
Ž .Journal of Algorithms 31, 66]104 1999
Article ID jagm.1998.0985, available online at http:rrwww.idealibrary.com on

The Influence of Caches on the Performance of
SortingU

Anthony LaMarca†

Xerox PARC, 3333 Coyote Hill Road, Palo Alto, California 94304

and

Richard E. Ladner ‡

Department of Computer Science and Engineering, Unï ersity of Washington, Seattle,
Washington 98195

Received March 23, 1998; revised August 15, 1998

We investigate the effect that caches have on the performance of sorting
algorithms both experimentally and analytically. To address the performance
problems that high cache miss penalties introduce we restructure mergesort,
quicksort, and heapsort in order to improve their cache locality. For all three
algorithms the improvement in cache performance leads to a reduction in total
execution time. We also investigate the performance of radix sort. Despite the
extremely low instruction count incurred by this linear time sorting algorithm, its
relatively poor cache performance results in worse overall performance than the
efficient comparison based sorting algorithms. For each algorithm we provide an
analysis that closely predicts the number of cache misses incurred by the algorithm.
Q 1999 Academic Press

1. INTRODUCTION

Since the introduction of caches, main memory has continued to grow
slower relative to processor cycle times. The time to service a cache miss to
memory has grown from 6 cycles for the Vax 11r780 to 120 for the

UA preliminary version of this paper appears in Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 370]379.

† E-mail: lamarca@parc.xerox.com.
‡ E-mail: ladner@cs.washington.edu.

66
0196-6774r99 $30.00
Copyright Q 1999 by Academic Press
All rights of reproduction in any form reserved.

THE INFLUENCE OF CACHES 67

w xAlphaServer 8400 16, 21 . Cache miss penalties have grown to the point
where good overall performance cannot be achieved without good cache
performance. As a consequence of this change in computer architectures,
algorithms that have been designed to minimize instruction count may not
achieve the performance of algorithms that take into account both instruc-
tion count and cache performance.

One of the most common tasks computers perform is sorting a set of
unordered keys. Sorting is a fundamental task and hundreds of sorting
algorithms have been developed. In this paper we explore the potential
performance gains that cache-conscious design offers in understanding and
improving the performance of four popular sorting algorithms: mergesort,1

w x w x 2quicksort 30 , heapsort 56 , and radix sort. Mergesort, quicksort, and
heapsort are all comparison based sorting algorithms while radix sort is
not.

For each of the four sorting algorithms we choose an implementation
variant with potential for good overall performance and then we heavily
optimize this variant using traditional techniques to minimize the number
of instructions executed. These heavily optimized algorithms form the
baseline for comparison. For each of the comparison sort baseline algo-
rithms we develop and apply memory optimizations in order to improve
cache performance and, hopefully, overall performance. For radix sort we
optimize cache performance by varying the radix.

In the process we develop some simple analytic techniques that enable
us to predict the memory performance of these algorithms in terms of
cache misses. Cache misses cannot be analyzed precisely due to a number
of factors such as variations in process scheduling and the operating
system’s virtual to physical page-mapping policy. In addition, the memory
behavior of an algorithm may be too complex to analyze completely. For
these reasons the analyses we present are only approximate and must be
validated empirically.

ŽFor comparison purposes we focus on sorting an array 4000 to 4,096,000
.keys of 64 bit integers chosen uniformly at random. Our main study uses

trace-driven simulations and actual executions to measure the impact that
our memory optimizations have on performance. We concentrate on three
performance measures: instruction count, cache misses, and overall perfor-

Ž .mance time on machines with modern memory systems. Our results can
be summarized as follows:

1. For the three comparison based sorting algorithms, memory opti-
mizations improve both cache and overall performance. The improvements

1 w xKnuth 37 traces mergesort back to card sorting machines of the 1930s.
2 w xKnuth 37 traces the radix sorting method to the Hollerith sorting machine that was first

used to assist the 1890 U.S. census.

LAMARCA AND LADNER68

in overall performance for heapsort and mergesort are significant, while
the improvement for quicksort is modest. Interestingly, memory optimiza-
tions to heapsort also reduce its instruction count. For radix sort the radix
that minimizes cache misses also minimizes instruction count.

2. For large arrays, radix sort has the lowest instruction count, but
because of its relatively poor cache performance, its overall performance is
worse than the memory optimized versions of mergesort and quicksort.

3. Although our study was done on one particular architecture, we
demonstrate the robustness of the results by showing that comparable
speedups due to improved cache performance can be achieved on several
other machines.

4. There are effective approximate analytic approaches to predicting
the number of cache misses these sorting algorithms incur. In many cases
the analysis is not difficult, yet is highly predictive of actual performance.

The main general lesson to be learned from this study is that because
cache miss penalties are large, and growing larger with each new genera-
tion of processor, selecting the fastest algorithm to solve a problem entails
understanding cache performance. Improving an algorithm’s overall per-
formance may require increasing the number of instructions executed
while, at the same time, reducing the number of cache misses. Conse-
quently, cache-conscious design of algorithms is required to achieve the
best performance.

2. RELATED WORK

Algorithms in the context of a memory hierarchy have been studied for
a long time. External sorting algorithms were studied in the context of

w xmain memory and magnetic tape or disk storage 37, 53]55 . Aggarwal and
Vitter designed a particularly nice model for studying external memory

w xalgorithms and applied the model to external sorting 4 . Several of their
algorithmic ideas in the external memory model transfer well to the
cache-main memory model. In particular, they employ multimerging and
multipartitioning to produce excellent external memory sorting algorithms.
We also employ these techniques in the cache-main memory setting.

Although the similarities are strong, there are a several differences
between the cache-main memory model and the external memory model
that give them different characters. One important difference is that in the
external memory model the algorithm has control over what data should
be in main memory and what should be on disk. With hardware caches,
however, when a cache miss occurs the algorithm has no choice as to

THE INFLUENCE OF CACHES 69

where that new cache block is loaded or what block is evicted. Another
difference is that in the external memory model computation is free and
only disk IrOs are counted. This makes perfect sense because a disk IrO
is many orders of magnitude more expensive than a computation step. In
the cache-main memory model cache misses are not nearly as costly.
Hence, care must be taken not to expend too many instructions when
attempting to reduce the number of cache misses. Finally, there is a
difference in scale. The caches closest to main memory are generally quite
large relative to the size of memory. For example, it is common to see a 1
MB cache with a memory of 32 MB, making the ratio of memory to cache
32 : 1. In the external memory model the capacity of the disk is considered
to be very large in comparison to the size of memory. Although the
external memory model and cache-main memory model are different in
character, algorithmic ideas such as multimerging and multipartitioning,
are effective in both settings. Other algorithmic techniques from the
external memory algorithms literature may also be effective in improving
the cache performance and overall performance of memory resident

w xalgorithms 6]8, 14, 18, 38, 52 .
w xIn addition to the external memory model of Aggarwal and Vitter 4

there have been several other models of hierarchical memory that have
w xbeen proposed 2, 3, 5 . In all these models the algorithm has control over

where in the hierarchy the data is to reside.
Other related work includes research in compiler optimizations to

w ximprove cache performance 9, 13, 26, 35, 57, 58, 15 , systems research to
wimprove the cache performance while a program is running 10, 19, 28, 36,

x w x49 , trace modeling to better predict cache misses 1, 47, 50, 51 , and
theoretical research on optimal placement of data for direct mapped

w xcaches 24, 25, 32 .

3. CACHES

In order to speed up memory accesses, small high speed memories
called caches are placed between the processor and the main memory.
Accessing the cache is typically much faster than accessing main memory.
Unfortunately, because caches are smaller than main memory they can
hold only a subset of its contents. Memory accesses first consult the cache
to see if it contains the desired data. If the data is found in the cache, the
main memory need not be consulted and the access is considered to be a
cache hit. If the data is not in the cache it is considered a miss, and the
data must be loaded from main memory. On a miss, the block containing
the accessed data is loaded into the cache in the hope that data in the
same block will be accessed again in the future. The hit ratio is a measure

LAMARCA AND LADNER70

of cache performance and is the total number of hits divided by the total
number of accesses.

