balanced partition

3 3 3,

1 2 2 1 1 (2 2 2 3 3 3 3 3 3.

On the other hand, Program 2 performs worse for the input file

2 3 3 3 3 3 3 2 2 1 1 1 2 2 2,

since it produces the partition

111(2) 3 3 3 2 2 3 3 3 2 2 2,

while Program 1 partitions the file perfectly:

2222111(2) 2 3 3 3 3 3 3.

Although examples like these would seem to make comparing the algorithms
difficult, it turns out that no matter how well Program 2 performs on an input file,
there is another file for which Program 1 does at least as well.

THEOREM 3. When Program 2 operates on a fileA 1],. , A[N], itproduces
a partition no closer to the center than Program i operating on the file A 1], A [N],
A[N-1],..., A[2].

Proof. Specifically, let/" and define the position of the partition after
Program 2 is used on A[1],...,A[N], so that after partitioning we have

264 ROBERT SEDGEVICK

A[1], A[2], ., A[j]<-A[] + 1] A[j + 2] A[i- 1]-<A[i], ., A[N];
and let]’+ 6 define the position of the partition after Program 1 is used on
A[1],A[N],A[N-1],...,A[2], so that after partitioning we have
A[1], A[2],..., A[]’- 1]_-<A[]’] =A[] +6]_-<A[]’ +6 + 1],..., A[N], where
6 is either 0 or 1 depending on whether the condition] occurs outside the inner
loops of Program 1. In both programs, the file is partitioned on the value of A [1].
Call that value v and let s be the number of keys in the file which are <v. Our goal
will be to show that the inequality

[/’+ a-(N- 1)/21--<Is + k -(N+ 1)/21,
holds for] s < k < s.

First we notice that since Program 2 does not move keys which are v, we can
have] s + k only if exactly k of the keys A[2], , A[s + k] were originally =v.
But we also know that A[j + 1] was originally <v, and that A[j + 2],. , A[i 1]
were originally =v, since they were not moved by partitioning. In short, we can
deduce that partitioning must have had the following effect:

before" v k keys v v

after:

In the original file, exactly k 1 of the keys A [2], , A [s + k] were originally
v for all k in the range s < k < s. Similarly, since Program 1 always moves

keys which are =v, then]’= s + k’ for some fixed k’ only if there were exactly
k’-1+6 keys =v in the last N-]’+I positions of the reverse file"
A[N-s-k’ /2],..., A[2]. The effect of partitioning when 6- 1 is

and the diagram for 6 -0 is similar.
To complete the proof it is necessary to consider three cases depending on the

relative values of k and k’/6. If k=k’/6, then the inequality
obviously holds. If k>k’+& then the

discussion above says that A[2], , A[s + k] has more keys v thanA[N-s
k’+2],...,A[2]. This can only be true if s+k>N-s-k’+2, or /"+_->
N-s-k+1. Now, if]’+6-(N+1)/2 is ->0, then k’+6<k implies that 0_-<

]’+6-(N+l)/2<=s+k-(N+l)/2; and if (N+1)/2-]’-6 is _->0, then]’+6_->
N-s-k + 1 implies that 0N(N+ 1)/2-]’-t <-s+k-(N+ 1)/2. In either case,
taking absolute values gives the desired result, I]’+6-(N+I)/2I <-

QUICKSORT WITH EQUAL KEYS 265

]s+k-(N+ 1)/21. If k <k’+6, then A[N-s-k’+2],... ,A[2] has more keys
v than A[2], , A[s + k]. But also we know that A[N-s k’ + 2]< v, so we

must have N- s k’ + 1 > s + k, or/" + 8 =<N-s k + 1. An argument symmetric
to the above shows that ly’+6-(N+l)/2l<--Is+k-(N+l)/21, and we have
shown that this inequality holds for all k in the range j-s < k < i- s.

The theorem follows immediately from this inequality. If the first partition is
to the left of center (i-1<(N+1)/2), then the second is at least as close
(I(N+ 1)/2-]’-6[<I(N+ 1)/2-i1); and the symmetric argument holds for the
right. If the first partition straddles the center, or/" + 1 -< (N+ 1)/2 -< i- 1, then
Is+k-(N+l)/2l<-1/2 for some k, and therefore [y’--(N+l)/2l<-_1/2, or the
second partition must also be at the center. El

A direct consequence of Theorem 3 is that if the files A[1],..., A[N] and
A[1],A[N],... ,A[2] always appear with equal probability as input files (for
example, if a random permutation of a multiset or a random n-ary file is being
sorted), then Program 2 will produce a partition no closer to the center, on the
average, than Program 1.

