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» Modern hardware executes several sequenttial
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> Jump instructions pose a major challenae!
» SO we try to predict which Branch will Be taken ..

» Branch mispredictions are expensive: we have to
rollzack the pipeline
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72 -Bit Predictor




Partition

// We have to partition A[:i..j| around the pivot
// that we have already put on A[¢]
int 1 = i; int u = j + 1; Elem pv = A[i];
for (5 ;) 1
do ++1; while(A[1] < pv); // Loop S
do --u; while(A[u] > pv); // Loop G
if (1 >= u) break;
swap(A[1], Aful);
s
swap(A[i]l, Alul); k = u;
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> Average numeer of eranch mispredictions whan
partitionina an array of size n:

bn = Z Tn,k bn,k’
1<k<n
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Setting up the Recurrences

> Average numeer Of rranch mispredictions B,, tO
sort n elements:

n
Bn = bn + Z Tn,k * (Bk—l + Bn—k)
k=1

> We will later consider the total cost T, which
satisfies the same recurrence with toll function

th=n+¢ by +0(n)
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Sampling

> [t is well-known that using samples to select the
pivot Of each recursive stace improves the
averaae performance of Quicksort and reduces the
pProrarility of worst-case rehavior

> For auicksort with samples Of size s from which
we pick the (p + 1)th element as the pivot, we have

(26
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Sampling

> A typical case is to pick the median of the sample
With s=2t+1and p=1t

» We can use variagle-size samples with s = s(n);
then s — 00 8s n — 00 BUt Mmust Ggrow suglinearly,
s = o(n); we use P to denote the relative rank of
the pivot within the samvple = ea, ¥ = 1/2 means
choOosinG the median of the sample



General resutts

Theorem

The averace numper Of Branch mispredictions to sort
n elements with Quicksort using samples of size s and
choosing the (p + 1)th iNn the sample of each stace is

B(s,p)
B, = nlnn + O(n),
#(s, ) ()
where
_ _ p+1 _s5—p
H(s,p) = Hsy1 s11 p+1 N
and b )
— l — 1 _ (s,p)
Bls,p) = lim = = lim — > m, [ bnk



General resutts

Theorem
For variaele-sized sampling, i s — 00 8s n — 00 with
s=o(n),and p/s — P then

B, = Mnlnn + o(nlogn),

H(Y)

with G(¢) = lim, ,» B(s,¥ - s+ 0(s)) and
H(z) = —(zlnz + (1 —z)In(1 — z))



General resutts

Theorem
The total cost T, Of QuUicksort is aiven By

T
H(s,p)

nlnn + O(n), s =0(1)

and

_1+£-6()

™= W)

nlnn + o(nlogn), s=w(l),s =



General resutts

> In order to compute ((s,p), we can use, under
suitagle conditions,

1
ﬂ(sip) = p'(s_s::-_p)'/(; (Ep(]. - :B)sjlipb(fb) dz

with

. bn,m~n
)= e e



General resutts

> In order to compute ((s,p), we can use, under
suitagle conditions,

s!

B(s,p) = [ et o) Pz de

pl(s—1-p)
with

. bn,m~n
)= e e

> Computing () is easier!
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» The optimal value ¥* £or ¥ minimizes the total
cost, ie., minimizes

_1+€-6(%)

Te(¥) H(w)

and depends on ¢
» H’s not difficurt to prove that for any s and p,

Bls,p) _ AW")
H(sp) ~ HE)
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General resutts

> In general, there exists a threshold value &, such
that if £ < €. (Branch mispredictions are not too
expensive) then we have 10 take the median of the
samples, ie., ¥* =1/2

> 1§ € > £, (that can happen often in practicel then
P* < 1/2 and it is Given By the uniQue solution in
[0,1/2) Of the equation

E-V(Y)H(Y) = (1+£-b(¥)H (¥)
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General resutts

» The threshold value £, is the solution of

d1e(y) _
d¢2 ‘gb:l/Z

» That is
4

b = ~“pi1/2)In2 + 4b(1/2)
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S+tatic rranch prediction

» We analyze here optimal prediction: i the position
Of the pivot k < n/2 then we predict Loop S not
taken and loop &G taken, and the other way around

> £ k£ <n/2 we incur a Branch misprediction every
time there is an element which is smaller than the
PivOot; symetrically, i k£ > n/2 then the numeer of
Branch mispredictions is n — k

> Hence, b, = min(k — 1,n — k), b(¢) = min(¢, 1 — 9) and

~1+¢ -min(y,1 - 19)
Te(Y) = =)




S+tatic rranch prediction
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> The numper of Branch mispredictions is twice the
NnuMBer Of exchanaes: we incur a8 misprediction
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> Hence, b, = 2(k — 1)(n — k) and b(¢) = 2¢(1 — o)
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-t Branch prediction

> We can analyze in £ull detail the performance when
using fixed-sized samples. For example, for
median-of-(2t + 1) we have

t+1
> For variasgle-size samples, B(v) = 2¢9(1 — ).

> The threshold is then at {, =2/(2ln2 — 1) ~ 5.177...
and ¥* is the solution of

Iny + 2692 Iny = In(1 — ) + 2¢6(1 — 9)?In(1 — %)



[-rit Branch prediction
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2 -Rit rranch prediction

» In (Kaligosi, Sanders, 2006), an approximate model
to compute b, 1 is Given, From which

2zt —4z3 + 2% + 2
b(z) =
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2 -Rit rranch prediction

» In (Kaligosi, Sanders, 2006), an approximate model
to compute b, 1 is Given, From which

2z — 423 4 2% + 2
b(z) =
l1-z(1—12)

follows

» We are working on a more refined analysis of by,
for this prediction scheme; onece b, i has Been
found, we should only have to apply the machinery
shown here
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Future work

» Complete the analysis of static Branch prediction
with fixed-size samples (it’'s not easy to ortain
B(s,p) $or eneral s and pN

> Analyze the 2-Bit prediction scheme and possigly
others

» Conduct additional experiments, compare
theoretical analysis tO real data

» Analyze Branch mispredictions and their impact on
the performance of other algorithms