The major design parameters of caches are:

v Capacity, which is the total number of bytes that the cache can hold.
v Block size, which is the number of bytes that are loaded from and

written to memory at a time.
v Associatï ity, which indicates the number of different locations in

the cache where a particular block can be loaded. In an N-way set-associa-
tï e cache, a particular block can be loaded in N different cache locations.
Direct-mapped caches have an associativity of 1, and can load a particular
block only in a single location. Fully associatï e caches are at the other
extreme and can load blocks anywhere in the cache.

v Replacement policy, which indicates the policy of which block to
remove from the cache when a new block is loaded. For the direct-mapped
cache the replacement policy is simply to remove the block currently
residing in the cache.

In most modern machines, more than one cache is placed between the
processor and the main memory. These hierarchies of caches are config-
ured with the smallest, fastest cache next to the processor and the largest,
slowest cache next to main memory. The largest miss penalty is typically
incurred with the cache closest to main memory and this cache is often
direct-mapped. Consequently, our design and analysis techniques will focus
on improving the performance of direct-mapped caches. We assume that
the cache parameters, block size, and capacity, are known to the program-
mer.

High cache hit ratios depend on a program’s stream of memory refer-
ences exhibiting locality. A program exhibits temporal locality if there is a
good chance that an accessed data item will be accessed again in the near
future. A program exhibits spatial locality if there is good chance that
subsequently accessed data items are located near each other in memory.
Most programs tend to exhibit both kinds of locality and typical hit ratios

w xare greater than 90% 41 . With a 90% hit ratio, cutting the number of
cache misses in half has the effect of raising the hit ratio to 95%. This may
not seem like a big improvement, but with miss penalties on the order of
100 cycles, normal programs will exhibit speedups approaching 2 : 1 in
execution time. Accordingly, our design techniques will attempt to improve
both the temporal and spatial locality of the sorting algorithms.

Cache misses are often categorized into compulsory, capacity, and con-
w xflict misses 29 . Compulsory misses are those that occur when a block is

first accessed and brought into the cache. Capacity misses are those caused
by the fact that more blocks are accessed than can fit all at one time in the

THE INFLUENCE OF CACHES 71

cache. Conflict misses are those that occur because two or more blocks
that map to the same location in the cache are accessed. In this paper we
address techniques to reduce the number of both capacity and conflict
misses for sorting algorithms.

4. DESIGN AND EVALUATION METHODOLOGY

Cache locality is a good thing. When spatial and temporal locality can be
improved at no cost it should always be done. In this paper, however, we
propose techniques for improving locality even when it results in an
increase in the total number of executed instructions. This represents a
significant departure from traditional algorithm design and optimization
methodology. We take this approach in order to show how large an impact
cache performance can have on overall performance. Interestingly, many
of the design techniques are not particularly new. Some have already been
used in external memory algorithms, optimizing compilers, and in parallel
algorithms. Similar techniques have also been used successfully in the

w xdevelopment of the cache-efficient Alphasort algorithm 43 .

4.1. Performance Measures

As mentioned earlier we focus on three measures of performance:
instruction count, cache misses, and overall performance in terms of
execution time. We now explain how each of these quantities were mea-
sured.

The dynamic instruction counts for our algorithms were measured using
w xATOM 48 , a toolkit developed by DEC for instrumenting program

executables on Alpha workstations. Using ATOM, we instrumented each
algorithm to increment a counter after executing every instruction. In this
way, we could run the instrumented algorithm and we could obtain an
exact count of the number of instructions executed in a run.

To measure cache performance, we wrote a small library to emulate the
behavior of a direct mapped cache. The emulated cache has a routine
which is passed an address and returns whether the access was a hit or a
miss. The emulated cache uses the stream of accesses to both maintain the
state of the cache as well as to keep long term statistics on cache
performance. The algorithms we wanted to measure were then instru-
mented with ATOM to make accesses to our emulated cache on every
read and write. In effect, we are measuring cache performance with a
trace-driven simulation. The only slight irregularity is that we are actually
consuming the trace as it is being generated. This, however, in no way
effects the accuracy of the measurement. Rather, this approach yields a

LAMARCA AND LADNER72

cache simulation which perfectly measures the performance of a virtually
indexed cache in the absence of context switches. We did not try to model
the effects of context switches on cache performance, as they have very
little impact when running with today’s large quanta on lightly loaded
machines. In all cases we configured the emulated cache’s block size and
capacity to be the same as the second level cache of the DEC Alphastation

Ž 21 .250 32 byte blocks with a 2,097,152 s 2 byte capacity .
The final performance metric we measured was execution time, and

these were captured using the hardware cycle timer on the DEC Alphasta-
tion 250. By simply reading the cycle counter before and after the execu-
tion of an uninstrumented algorithm and subtracting, an extremely accu-
rate measure of elapsed cycles is obtained. Dividing this count by cycles

Ž .per second around 280,000,000 yields the execution time in seconds.
Throughout this study, execution times represent the median of 15 trials.

4.2. Analysis

Finally, we provide analytic methods to predict cache performance in
terms of cache misses. In some cases the analysis is quite simple. For
example, traditional mergesort has a fairly oblivious pattern of access to
memory, thereby making its analysis quite straightforward. However, the
memory access patterns of the other algorithms, such as heapsort, are less
oblivious requiring more sophisticated techniques and approximations to
accomplish the analysis.

We choose a very simple model for analyzing cache performance. We
assume there is a large memory that is divided up into blocks and a smaller
cache that is divided up into C blocks. There are n keys and B is the
number of keys that fit in a cache block. The keys are stored in a
contiguous array of size nrB memory blocks.

In a direct-mapped cache each block of memory maps to exactly one
block in the cache. We assume the simple mapping where memory block x
is mapped to cache block x mod C. At any moment of time each block y
in the cache is associated with exactly one block of memory x such that
y s x mod C. In this case we say that block x of memory is in the cache.
An access to memory block x is a hit if x is in the cache and is a miss,
otherwise. As a consequence of a miss the accessed block x is brought into
the cache and the previous block residing at cache location x mod C is
evicted.

We will model an algorithm simply as a sequence of accesses to blocks
in memory. We assume that initially, none of the blocks to be accessed are
in the cache. We do not distinguish between reads and writes because we

w xassume a copy back architecture with a write buffer for the cache 29 . In
the copy back architecture writes to the cache are not immediately passed

THE INFLUENCE OF CACHES 73

to the memory. A write to cache block y s x mod C is written to memory
block x when a miss occurs, that is, when block z is accessed where y s z
mod C and z / x. The write buffer allows the writes to location x to
almost always propagate to memory asynchronously.

This simple model does not exactly model the accesses a program might
make in a real implementation. For example, the arrays declared in a
program might not be allocated to contiguous segments of memory. In
addition, the analysis ignores accesses to control variables and other small
data structures because almost all of these accesses are hits and they cause
few conflicts with accesses to sorting data. Finally, in some of our analyses
we make simplifying assumptions in order to make the analysis tractable.
Nonetheless, the trace-driven cache simulation results suggest that this
simple model of a direct mapped cache yields analyses that accurately
predict the number of cache misses incurred in the trace-driven cache
simulations done with ATOM.

As a simple case for our analysis let us consider the number of cache
misses incurred by a traversal of an array of keys like those employed in
iterative mergesort, quicksort, and radix sort. If there are B keys per cache
block, then in every B accesses to the array there is one cache miss.
Hence, the number of cache misses per key is 1rB.

