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Introduction

I Modern hardware executes several sequential

instructions in a pipelined fashion

I Jump instructions pose a major challenge!

I So we try to predict which branch will be taken ...

I Branch mispredictions are expensive: we have to

rollback the pipeline
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Introduction

I In comparison-based algorithms, we want

comparisons to yield as much information as

possible =) difficult to predict!

I In static branch prediction, jump instructions are

statically predicted as TAKEN or NOT TAKEN

I In dynamic branch prediction, the hardware predicts
what to do during execution, taking the past into
account

I 1-bit: We predict the instruction will take the same

direction it took the last time it was executed
I 2-bit: We must be wrong twice before we change

the prediction
I . . .
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Partition

// We have to partition A[i::j] around the pivot

// that we have already put on A[i]
int l = i; int u = j + 1; Elem pv = A[i];

for ( ; ; ) {

do ++l; while(A[l] < pv); // Loop S

do --u; while(A[u] > pv); // Loop G

if (l >= u) break;

swap(A[l], A[u]);

};

swap(A[i], A[u]); k = u;

}



Setting up the Recurrences

I Probability that the chosen pivot is the kth
smallest element out of the n: �n;k

I Average number of branch mispredictions when

partitioning an array of size n and the pivot is the

kth: bn;k

I Average number of branch mispredictions whan

partitioning an array of size n:

bn =
X

1�k�n

�n;k � bn;k
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I Average number of branch mispredictions Bn to

sort n elements:

Bn = bn +
nX
k=1

�n;k � (Bk�1 +Bn�k)

I We will later consider the total cost Tn which

satisfies the same recurrence with toll function

tn = n+ � � bn + o(n)
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Sampling

I A typical case is to pick the median of the sample

with s = 2t+ 1 and p = t

I We can use variable-size samples with s = s(n);
then s!1 as n!1 but must grow sublinearly,

s = o(n); we use  to denote the relative rank of

the pivot within the sample =) e.g.,  = 1=2 means

choosing the median of the sample
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General results

Theorem

The average number of branch mispredictions to sort

n elements with quicksort using samples of size s and

choosing the (p+ 1)th in the sample of each stage is

Bn =
�(s; p)

H(s; p)
n lnn+O(n);

where

H(s; p) = Hs+1 �
p+ 1

s+ 1
Hp+1 �

s� p

s+ 1
Hs�p:

and

�(s; p) = lim
n!1
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General results

Theorem

For variable-sized sampling, if s!1 as n!1 with

s = o(n), and p=s!  then

Bn =
�( )

H( )
n lnn+ o(n logn);

with �( ) = limn!1 �(s;  � s+ o(s)) and

H(x) = �(x lnx+ (1� x) ln(1� x))



General results
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The total cost Tn of quicksort is given by
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General results

I In order to compute �(s; p), we can use, under

suitable conditions,

�(s; p) =
s!

p!(s� 1� p)!

Z 1

0
xp(1� x)s�1�pb(x) dx

with

b(x) = lim
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n

I Computing �( ) is easier!

�( ) = b( )
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I The optimal value  � for  minimizes the total

cost, i.e., minimizes
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General results

I In general, there exists a threshold value �c such

that if � � �c (branch mispredictions are not too

expensive) then we have to take the median of the

samples, i.e.,  � = 1=2

I If � > �c (that can happen often in practice!) then

 � < 1=2 and it is given by the unique solution in

[0; 1=2) of the equation

� � b0( )H( ) = (1 + � � b( ))H0( )

(provided that b(x) is in C2[0; 1=2))
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Static branch prediction

I We analyze here optimal prediction: if the position

of the pivot k � n=2 then we predict Loop S not

taken and loop G taken, and the other way around

I If k � n=2 we incur a branch misprediction every

time there is an element which is smaller than the

pivot; symetrically, if k > n=2 then the number of

branch mispredictions is n� k

I Hence, bn;k = min(k� 1; n� k), b( ) = min( ; 1�  ) and

��( ) =
1 + � �min( ; 1�  )

H( )
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1-bit branch prediction

I The number of branch mispredictions is twice the

number of exchanges: we incur a misprediction

each time we abandon the loops S and G

I Hence, bn;k = 2(k � 1)(n� k) and b( ) = 2 (1�  )
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1-bit branch prediction

I We can analyze in full detail the performance when

using fixed-sized samples. For example, for

median-of-(2t+ 1) we have

�(2t+ 1; t) =
t+ 1

2t+ 3

I For variable-size samples, �( ) = 2 (1�  ).

I The threshold is then at �c = 2=(2 ln 2� 1) � 5:177 : : :
and  � is the solution of

ln + 2� 2 ln = ln(1�  ) + 2�(1�  )2 ln(1�  )
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2-bit branch prediction

I In (Kaligosi, Sanders, 2006), an approximate model

to compute bn;k is given, from which

b(x) =
2x4 � 4x3 + x2 + x

1� x(1� x)

follows

I We are working on a more refined analysis of bn;k
for this prediction scheme; once bn;k has been

found, we should only have to apply the machinery

shown here
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Future work

I Complete the analysis of static branch prediction

with fixed-size samples (it’s not easy to obtain

�(s; p) for general s and p!)

I Analyze the 2-bit prediction scheme and possibly

others

I Conduct additional experiments, compare

theoretical analysis to real data

I Analyze branch mispredictions and their impact on

the performance of other algorithms


