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ABSTRACT. Hoare’s Find algorithm can be used to select p specified order statistics 71, j2, ..., Jp
from a file of n elements simultaneously. We give precise formulae for both the average number
of passes and the average number of comparisons. Averaging again over all possible subsets
of p elements, we get results of Lent and Mahmoud as corollaries.

— April 26, 1996 —

1. INTRODUCTION

Hoare’s FIND algorithm [3] uses the idea of Quicksort [5] in order to select the jth
element of a file of n elements. In each partitioning step, a certain element will be brought
into its correct position k. In the process, elements are moved—those brought to the left
of it are smaller, and those brought to the right are larger. If k£ = j, the element is found;
if k < j, one has to continue on the right side, searching for the (j — k)th element; if & > 7,
one has to continue on the left side, still searching for the jth element.

Two parameters are of interest: the (average) number of passes (recursive calls) Pln;J]
and the (average) number of comparisons C[n;j|. In Knuth’s book [5] we already find the
values

Plnyjl = Hj + Hpq1-5 — 1

and

Cln:j] = 2<n +3+(n+1)H, —(j +2)H; — (n+3 —J>Hn+1—f>

where H, =1+ % +--- + 1 denotes the nth harmonic number; compare also [6] and [8].
In [4], this analysis was extended to the case of median—of-three partitioning.
Hoare’s idea can be extended as follows: Assume that we simultaneously search for the
p elements with ranks ji,j2,...,7p where 1 < 71 < jo2 < -+ < jp < nis a fixed set of p
values. Then, according into which interval of the values ji,...,j, the pivot element falls,
we may have found one of the elements and/or have to continue on both sides, but with
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smaller sets. The idea is quite simple; a nice description of the algorithm can be found in
[7].

Multiple Quickselect is also easy to code and behaves very well in all cases in practice—
as the theoretical analysis predicts.

In the following we will give explicit formulee for both the average number of passes
Pln;j1,...,Jp] and the average number of comparisons, C'[n;j1,...,7,]. Also of interest
are the grand averages,

1 ) )
,PTMP:@ Z P[n;]lv"'v.]p]
1< <g2<--<gp<n

and

1 ) .
Cn,p:@ Z C[n;]lv"'v.]p] .

1< <ga<-<jp<n

They were already considered in [7], and our explicit formulee extend the asymptotic for-
mulae therein.

2. THE AVERAGE NUMBER OF PASSES

We will give the recursion in the case of a two element set {j < [}. The general case is
a straightforward extension which we omit as the formula is quite involved;

Plnsjll =1+~ 3 Pln—kij—kI—#]

1<k<j
1 L1
+ - 42 Plk—1;j]+ ~ 42 Pln — kil — k]
J<k<l J<k<li
1 .
+= Y Plk-1;41].
<k<n

The extra 1 counts one pass of the algorithm, and the factor % is the probability that the
kth element was chosen as a pivot element. If £ is smaller than j or larger than [, we
still search for two elements on one side, otherwise we search for one element on each side
(unless we already found one of them; the case k = j of k =1).

Theorem 1.

p
P[n;jlv"'vjp] - H]l —I_Hn+1_jp +22Hjt+1—jt—1 - 2p+1 . <>

t=2

We don’t give a full proof of this theorem, because it is long and completely routine.
The proof just shows that the given explicit formula fulfills the recursion, so that the result
is proved by induction. Not more is required for that than the formula

Y Hip=n(H,-1).

1<k<n



It is however not all that easy to find the formula. The formula was guessed and verified
through extensive computer experiments with the computer algebra system MAPLE.
Another line of proving the theorem, as suggested to us by C. Martinez, would be to
work with generating functions. For instance
Z P[n; ju’z"
1<j<n
1 | 1 u | 1 uz
11— uz Ogl—uz+ (I —uz)(l—2) R (1—2)(1 —wz)
And it is equally sufficient to show that this function fulfills the differential equation which
is the equivalent in terms of generating functions to the recursion for the Pln;j]’s. In the

general case, variables uy,...,u, and z must be used.
It might be instructive to give the special case of two elements explicitly:
P[n,],l] == H] + 2Hl_|_1_]‘ + Hn—l—l—l —3.
Observe that this formula (as well as the general one) fulfills the identity P[n;j,l] =
Pln;n+1—10,n+1—j]|, which is obvious from the symmetry of the algorithm.
To get some feeling about the average number of passes, let us assume that j; ~ a; - n,
with some constants 0 < a; <--- < a, <1, where p is fixed. Then

Pln;j1,...,Jp] = 2plogn + O(1) .
It is also worth noticing that the formula for P[n;j1,. .., j,] remains correct if we relax
the condition 1 < j; < jo < < jp<ntol < g << <gp <.
If p = n, this just means sorting, and our formula tells us
Pn;1,2,...,n] =n,

which is well known (and obvious!); it comes out for instance from the recursion

1n
P, o=1+=- <P_ _a_>.
—I-nz k—1 T k

k=1
3. THE AVERAGE NUMBER OF COMPARISONS
The recursion for the number of comparisons is almost the same as before, except that
the additional 1 (counting one pass) is now replaced by n — 1 which is the number of

comparisons required to bring the kth element into its correct position. Let us again
consider the case of a two element set {7 <[},

. 1 .
Clnsjyll=n—1+= Y Cln—kij—kl—k]

1<k<j
1 , 1
+ - 42 Clk = Li4]+ ~ ‘Z Cln— kil — k]
J<k<l J<k<li
1 )
—|—5 Z Clk—1;5,1] .
<k<n

Observe that we only count the comparisons which are necessary to bring the pivot
element into its correct position k. Extra comparisons of k& with the numbers jq,...,J, are
not considered. (This would give an additional contribution of roughly log p comparisons.)