4.3. Data

We evaluate our analyses on the DEC Alphastation 250 sorting eight
byte keys. In our execution trials C s 216, B s 4 and n ranged from 4000

Žto 4,096,000 keys 4,096,000 was the largest set size we could use before
.disk paging became a factor . We chose our data uniformly at random. We

believe that the choice of randomly chosen data yields a fair comparison
among the algorithms. None of the algorithms that we study has a clear
advantage or disadvantage over the others because of the choice of data
set. It might seem that quicksort has an advantage because the worst case
Ž 2 .V n time can be avoided by using random data. However, quicksort can

easily avoid worst case behavior by either choosing the pivot as a median
of 3 or by choosing the pivot randomly.

5. MERGESORT

Two sorted lists can be merged into a single sorted list by traversing the
two lists at the same time in sorted order, repeatedly adding the smaller
key to the single sorted list. By treating a set of unordered keys as a set of
sorted lists of length 1, the keys can be repeatedly merged together until a
single sorted set of keys remains. Algorithms which sort in this manner are

LAMARCA AND LADNER74

known as mergesort algorithms, and there are both recursive and iterative
w xvariants 31, 37 .

5.1. Base Mergesort Algorithm

w xFor a base algorithm, we chose an iterative mergesort 37 because it is
both easy to implement and is very amenable to traditional optimization
techniques. The algorithm uses two arrays, an input array and an auxiliary

u varray. The standard iterative mergesort makes log n passes over the2
input array, where the ith pass merges sorted subarrays of length 2 iy1 into
sorted subarrays of length 2 i on the auxiliary array. An important opti-
mization that we employ is to alternate the merging process from one
array to the other to avoid copying. If the number of passes is odd, then
there is one final copy back from the auxiliary array to the input array. We
make a number of other optimizations that reduce the number of instruc-
tions executed by the algorithm. These optimizations include: keeping the
subarrays to be merged in opposite order to avoid unnecessary checking
for end conditions, sorting subarrays of size 4 with a fast in-line sorting
method, and loop unrolling. Thus, the number of merge passes is
u Ž .v u Ž .vlog nr4 . If log nr4 is odd then an additional copy pass is needed to2 2
move the sorted array to the input array. Our base mergesort algorithm
has a very low instruction count, executing the fewest instructions of any of
our comparison based sorting algorithms.

5.2. Memory Optimizations for Mergesort

While the base mergesort executes few instructions, it has the potential
for terrible cache performance. The base mergesort uses each data item
only once per pass, and if the input array exceeds the capacity of the
cache, keys are ejected before they are used again. If the set of keys is of
size BCr2 or smaller, the entire sort can be performed in the cache and
only compulsory misses are incurred. When the set size is larger than
BCr2, however, temporal reuse drops off sharply and when the set size is
larger than the cache, no temporal reuse occurs at all. To improve this
inefficiency, we apply two memory optimizations to the base mergesort.
Applying the first of these optimizations yields tiled mergesort, and applying
both yields multimergesort.

Tiled mergesort employs an idea, called tiling, that is also used in some
w xoptimizing compilers 58 . Tiled mergesort has two phases. To improve

temporal locality in the first phase, subarrays of length BCr2 are sorted
using mergesort. The second phase returns to the base mergesort to
complete the sorting of the entire array. In order to avoid the final copy if
u Ž .vlog nr4 is odd, subarrays of size 2 are sorted in-line instead of size 4.2

THE INFLUENCE OF CACHES 75

Tiling the base mergesort drastically reduces the misses it incurs, and the
added loop overhead increases instruction counts very little.

While tiling improves the cache performance of the first phase, the
second phase still suffers from the same problem as the base mergesort.
Each pass through the source array in the second phase needs to fault in
all of the blocks, and no reuse is achieved across passes if the set size is
larger than the cache. To fix this inefficiency in the second phase, we

Žemploy a multiway merge similar to those used in external sorting Knuth
wdevotes a section of his book to techniques for multimerging 37, Section

x. u Ž Ž ..v5.4.1 . In multimergesort we replace the final log nr BCr2 merge2
passes of tiled mergesort with a single pass that merges all of the pieces
together at once. This single pass makes use of a memory-optimized heap

w xto hold the heads of the lists being multimerged 39 . In order to avoid
unnecessary cache misses when the heads of lists map to the same cache
block, we load an entire block of keys into the heap from any list that
requires an additional key in the heap. Thus, the heap has maximum size
kB where k is the number of lists to be merged. We do not need the more
sophisticated external mergesort algorithm employed by Aggarwal and

w xVitter 4 because kB is very small compared to the size of the cache. In
order to avoid any unnecessary copying we make sure that in the first
phase the result is found in the auxiliary array. To do this we in-line sort

u Ž .vsubarrays of size 2 instead of 4 if log BCr8 is odd. Thus, the final2
multimerge phase leaves the sorted array in the input array as desired. The
multimerge introduces several complications to the algorithm and signifi-
cantly increases the dynamic instruction count. However, the resulting
algorithm has excellent cache performance, incurring roughly a constant
number of cache misses per key in our executions.

5.3. Performance of Mergesort Algorithms

As mentioned earlier, the performance of the three mergesort algo-
rithms is measured by sorting sets of uniformly distributed 64 bit integers.
Figure 1 shows the number of instructions executed per key, the cache
missed incurred and the execution times for each of the mergesort vari-
ants. The instruction count graph shows that as expected, the base merge-
sort and the tiled mergesort execute almost the same number of instruc-
tions. The wobble in the instruction count curve for the base mergesort is
due to the final copy that may need to take place depending on whether

w xthe final merge wrote into the source array or the auxiliary array 37 .
When the set size is smaller than the cache, the multimergesort executes
the same number of instructions as the tiled mergesort. Beyond that size,
the multimerge is performed and this graph shows the increase it causes in

LAMARCA AND LADNER76

FIG. 1. Performance of mergesort on sets of 4000 to 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key, and the execution times per
key. Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2
megabytes with a 32 byte block size.

THE INFLUENCE OF CACHES 77

the instruction count. For 4,096,000 keys, the multimerge executes 70%
more instructions than the other mergesorts.

The most striking feature of the cache performance graph is the sudden
increase in cache misses for the base mergesort when the set size grows
larger than the cache. This graph shows the large impact that tiling the
base mergesort has on cache misses; for 4,096,000 keys, the tiled mergesort
incurs 66% fewer cache misses that the base mergesort. This graph also
shows that the multimergesort is a clear success from a cache miss
perspective, incurring slightly more than 1 miss per key regardless of the
input size.

The graph of execution times shows that up to the size of the second
level cache, all of these algorithms perform the same. Beyond that size, the
base mergesort performs the worst due to the large number of cache
misses it incurs. The tiled mergesort executes up to 55% faster than the
base mergesort, showing the significant impact the cache misses in the first
phase have on execution time. When the multiway merge is first per-
formed, the multimergesort performs worse than the tiled mergesort due
to the increase in instruction count. Due to lower cache misses, however,
the multimergesort scales better and performs as well as the tiled merge-
sort for the largest set sizes. Because mergesort has a relatively oblivious
pattern of memory accesses the speedups should be also achieved for
arbitrary data sets.

5.4. Cache Analysis of Mergesort Algorithms

It is fairly easy to approximate the number of cache misses incurred by
our mergesort variants as the memory reference patterns of these algo-
rithms are fairly oblivious. We begin with our base algorithm. For n F
BCr2 the number of misses per key is simply 2rB, the compulsory misses.
Because the other two algorithms employ the base algorithm for n F BCr2
then they all have the same number of misses per key in this range.

For n) BCr2, the number of misses per key in the iterative mergesort
algorithm is approximately,

2 n 1 2 n
log q q log mod 2 . 1Ž .2 2ž /B 4 B B 4

Ž .The first term of expression 1 comes from the capacity misses incurred
u vduring the log nr4 merge passes. In each pass, each key is moved from a2

source array to a destination array. Every Bth key visited in the source
array results in one cache miss and every Bth key written into the
destination array results in one cache miss. Thus, there are 2rB cache
misses per key per pass. The second term, 1rB, is the compulsory misses

LAMARCA AND LADNER78

FIG. 2. Cache misses incurred by mergesort, measured versus predicted.

per key incurred in the initial pass of sorting into groups of four. The final
term is the number of misses per key caused by the final copy, if there is
one.