We cannot make quite the same statement when comparing Program 3 with
Program 1. For example, when sorting a random permutation of the multiset
{5 1, 1 2, 1 3, 1 4, 1 5}, the programs will produce the same first partition
when 2, 3, 4 or 5 is the partitioning element, but Program 3 will always partition in
the center when 1 is the partitioning element, while Program I will not. Of course,
any advantage gained in this case will be lost because Program 3 will be left with a
large unary file for which it requires O(Nz) comparisons. In addition, we can
prove the following analogue to Theorem 3.

THEOREM 4. Consider two files A [1],. ., AIN] and A ’[1], ., A’[N]
satisfying 1 <-A[i], A’[i]<-n and A’[i] n + l-A[/] for 1 <=i <-N. The average
position of the partition when Program 3 operates on these files is no closer to the
center than the averageposition ofthe partition when Program 1 operates on them.

Proof. Suppose that in A [1],. , A[N] there are s keys <A [1], t keys
A[1], and u keys >A[1], so s+t+u=N. Then we also know that in
A’[i],... ,A’[N] there are u keys<A’[1], keys =A’[1], and s keys>A’[1].
Since Program 3 puts keys equal to the partitioning element in the left subtile, it
partitions A 1],. , A[N] at s + t and it partitions A ’[1],. , A ’IN] at u + t. On
the other hand, Program 1 puts A[s+jd into place when partitioning
A[1],..., A[N] and A’[u +j2] into place when partitioning A’[1],..., A’[N],
where jl and f2 are fixed between 1 and t.

We wish to show that

s+t- + u+t--
U+l’

-t- U-t"f2--
N+I

2

If s + t < (N+ 1)/2 and u + t < (N+ 1)/2, then, since s + + u N, we must have
t< 1 which is impossible. If s+t and u +t are both ->(N+ 1)/2, then we can
remove the absolute value signs to get 2t _->/’1 +]2, which clearly holds. If s + t _->
(N+ 1)/2 and u +t <(N+ 1)/2, then the proof is more complex (and the case
s + < (N+ 1)/2 and u + _-> (N+ 1)/2 is clearly symmetric). If we also have
s +]1 < (N+ 1)/2, then (since u + t < (N+ 1)/2 implies that u +j2 < (N+ 1)/2) we

266 ROBERT SEDGEWICK

can remove absolute value signs in the inequality to get

N+I N+I
s+t-+-u-t>__-

2 2
N+I N+I
2 2

or

S--u>t--]l--]2.

But this inequality holds because u + < (N+ 1)/2 and u + + s N implies that
s + 1 > (N+ 1)/2, so we have u + t < (N+ 1)/2 < s + 1, or s u _-> t. Finally, we
must consider the case where s+t>=(N+l)/2, u+t<(N+l)/2, and
(N+ 1)/2. Removing absolute values, our inequality reduces to

s-u >--s-u +]-],

which holds unless j1>]’2. Following the logic in the proof of Theorem 3, if we
were to have jl>j2, this would imply that the number of keys equal to A[1] in
A[s +jl],""" ,A[N] must exceed the number of keys equal to A’[1] in A’[u +
j2],""", A’[N]. Since our transformation between A and A’ preserves equality
among keys, this can only be true if s +j < u +f2. But we know that s > u, since we
have s + t >-(N+ l)/2> u + t, so this implies that j <j2, a contradiction.

As above, we know from this theorem that if the files All],.. , A [iV] and
A’[1],..., A’[N] appear with equal probability as input files (for example, if a
random n-ary file or a random symmetrically distributed multiset is being sorted)
then Program 3 will produce a partition no closer to the center, on the average,
than Program 1.

These theorems, of course, do not represent complete evidence that the total
average running time of Program 1 will always be lower than the total average
running time of Programs 2 and 3. We have already seen anomalous cases where
Program 1 may be slightly slower. Also, we should note that although Program 1
may use extra exchanges to get the partition close to the center, this is more than
compensated for by the effects of having the partition more balanced. When the
partition is closer to the center, all aspects of total running time are improved, and
Theorems 3 and 4 are strong general results.

9. Conclusion. The evidence in favor of stopping the scanning pointers on
keys equal to the partitioning element in Quicksort is overwhelming. Theorems 1
and 2 and our analyses of the operation of the programs on unary and binary files
show that this method will always require O(NlogN) comparisons on the
average, when other methods can be quadratic. Theorems 3 and 4 indicate that it
will produce more balanced partitions, on the average, than other methods for
most reasonable input distributions. Furthermore, it is easier to implement.