Theorem 2.
C[n;jl, ce ,jp] =2n —I_.]p _jl + 2(n + 1)Hn — 2(]1 + Q)Hh — 2(n + 3 _.jp)Hn—l—l—jp

14
_QZ(jt+4_jt_1)Hjt+1—jt—1 —|—8p—2 . <>

t=2

In this instance it is even more true that the finding of the formula is the nontrivial and
the proof by induction is the routine part (which we therefore skip). It requires additionally
the formula

The formula in Theorem 2 fulfills the required symmetry C[n; ji,...,7,] = Cln;n+1—
Jps---»n + 1 —ji] and remains valid if some of the j’s are equal.
Again, if we let 5, ~ a4 - n, we get

Clniji,.--dpl=n- {Q—I-ap —ay — 2ay logay — 2(1 — ap)log(l — ap)

p
-2 Z(at — a—1)log(ay —ai—1)| + O(logn) .

t=2

It is interesting to investigate when the factor of n gets maximal. For instance, in the case
of two elements we see

1
— — 1 — -
aq 2—|—\/E7 as a
for three elements we find
1 1+ 2y/e 1
MEBES T e T

etc. If p = n, this just means sorting, and our formula tells us
Cln;1,2,...,n] =2(n+1)H, — 4n,

which is well known; it comes out for instance from the recursion

C’n:n—1—|—%zn:<0k_1—l-0n_k> )
k=1

Remark. Our explicit formulee translate directly into the costs of the computation of
several classes of (order—)statistics, such as e.g. the Hodges—Lehmann statistics. We merely
give this general remark and refer to [7] and [9].



4. THE GRAND AVERAGE OF PASSES

As we have already announced, we compute

S Pl

1< <ga < <gp<n

To achieve this goal, we first compute

1 | 1
o
(1 —z)ptl gl—z

= (n;1> (Hnt1 — Hp) .

Here, we used some generating functions that are discussed in great detail in [1] and [2].
Then we see

_ [Zn—i-l—p]

X me X (o)

1< < <jp<n 1<j<n

n-+1
=< ) >(Hn+1—Hp)= > Hpy1-j,

1< <<jp<n

and

zp: > Hjyioj, = > Hygio (n -+l _j)>

4 4 : p—2
1=21< < <jp<n 1<5<I<n

:kZ;Hk(n+1—k)<n_k>

p—2

7

:(p—l)ZHk<n+l_k>

k=2 p—1

Collecting all contributions and dividing by (Z), we get



Theorem 3.

2p(n + 1)°
P, = <Hn —H>—|—1—2
P mt2—pntlop T P

The classical case is p = 1, and then
1
Poy=2(1+~)H,—3 .
n

Computing an asymptotic equivalent, we get

Corollary 1. For p fixed and n — oo we have

H,
Prp = 2pHn —2pHy —2p + 1+ 2p(2p — 1)= =
_ - VH, #2007 —3p 1) O<10gn> ‘

n2

n

5. THE GRAND AVERAGE OF COMPARISONS

For this, we need the following auxiliary results:

Sum 1.

S Go-i= Y <l—j>(l_1_j>

1<h < <jp<n 1<5<I<n p—2
l—37
=(p—1
(p—1) Z (p_1>
1<<il<n
k
=p-1 > (", )e-h
1<k<n p

Sum 2.



7

. . n—j
> G =Y+l ])
1<j1 < <jp<n =1 p

7

[(n+3)—(n+1—j)]Hj<Z:{>

J=1

n . n+1 .
n—) n+1—7

= 3 H; — H;
(n + );:1 ](p_ 1) pj§:1 ]( )

P
=" e = ) =) (Hasa — )

p+1
= Z (n+3—7p)H;
1<h<<jp<n

Sum 3.

p
Z Z (Je+4—0e—1)Hj, 41—,

1=2 1<) < <jp<n
, n—({I+1—y
= ) (l+4—J)Hl+1—j< ( ])>
, p—2
1<<il<n

— =0+ 9)(" ) (Hosa - 1)

—(p— 1)19(21 f) (Hpss — Hypr) —4(p — 1) (pi 1) ,

Now we collect all contributions and divide by (Z) and, after several simplifications, we
obtain the following explicit formula.
Theorem 4.

1

Cop=
P (n+2-p)n+1-p)

[(ZHP + 1)n3 — 8pH,n* + 4((p+2)H, —I—p)n2
+2p(p — 9)Hyn + (=5p* +p—1+2(4p + 5)H,)n
+2p(p—5)H, +4(p+ 1)H, —plp+7)| . ¢

The classical case is p = 1, and then

8H,

n

Cn71 :3n—8Hn—|—13—

Computing an asymptotic equivalent, we get



Corollary 2. For p fixed and n — oo we have

H,
Cnp=2Hp+1)n —8pH, +2(4p+1)Hy, +3(2p—1) — 2p(7p — 3)7
2p(7p—3)H, +2(p—3)3p—1 1
L 2p(Tp = 3)Hy +2(p — 3)(3p )+O<0gn>'

n n?
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