For n) BCr2 the number of misses per key in tiled mergesort is
approximately,

2 2n 2
log q . 2Ž .2B BC B

Ž .The first term of expression 2 is the number of misses per key for the
u Ž .vfinal log nr BCr2 merge passes. The second term is the number of2

misses per key in sorting into BCr2 size pieces. The number of passes is
forced to be even so there are no additional cache misses caused by a copy.
Figure 2 shows how well the analysis of base mergesort and tiled mergesort
predict their actual performance.

Finally, for n) BCr2, the number of misses per key in multimergesort
is approximately,

4
. 3Ž .

B

For B s 4, this closely matches the approximately 1 miss per key shown in
cache misses graph of Fig. 1. The first phase of multimergesort is tiled

THE INFLUENCE OF CACHES 79

mergesort which incurs 2rB misses per key. In the algorithm we make
sure that the number of passes in the first phase is odd so that the second
phase multimerges the auxiliary array into the input array. If we ignore the
cache misses caused by accesses to the heap, the second phase multi-
merges the auxiliary array back into the input array causing another 2rB
misses per key. The multimerge employs a heap array containing no more

u vthan m s B 2nrBC keys. For practical purposes m is very small com-
pared to the size of the cache. Thus, accesses to the heap are for the most
part hits. Periodically but seldom the traversals of the input and auxiliary
arrays capture the part of the cache where the heap maps. Thus, periodi-
cally but seldom the accesses to the heap are misses instead of hits. Thus,
the number of cache misses per key in Fig. 1 for multimergesort is slightly
more than 1.

6. QUICKSORT

Quicksort is an in-place divide-and-conquer sorting algorithm consid-
ered by most to be the fastest comparison-based sorting algorithm when

w xthe set of keys fit in memory 30 . In quicksort, a key from the set is chosen
as the pï ot, and all other keys in the set are partitioned around this pivot.
This is usually accomplished by walking through an array of keys from the
outside in, swapping keys on the left that are greater than the pivot with
keys on the right that are less than the pivot. At the end of the pass, the
set of keys is partitioned around the pivot and the pivot is guaranteed to
be in its final position. The quicksort algorithm then recurses on the
region to the left of the pivot and the region to the right. The simple
recursive quicksort is a simple, elegant algorithm and can be expressed in
less than 20 lines of code.

6.1. Base Quicksort Algorithm

An excellent study of fast implementations of quicksort was conducted
by Sedgewick, and we use the optimized quicksort he develops as our base

w xalgorithm 45 . There are three main optimizations that he recommends.
First, we use a stack instead of using recursion. Second, we use the median
of 3 to select the pivot. Third, as Sedgewick suggests, our base algorithm
does not use quicksort to sort small subproblems. Instead, it leaves all the
subproblems below a certain threshold in size unsorted. Then in a final
pass the array is sorted using an optimized insertion sort. We employ all
the optimizations recommended by Sedgewick in our base quicksort.

LAMARCA AND LADNER80

6.2. Memory Optimizations for Quicksort

In practice, quicksort generally exhibits excellent cache performance.
Because the algorithm makes sequential passes through the source array,
all keys in a block are always used and spatial locality is excellent.
Quicksort’s divide-and-conquer structure also gives it excellent temporal
locality. If a subset to be sorted is small enough to fit in the cache,
quicksort incurs at most one cache miss per block before the subset is fully
sorted. Despite this, improvements can be made and we develop two
memory optimized versions of quicksort, memory-tuned quicksort and mul-
tiquicksort.

Our memory-tuned quicksort simply removes Sedgewick’s elegant inser-
tion sort at the end, and instead sorts small subarrays when they are first
encountered using an unoptimized insertion sort. When a small subarray is
encountered, it has just been part of a partitioning and this is an ideal time
to sort it, because all of its keys should be in the cache. Although saving
small subarrays until the end makes sense from an instruction count
perspective, it is exactly the wrong thing to do from a cache performance
perspective.

Multiquicksort employs a second memory optimization in similar spirit
to that used in multimergesort. Although quicksort incurs only one cache
miss per block when the set is cache-sized or smaller, larger sets incur a
substantial number of misses. To fix this inefficiency, a single multiparti-
tion pass can be used to divide the full set into a number of subsets which
are likely to be cache sized or smaller.

Multipartitioning is used in parallel sorting algorithms to divide a set
w xinto subsets for multiple processors 11, 33, 44 in order to quickly balance

the load. In addition, multipartitioning has been used for external sorting
w xto divide a set into subsets each of which fits in main memory 4 . We

choose the number of pivots so that the number of subsets larger than the
cache is small with sufficiently high probability. It is known that if k points
are placed randomly in a range of length 1, the chance of a resulting

Ž .k w xsubrange being of size x or greater is exactly 1 y x 20, Vol. 2, p. 22 . In
Ž .multiquicksort we partition the input array into 3nr BC pieces, requiring

Ž Ž ..3nr BC y 1 pivots. Hence after the multipartition, the chance that a
Ž .Ž3n rŽBC ..y1subset is larger than BC is 1 y BCrn . In the limit as n grows

large, the percentage of subsets that are larger than the cache is ey3, less
than 5%.

Multiquicksort requires a number of auxiliary data structures. Unlike
binary partitioning, k-way partitioning cannot be performed efficiently
in-place. Instead a temporary list is allocated for each of the k subsets. It

THE INFLUENCE OF CACHES 81

would be a very inefficient use of storage to allocate an array to each of
these lists because we do not know their sizes ahead of time. Instead we
use a linked list of blocks of keys for each list. Varying the number of keys
per block from 100 and 5000 has little effect on performance, so that
choosing blocks of 100 keys minimizes wasted storage without sacrificing
performance. The k randomly chosen pivots are stored in an array. As
each element of the source array is read, a binary search is performed to
determine to which list the element belongs. Once all the keys in the
source array are partitioned, each list is copied back to the source array
and sorted using the base quicksort algorithm.

6.3. Performance of Quicksort Algorithms

Figure 3 shows the performance of the three quicksort algorithms
sorting 64 bit uniformly distributed integers. The instruction count graph
shows that the base quicksort executes the fewest instructions with the
memory-tuned quicksort executing a constant number of additional in-
structions per key. This difference is due to the inefficiency of sorting the
small subsets individually rather than at the end as suggested by Sedgewick.
For large set sizes the multiquicksort performs the multipartition which
results in a significant increase in the number of instructions executed.

The cache performance graph shows that all of the quicksort algorithms
incur very few cache misses. The base quicksort incurs fewer than two
misses per key for 4,096,000 keys, lower than all of the other algorithms up
to this point with the exception of the multimergesort. The cache miss
curve for the memory-tuned quicksort shows that removing the instruction
count optimization in the base quicksort improves cache performance by
approximately 0.25 cache misses per key. The cache miss graph also shows
that the multiway partition produces a flat cache miss curve much the
same as the curve for the multimergesort. The maximum number of misses
incurred per key for the multiquicksort is slightly larger than one miss per
key, validating the conjecture that it is uncommon for the multipartition to
produce subsets larger than the size of the cache.

The graph of execution times shows the execution times of the three
quicksort algorithms. All three of these algorithms perform similarly on
our DEC Alphastation 250. This graph shows that sorting small subsets
early is a benefit, and the reduction in cache misses outweighs the increase
in instruction cost. The multipartition initially hurts the performance of
the multiquicksort due to the increase in instruction cost, but the low
number of cache misses makes it more competitive as the set size is
increased. This graph suggests that if more memory were available and

LAMARCA AND LADNER82

FIG. 3. Performance of quicksort on sets of 4000 to 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key, and the execution times per
key. Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2
megabytes with a 32 byte block size.