Before it can be recommended for use in a practical situation, three major
improvements (fully described in [9] and 14]) must be applied to Program 1. First,
the recursion should be removed, and the smaller subtile sorted first. This removes
some overhead, and ensures that only limited extra space will be necessary to
implement the recursive stack. It applies to all our programs, and has little effect
on our results. Second, the partitioning element should be chosen by taking the
median of the first, middle, and last element of the file. This not only tends to

QUICKSORT WITH EQUAL KEYS 267

balance the partitions and so reduce the running time, but also it makes the worst
case less likely to occur in a real file, an important practical consideration. This is
another advantage of Program 1 over Programs 2 and 3 because even with equal
keys present, it is unlikely that a file for which Program 1 will perform really badly
will arise in practice, while the others run badly for any file with a small number of
distinct values. Third, small subfiles should be ignored during partitioning and a
single insertion sort applied to the entire file afterwards. This eliminates a
considerable amount of overhead, since Quicksort is inefficient on files of about
ten elements or less. Its effect on our analyses is to reduce the significance of the
differences between the programs, since the anomalies created by small files are
removed.

The utility of a general-purpose sorting program may be measured by the
range of input files over which it performs efficiently. Quicksort has been shown to
be more efficient than most other sorting algorithms for files with distinct keys, but
few sorting algorithms have been studied in the case when equal keys are present.
The results of this paper demonstrate that the range of files over which a properly
implemented Quicksort can run efficiently may be extended to include files with
equal keys.

REFERENCES

1] A. AHO, J. HOPCROFT AND J.. ULLMAN, The Design and Analysis of Computing Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. BOOTHROYD, Sort of a section of the elements of an array by determining the rank of each
element (Algorithm 25), Computer J., 10 (1967), pp. 308-310. (See notes by R. Scowen,
Computer J., 12 (1969), pp. 408-409, and by A. Woodall, Computer J., 13 (1970), pp.
295-296.)

[3] J. DONNER, Tree acceptors and some of their applications, J. Comput. System Sci., 4 (1970),
J. Assoc. Comput. Mach., 23(1976), pp. 451-454.

[4] E. DIJKSTRA, EWD316: A short introduction to the art ofprogramming, Technical University
Eindhoven, The Netherlands, 1971.

[5] T. HIBBARD, Some combinatorial properties of certain trees with applications to searching and
sorting, J. Assoc. Comput. Mach., 9 (1962), pp. 13-18.

[6] C. A. R. HOARE, Partition (Algorithm 63), Ouicksort (Algorithm 64), andFind (Algorithm 65),
Comm. ACM, 4 (1961), pp. 321-322. (See also certification by J. Hillmore, Comm. ACM, 5
(1962), p. 439, and by B. Randell and L. Russell, Comm. ACM, 6 (1963), p. 446.)

[7] ., Ouicksort, Computer J., 5 (1962), pp. 10-15.
[8] D. KNUTH, Fundamental Algorithms, The Art of Computer Programming 1, Addison-Wesley,

Reading, MA, 1968.
[9] .,Sorting and Searching, The Art of Computer Programming 3, Addison-Wesley, Reading,

MA, 1972.
10] .,Structuredprogramming with go to statements, Comput. Surveys, 6 (1974), pp. 261-301.
[11] R. RICH, Internal Sorting Methods Illustrated with PL/I Programs, Prentice-Hall, Englewood

Cliffs, NJ, 1972.
12] R. RIVEST, A fast stable minimum-storage sorting algorithm, Institut de Recherche d’Informa-

tique et d’Automatique Rapport 43, 1973.
[13] R. ScowN, Ouickersort (Algorithm 271), Comm. ACM, 8 (1965), pp. 669-670. (See also

certification by C. Blair, Comm. ACM, 9 (1966), p. 354.)
[14] R. SEDGEWICK, Ouicksort, Ph.D. thesis, Stanford Univ., Stanford, CA, 1975. (Also Stanford

Computer Science Rep. STAN-CS-75-492.)
15] R. SINGLETON, An efficient algorithm for sorting with minimal storage (Algorithm 347), Comm.

ACM, 12 (1969), pp. 185-187. (See also remarks by R. Griffin and K. Redish, Comm. ACM,
13 (1970), p. 54, and by R. Peto, Comm. ACM, 13 (1970), p. 624.)