THE INFLUENCE OF CACHES 83

larger sets were sorted, the multiquicksort would outperform both the base
Ž .quicksort and the memory-tuned quicksort. If the pivot s in the quicksort

algorithms are chosen so that the subproblems are very unequally bal-
anced then any of the variants will have poor performance because both
the number of instructions and the number of cache misses will be
excessive. Otherwise, the performance of the quicksort variants should not
vary much on arbitrary data from their performances on uniformly chosen
data.

6.4. Cache Analysis of Quicksort Algorithms

Rather than using a complicated analysis that takes into account the
median of three pivot choosing strategy, we take a simpler approach of
assuming the pivot to be of any rank with equal probability. Because very
few pivots are chosen before a subproblem is smaller than the cache the
difference in cache performance between choosing the median of 3 or just
choosing 1 as the pivot is only slight.

We begin by analyzing memory-tuned quicksort which has slightly sim-
pler memory behavior than base quicksort. If n F BC then memory-tuned
quicksort incurs 1rB misses per key for the compulsory misses. Because
base quicksort makes an extra pass at the end to perform the insertion
sort, the number of cache misses per key incurred by base quicksort is 1rB
plus the number of cache misses per key incurred by memory-tuned
quicksort. The cache miss graph of Fig. 3 clearly shows the additional
1rB s 0.25 misses per key for base quicksort in our simulation.

For n) BC the expected number of misses per key in memory-tuned
quicksort is approximately,

2 n 5 3C
ln q q . 4Ž .ž /B BC 8 B 8n

We analyze the algorithm in two parts. In the first part we assume that
partitioning an array of size m costs mrB misses if m) BC and 0 misses
otherwise. In the second part we correct this by estimating undercounted

Ž .and overcounted cache misses. Let M n be the expected number of
misses incurred in quicksort under our assumption of the first part of the
analysis. We then have the recurrence,

ny1n 1
M n s q M i q M n y i y 1 , if n) BC ,Ž . Ž . Ž .Ž .ÝB n is0

LAMARCA AND LADNER84

Ž . w xand M n s 0 if n F BC. Using standard techniques 37 this recurrence
solves to

2 n q 1 n q 1 1Ž .
M n s ln q OŽ . ž / ž /B BC q 2 n

for n) BC.
The first correction we make is undercounting the misses that are

incurred when the subproblem first reaches size F BC. In the preceding
analysis we count this as zero misses, when in fact this subproblem may
have no part in the cache. To account for this we add in nrB more misses
because there are approximately n keys in all the subproblems that first
reach size F BC.

In the very first partitioning in quicksort, there are nrB cache misses,
but not necessarily for subsequent partitionings. At the end of partitioning
some of the array in the left subproblem is still in the cache. Hence there
are hits that we are counting as misses in the earlier analysis. Note that the
right subproblem does not have these hits because by the time the
algorithm reaches the right subproblem its data has been removed from
the cache.

We first analyze the expected number of subproblems of size) BC.
This is given by the recurrence,

ny11
N n s 1 q N i q N n y i y 1 , if n) BC ,Ž . Ž . Ž .Ž .Ýn is0

Ž .and N n s 0 if n F BC. This recurrence solves exactly to

n q 1
N n s y 1,Ž .

BC q 2

for n) BC. For each of these subproblems there is a left subproblem. On
average, BCr2 of the keys in this left subproblem are in the cache. Not all
the accesses to these keys are hits. While the right pointer in the partition-
ing enjoys the benefit of access to these keys, the left pointer eventually
accesses blocks that map to these blocks in the cache, thereby replacing
them. For purposes of this analysis, we assume that exactly Cr2 blocks of
the left subproblem are in the cache and that the right pointer starts on
the last block in the cache. Assume that the left pointer starts on a block
that maps to block i in the cache. If i - Cr2 then as the two pointers
move together the right pointer experiences cache hits while the left

THE INFLUENCE OF CACHES 85

pointer experiences one miss per every B accesses. This continues until the
two pointers eventually map to the same block in the cache. On average,

Ž .the number of these additional hits by the right pointer is C y i r2. If
i G Cr2 then again the right pointer experiences hits until it and the left

Ž .pointer maps to the same cache block. This yields another C y i r2 cache
hits. But there are more hits in this case. Because i G Cr2 then i y Cr2
cache blocks lie to the left of the initial position of the left pointer. With
high likelihood these cache blocks are eventually accessed by the right
pointer before the left pointer reaches blocks that map to them. Thus, we
have an additional i y Cr2 cache hits. If we assume that i is equally likely
to be any value between 1 and C, the expected number of additional cache
hits per left subproblem is

Cr2 C1 C y i C y i C 3C
q q i y s .Ý Ý ž /C 2 2 2 8is1 isCr2q1

Hence the expected number of hits not accounted for in the computation
Ž .of M n is approximately,

3C
N n .Ž .

8

Adding up all the pieces, for n) BC, the expected number of misses
per key is approximately,

n 3C
M n q y N n n,Ž . Ž .ž /B 8

Ž .which is approximated closely by expression 4 . Figure 4 shows how well
this approximation of cache misses predicts the actual performance of
memory-tuned quicksort. In addition, Figure 4 shows approximation of
1rB more misses per key for base quicksort is predicted well.

For multiquicksort the approximate analysis is quite simple. If n F BC
multiquicksort the number of misses per key is simply 1rB, the compulsory
misses. For n) BC then the algorithm partitions the input into k s

Ž .3nr BC pieces, the vast majority of which are smaller than the cache. For
the purposes of our analysis we assume they are all smaller than the cache.
In this multipartition phase we move the partitioned keys into k linked
lists one for each partition. Each node in a linked list has room for 100
keys. We approximate the number of misses per key in the first phase as
2rB, one miss per block in the input array and one miss per block in the

LAMARCA AND LADNER86

FIG. 4. Cache misses incurred by quicksort, measured versus predicted.

linked list. In the second phase each partition is returned to the input
array and sorted in place. This costs approximately another 2rB misses
per key. The cache miss overhead of maintaining the additional pivots is
quite small for practical values of n, B, and C. The total is approximately

4
5Ž .

B

misses per key which closely matches the misses reported in Fig. 3.

7. HEAPSORT

While heaps are used for a variety of purposes, they were first proposed
w xby Williams as part of the heapsort algorithm 56 . The heapsort algorithm

sorts by first building a heap containing all of the keys and then removing
them one at a time in sorted order. Using an array implementation of a
heap results in a straightforward in-place sorting algorithm. On a set of n

Ž .keys, Williams’ algorithm takes O n log n steps to build the heap and
Ž .O nlog n steps to remove the keys in sorted order. In 1965 Floyd

proposed an improved technique for building a heap with better average
Ž . w xcase performance and a worst case of O n steps 22 . Williams’ base

THE INFLUENCE OF CACHES 87

algorithm with Floyd’s improvement is still the most prevalent heapsort
variant in use.

7.1. Base Heapsort Algorithm

As a base heapsort algorithm, we follow the recommendations of algo-
rithm textbooks and we use an array implementation of a binary heap
constructed using Floyd’s method. In addition, we employ a standard
optimization of using a sentinel at the end of the heap. The sentinel at the
end of the heap ensures that every nonleaf node has exactly two children,
thereby reducing the number of instructions needed during each remove-
max operation. The literature contains a number of other optimizations
that reduce the number of comparisons performed for both adds and

w xremoves 12, 17, 27 , but in practice these increase the total number of
instructions executed and do not improve performance. For this reason, we
do not include them in our base heapsort.

7.2. Memory Optimizations for Heapsort

To this base heapsort algorithm, we now apply memory optimizations in
w xorder to further improve performance. In our paper 40 we showed that

several memory optimizations improved the cache performance and over-
all performance of the heap used in the hold model. In the hold model, the
number of elements in the heap is held constant as elements are alter-
nately removed from and added to the heap. By adding some additional
work between the removes and the adds, the hold model becomes a good
approximation of a discrete event simulation with a static number of active
events. The same optimizations also improve the performance of heapsort.
The first optimization is to replace the traditional binary heap with a

w xB-heap 34 where B is the number of keys that fit in a block. Generally, in
w xa d-heap as described by Johnson 34 , each nonleaf node has d children

instead of the usual two. The use of d-heaps as a priority queue in an
w xexternal memory environment has been studied 6, 38, 42 . If B is rela-

tively small, say 4 or 8, there is an added advantage that the number of
instructions executed for both add and remove-max is also reduced. The
second optimization is to align the heap array in memory so that all B
children lie on the same cache block. This optimization reduces what

w xLebeck and Wood refer to as alignment misses 41 . Also in our previous
w xpaper 40 we show that if a heap is larger than the size of the cache then

Williams’ original repeated-adds algorithm for building a heap incurs far
fewer cache misses and performs better than Floyd’s method. Thus, our
memory-optimized heapsort dynamically chooses between Williams’ re-

LAMARCA AND LADNER88

peated-adds method and Floyd’s method for building a heap. If the heap is
larger than the cache then Williams’ method is chosen, otherwise Floyd’s
method is chosen. We call the base algorithm with these memory optimiza-
tions applied memory-tuned heapsort.

7.3. Performance of Heapsort Algorithms

Because the DEC Alphastation 250 has a 32 byte block size and because
we are sorting eight byte keys, four keys fit in a block. As a consequence
we choose the 4-heap in our memory-tuned heapsort. Figure 5 shows the
performance of both the base heapsort and the memory-tuned heapsort.
The instruction count curves show that memory-tuned heapsort executes
fewer instructions than base heapsort.

The graph of cache performance shows that when the set to be sorted
fits in the cache, the minimum 8 bytesr32 bytes s 0.25 compulsory misses
are incurred per key for both algorithms. For larger sets the number of
cache misses incurred by memory-tuned heapsort is less than half the
misses incurred by base heapsort.

The execution time graph shows that the memory-tuned heapsort out-
performs the base heapsort for all set sizes. The memory-tuned heapsort
initially outperforms the base heapsort due to lower instruction counts.
When the set size reaches the cache size, the gap widens due to differ-
ences in the number of cache misses incurred. For 4,096,000 keys, the
memory-tuned heapsort sorts 81% faster than the base heapsort.

7.4. Cache Analysis of Heapsort

For n F BC heapsort takes 1rB misses per key because it is an in-place
algorithm. For n) BC we directly apply the analysis technique, collectï e

w xanalysis that we used in a previous paper 40 . Collective analysis is an
analytical framework for predicting the cache performance of algorithms
when the algorithm’s memory access behavior can be approximated using
independent stochastic processes. As part of the analysis, the cache is
divided into regions that are assumed to be accessed uniformly. By stating
the way in which each process accesses each region, a simple formula can
be used to predict cache performance. While collective analysis makes a
number of simplifications which limit the class of algorithms that can be
accurately analyzed, it serves well for algorithms whose behavior is under-
stood, but whose exact reference pattern varies.

Our heapsort algorithm goes through two phases: the build-heap phase
and the remove phase. For the build-heap phase, recall that William’s
method for building the heap simply puts each key at the bottom of the

THE INFLUENCE OF CACHES 89

FIG. 5. Performance of heapsort on sets of 4000 to 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key, and the execution times per
key. Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2
megabytes with a 32 byte block size.

LAMARCA AND LADNER90

w xheap and percolates it up to its proper place 56 . We pessimistically
assume that all of these adds percolate to the root and that only the
leaf-to-root path is in the cache. In this case, the probability that the next
leaf is not in the cache is 1rB, the chance that the parent of that leaf is
not in the cache is 1rB2, the chance that the grandparent of that leaf is
not in the cache is 1rB3, and so on. This gives the simple approximation of
the number of misses incurred per key during the build phase of

` iq1 Ž .Ý 1rB s 1r B y 1 . Thus, we estimate the expected number ofis0
Ž .misses for the build-heap phase at nr B y 1 . It is interesting to note that

this is within a small constant factor of the nrB compulsory misses that
must be incurred by any build-heap algorithm.

The second phase of heapsort is where we apply collective analysis. As
part of our collective analysis work, we analyzed the cache performance of

wd-heaps in the hold model. That analysis is summarized in our paper 40,
Ž .xEq. 6 where an interested reader can examine its derivation. We do not

repeat that derivation here, instead we simply apply that equation to
heapsort instead of the hold model. We divide the remove phase of

Ž .heapsort into nr BC subphases with each subphase removing BC keys.
Ž .For 0 F i - nr BC y 1 we model the removal of keys BCi q 1 to

Ž .BC i q 1 as BC steps on an array of size n y BCi in the hold model. In
essence, we are saying that the removal of BC keys from the B-heap is
approximated by BC repeated remove-maxs and adds in approximately the
same size B-heap. Admittedly, this approximation was one of convenience
because we already had a complete approximate analysis of the B-heap in
the hold model. Combining this remove phase estimate with our build-heap
predictions yields Fig. 6. This graph shows our cache predictions for

Ž .heapsort using both the traditional binary heap base heapsort and the
Ž .4-heap memory-tuned heapsort . The predictions match the simulation

results surprisingly well considering the simplifying assumptions made in
the analysis.

8. RADIX SORT

Radix sort is the most important noncomparison based sorting algorithm
w xused today. Knuth 37 traces the radix sort suitable for sorting in the main

w xmemory of a computer to a Master’s thesis of Seward, 1954 46 . Radix sort
uses the principle that a b bit key can be thought of as a number in base 2 r

u vof length brr . The number r is called a radix. Seward pointed out that
radix sort of n keys can be accomplished using an n key input array, an n
key auxiliary array, and a count array of size 2 r which can hold integers up

THE INFLUENCE OF CACHES 91

FIG. 6. Cache misses incurred by heapsort, measured versus predicted.

w xto size n. Knuth 37, p. 172 gives an excellent description of Seward’s
u valgorithm. Briefly summarizing, Seward’s method does brr iterations

each with two passes over the source array. The first pass accumulates
counts of the number of keys with each radix. The counts are used to
determine the offsets for buckets in the destination array. The second pass
moves the source array into the buckets in the destination array. Similar to
mergesort, the two n key arrays can alternate roles as source and destina-
tion array to avoid unnecessary copying. Seward’s method is still a standard
method found in radix sorting programs. Radix sort is often called a
‘‘linear time’’ sort because for keys of fixed length and for a fixed radix a
constant number of passes over the data is sufficient to accomplish the

w xsort, independent of the number of keys. Friend 23 suggested an improve-
ment to reduce the number of passes over the source array, by accumulat-

Ž .ing the counts for the i q 1 st iteration while concurrently moving keys to
the destination array for the ith iteration. This requires a second count
array of size 2 r. The first count array is used to keep track of the current
offsets, while the second count array is used to accumulate counts for the
next iteration. Friend’s modification reduces both the instruction count
and the cache misses of radix sort. Our radix sort is a highly optimized
version of Seward’s algorithm with Friend’s improvement. The final task is
to pick the radix which minimizes instruction count. This is done empiri-
cally because there is no universally best r which minimizes instruction
count.

LAMARCA AND LADNER92

There is no obvious memory optimization for radix sort that is similar to
those that we used for our comparison sorts. A simple memory optimiza-
tion is to choose the radix which minimizes cache misses. As it happens,
for our implementation of radix sort, a radix of 16 bits minimizes both
cache misses and instruction count on an Alphastation 250. In the analysis
subsection in the following text we take a closer look at the cache misses
incurred by radix sort.

8.1. Performance of Radix Sort

For this study the keys are 64 bit integers and the counts can be
restricted to 32 bit integers. With a 16 bit radix the two count arrays

1together are the size of the 2 Megabyte cache. Figure 7 shows the4

resulting performance. The instruction count graph shows radix sort’s
linear time behavior rather stunningly. The cache miss graph shows that
when the size of the input array reaches the cache capacity the number of
cache misses rapidly grows to a constant slightly more than three misses
per key. The execution time graph clearly shows the effect that cache
misses can have on overall performance. The execution time curve looks
much like the instruction count curve until the input array exceeds the
cache size at which time cycles per key increase according to the cache
miss curve.

8.2. Cache Analysis of Radix Sort

The approximate cache miss analysis of radix sort is more complicated
than our previous analyses for a number of reasons. First, there are a
multitude of parameters to consider in this analysis: n, the number of keys;
b, the number of bits per key; r, the radix; B, the number of keys per
block; A, the number of counts per block; C, the capacity of the cache in
blocks. Second, there are several cache effects to consider. We focus on
what we feel are the three most significant cache effects, the capacity
misses in traversals over the source and destination arrays, the conflict
misses between the traversal of the source array and accesses to the two
count arrays, and the conflict misses between the traversal of the source
array and accesses to the destination array.

We will focus on analyzing the number of cache misses for a fixed large
number of keys, while varying the radix. In the case of radix 16 this
analysis attempts to predict the flat part of the cache curve in Figure 7. We
assume that the size of the two count arrays is less than the cache capacity,
2 rq1 F AC. In addition, we assume that r F b. For n) BC, the expected
number of cache misses per key in radix sort is approximated by sum of

THE INFLUENCE OF CACHES 93

FIG. 7. Performance of radix sort on sets of 4000 to 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key, and the execution times per
key. Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2
megabytes with a 32 byte block size.

LAMARCA AND LADNER94

three terms M q M q M where M is the number of missestrav count dest trav
per key incurred in traversing the source and destination arrays, M iscount
the expected number of misses per key incurred in accesses to the count
arrays, and M is the expected number of misses per key in thedest
destination array caused by conflicts with the traversal of the source array.
We approximate M , M , and M by the following,trav count dest

1 b 2 b
M s 2 q 1 q mod 2 , 6Ž .trav ž / ž /B r B r

BCrq12 A b
M s 1 y 1 y min 1,count rž /ž /ž /ABC 2 r

BCŽb mod r .q12 A
q 1 y 1 y min 1, , 7Ž .b mod rž /ž /ž /ABC 2

BCrB y 1 2 1 bŽ .
M s 1 y 1 ydest r2 ž /ž /2 rB C

BCb mod rB y 1 2 1Ž .
q 1 y 1 y . 8Ž .2 b mod rž /ž /B C 2

Ž .We start with the derivation of M , Eq. 6 . To implement Friend’strav
improvement, there is an initial pass over the input array during which

u vcounts are accumulated in the first count array. Then there are brr
iterations, where a source array is moved to the destination array accord-
ing to the offsets established by one of the count arrays in the previous

u viteration. If brr is odd then the final sorted array must be copied back
u v Žu v .into the input array. In total, there are 2 brr q 1 q 2 brr mod 2 passes

over either a source or destination array. Ignoring any conflicts between
the source and destination array, the number of misses per key is 1rB
times the number of passes.

The quantity M accounts for the misses in random accesses to thecount
two count arrays caused by the traversal over the source array. There are a

u vtotal of brr q 1 traversals over the source array that conflict with
random accesses to at least one count array. If r divides b then the first
and last traversal conflict with random accesses to one count array of size
2 r and all the other traversals conflict with random accesses to two count
arrays of size 2 r. If r does not divide b then the first traversal conflicts
with random accesses to one count array of size 2 r, the last traversal
conflicts with random accesses to one count array of size 2 b mod r, the

THE INFLUENCE OF CACHES 95

second to last traversal conflicts with random access to one count array of
size 2 r and one count array of size 2 b mod r, and the remaining traversals, if
any, conflict with random accesses to two count arrays of size 2 r. Gener-
ally, let us consider a pass over a source array that is in conflict with a
count array of size 2 m. Consider a specific block x in one of the count
arrays. Every BC steps of the algorithm the traversal of the source array
ejects the block x from the cache. If the block is accessed in the count
array before another BC steps of the algorithm then a miss is incurred in
that access. The probability that block x is accessed in BC steps is

Ž Ž m..BC1 y 1 y min 1, Ar2 . The total expected number of misses is ap-
proximated by this quantity times the number of blocks in the array
Ž m . Ž Ž ..2 rA times the number of times x is visited in the traversal nr BC .
Thus, the expected number of misses per key incurred by a traversal over
the source array in the count array of size 2 m is approximately,

BCm2 A
1 y 1 y min 1, . 9Ž .mž /ž /ž /ABC 2

If r divides b then the effect is 2brr passes that conflict with a single
r Ž . Ž . Žcount array of size 2 . Expression 9 yields the first term of Eq. 7 and

.the second term is negligible . If r does not divide b then the effect is
? @ r2 brr passes that conflict with a count array of size 2 and two passes that

b mod r Ž .conflict with a count array of size 2 . This yields Eq. 7 .
The quantity M accounts for the conflict in the cache between thedest

traversal over the source array and accesses into the destination array.
Consider a specific block x in the destination array. In each iteration of
the algorithm this block is visited exactly B times. The first visit is a cache
miss that was accounted for in M previously. Each of the remainingtrav
B y 1 visits is a cache hit unless the traversal in the source array visits the
cache block of x before the next visit to x by the destination array.
Assume that the number of pointers into the destination array is 2 m. As an
approximation we assume that the B y 1 remaining accesses to block x
each occur independently with probability 1r2 m. Under this assumption,
the probability that the traversal will visit the cache block of x before the
next visit to x by the destination array is

BCm2 1
1 y 1 y . 10Ž .mž /ž /BC 2

To see this, suppose that in exactly i q 1 steps the traversal will visit the
cache block of x. The probability that x is accessed in the destination

LAMARCA AND LADNER96

array before the traversal captures the cache block of x is approximately
Ž m. i1 y 1r2 . With probability 1rBC the traversal is i q 1 steps from
capturing the cache block of x. Thus, the probability that the traversal
captures the cache block of x before the access to block x is

iBCy11 1
1 y ,Ý mž /BC 2is0

Ž . Ž .which is equal to expression 10 . To complete the derivation of Eq. 8
there are two cases to consider, depending on whether r divides b or not.
If r divides b then there are brr traversals of the source array that
conflict with a traversal of the destination array. There are 2 r pointers into
the destination array. The expected number of misses per key is then the

r Ž Ž r .BC . Ž .number of passes, brr, times 2 rBC 1 y 1 y 1r2 times B y 1 rB,
which totals to the first term of M . In this case the second term of Mdest dest

? @ ris negligible. If r does not divide b then there are brr traversals with 2
pointers and one traversal with 2 b mod r pointers. Using an analysis similar
to that in the preceding text yields the equation for M . We should notedest
that a more accurate formula for M , one that does not treat the B y 1dest
accesses to block x as independent, can be derived. However, the more
accurate formula is actually a complex recurrence that does not yield itself
to a simple closed form solution nor to a tractable numerical solution. Our
independence assumption seems to yield fairly accurate results.

An interesting question is how well our expression predicts cache
performance as a function of the radix for large inputs sets. Figure 8
compares this approximation with the actual number of cache misses
incurred per key, as a function of r, by radix sort for n s 4,096,000,
b s 64, A s 8, B s 4, and C s 216. Figure 8 only goes up to radix 18
because beyond radix 18 the two count arrays are together larger than the
cache. The theoretical prediction and the simulation agree that for these
parameters the optimal radix is 16.

9. DISCUSSION

In this section we compare the performance of the fastest variant of
each of the four sorting algorithms we examined in our study. In addition,
we examine the performance of our algorithms on four additional architec-
tures, in order to explore the robustness of our memory optimizations.

THE INFLUENCE OF CACHES 97

FIG. 8. Cache misses incurred by radix sort, measured versus predicted.

9.1. Performance Comparison

To compare performance across sorting algorithms, Figure 9 shows the
instruction count, cache misses, and cycles executed per key for the fastest
variants of heapsort, mergesort, quicksort, and radix sort.

The instruction count graph shows that the memory-tuned heapsort
executes the most instructions, while radix sort executes the least. The
cache miss graph shows that radix sort has the most cache misses, incur-
ring more than twice as many misses as memory-tuned quicksort. The
execution time graph strikingly shows the effect of cache performance on
overall performance. For the largest data set memory-tuned quicksort ran
24% faster than radix sort even though memory-tuned quicksort per-
formed more than three times as many instructions. This graph also shows
that the small differences in instruction count and cache misses between
the memory-tuned mergesort and memory-tuned quicksort offset to yield
two algorithms with very comparable execution times.

9.2. Robustness

In order to determine if our experimental results generalize beyond the
DEC Alphastation 250, we ran our programs on four other platforms: an
IBM Power PC, a Sparc 10, a DEC Alpha 3000r400 and a Pentium base
PC. Figure 10 shows the speedup that the memory-tuned heapsort achieves

LAMARCA AND LADNER98

FIG. 9. Instruction count, cache misses, and execution time per key for the best heapsort,
mergesort, quicksort, and radix sort on a DEC Alphastation 250. Simulated cache capacity is
2 megabytes, block size is 32 bytes.

THE INFLUENCE OF CACHES 99

FIG. 10. Speedup of memory-tuned heapsort over base heapsort on five architectures.

over the base heapsort for the Alphastation 250 as well as these four
additional machines. Despite the differences in architecture, all the plat-
forms show similar speedups. It is interesting to note that all the speed-up
curves show steady logarithmic growth.

Figure 11 shows the speedup of our tiled mergesort over the traditional
mergesort for the same five machines. We chose tiled mergesort because it
is a simple variant of the standard iterative mergesort that achieved good
speedup in our base study on the DEC Alphastation 250. We wondered if
similar speedups would be found on other machines. Unlike the heapsort
case, the speedups for mergesort differ substantially. One clear difference
is caused by the varying cache sizes on the machines. Machines with the

Ž .smallest caches Pentium, DEC 3000 had their speed-up curves rise
Ž .sooner than machines with larger caches Sparc, Alphastation . Another

cause for the variation is the page mapping policies of the different
operating systems. Throughout this study we have assumed that a block of
contiguous pages in the virtual address space map to a block of contiguous
pages in the cache. This is only guaranteed to be true when caches are

w xvirtually indexed rather than physically indexed 29 . Unfortunately, the
caches on all five of our test machines are physically indexed. Fortunately,
some operating systems, such as Digital Unix, have virtual to physical page
mapping polices that attempt to map pages so that blocks of memory

w xnearby in the virtual address space do not conflict in the cache 49 . Unlike

LAMARCA AND LADNER100

FIG. 11. Speedup of tiled mergesort over base mergesort on five architectures.

the heapsort algorithms, tiled mergesort relies heavily on the assumption
that a cache-sized block of virtual pages does not conflict in the cache. As
a result, the speedup of tiled mergesort relies heavily on the quality of the
operating system’s page mapping decisions. While the operating systems

Ž .for the Sparc and the Alphas Solaris and Digital Unix make cache-con-
scious decisions about page placement, the operating systems for the

Ž .Power PC and the Pentium AIX and Linux appear not to be as careful.
Another interesting feature of the speed-up curves is how they all more or
less flatten out eventually. This could be predicted because the two

Ž . Ž .expressions 1 and 2 for the number of cache misses of base mergesort
and tiled mergesort, respectively, differ by a constant.

10. CONCLUSIONS

We have explored the potential performance gains that cache-conscious
design and analysis offers to classic sorting algorithms. The main conclu-
sion of this work is that the effects of caching are extremely important and
need to be considered if good performance is a goal. Despite its very low
instruction count, radix sort is outperformed by both mergesort and

THE INFLUENCE OF CACHES 101

quicksort due to its relatively poor locality. Despite the fact that the
multimergesort executed 75% more instructions than the base mergesort,
it sorts up to 70% faster. Neither the multimergesort nor the multiquick-
sort are in-place or stable. Nevertheless, these two algorithms offer some-
thing that none of the others do. They both incur very few cache misses,
which renders their overall performance far less sensitive to cache miss
penalties than the others. As a result, these algorithms can be expected to
outperform the others as relative cache miss penalties continue to in-
crease.

In this paper, a number of memory optimizations are applied to algo-
rithms in order to improve their overall performance. What follows is a
summary of the design principles applied in this work:

v Improving cache performance even at the cost of an increased
instruction count can improve overall performance.

v Knowing and using architectural constants such as cache size and
block size can improve an algorithm’s memory system performance beyond
that of a generic algorithm.

v Spatial locality can be improved by adjusting an algorithm’s struc-
ture to fully utilize cache blocks.

v Temporal locality can be improved by padding and adjusting data
layout so that structures are aligned within cache blocks.

v Capacity misses can be reduced by processing large data sets in
cache-sized pieces.

v Conflict misses can be reduced by processing data in cache-block-
sized pieces.

This paper also shows that despite the complexities of caching, the cache
performance of algorithms can be reasonably approximated with a modest
amount of work. Figures 2, 4, 6, and 8 show that our approximate analysis
gives good information about cache performance.

ACKNOWLEDGMENT

We thank the anonymous referees for many helpful suggestions for improvements. We also
thank Jim Fix and Mike Salisbury for carefully reading several versions of this paper and for
making many useful suggestions for improvements.

LAMARCA AND LADNER102

REFERENCES

1. A. Agarwal, M. Horowitz, and J. Hennessy, An analytical cache model, ACM Trans.
Ž . Ž .Comput. Systems 7 2 1989 , 184]215.

2. A. Aggarwal, K. Chandra, and M. Snir, Hierarchical memory with block transfer, in ‘‘The
Twenty-Eighth Annual IEEE Symposium on Foundations of Computer Science,’’ 1987,
pp. 204]216.

3. A. Aggarwal, K. Chandra, and M. Snir, A model for hierarchical memory, in ‘‘The
Nineteenth Annual ACM Symposium on Theory of Computing,’’ 1987, pp. 305]314.

4. A. Aggarwal and J. Vitter, The inputroutput complexity of sorting and related problems,
Ž . Ž .Comm. ACM 31 9 1988 , 1116]1127.

5. B. Alpern, L. Carter, E. Feig, and T. Selker, The uniform memory hierarchy model of
Ž . Ž .computation, Algorithmica 12 2]3 1994 , 72]109.

6. L. Arge, The buffer tree: A new technique for optimal IrO-algorithms, in ‘‘Proceedings
of the WADS’95,’’ Lecture Notes in Computer Science, Vol. 955, pp. 334]345, Springer-
Verlag, BerlinrNew York, 1995.

7. L. Arge, P. Ferragina, R. Grossi, and J. Vitter, On sorting strings in external memory, in
‘‘Proceedings of the STOC ’97,’’ 1997, pp. 540]548.

8. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, Theory and practice of
IrO-efficient algorithms for multidimensional batched searching problems, in ‘‘Proceed-
ings of the SODA ’98,’’ 1998.

9. T. M. Austin, ‘‘Hardware and Software Mechanisms for Reducing Load Latency,’’ Ph.D.
dissertation, University of Wisconsin, Computer Sciences, 1996.

10. B. N. Bershad, D. Lee, T. Romer, and J. B. Chen, Avoiding conflict masses dynamically in
large direct-mapped caches, in ‘‘Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems,’’ 1994, pp. 158]170.

11. G. Blelloch, C. Plaxton, C. Leiserson, S. Smith, B. Maggs, and M. Zagha, A comparison of
sorting algorithms for the connection machine, in ‘‘Proceedings of the Third ACM
Symposium on Parallel Algorithms and Architecture,’’ July 1991, pp. 3]16.

12. S. Carlsson, An optimal algorithm for deleting the root of a heap, Inform. Process. Lett.
Ž . Ž .37 2 1991 , 117]120.

13. S. Carr, K. McKinley, and C. W. Tseng, Compiler optimizations for improving data
locality, in ‘‘Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems,’’ 1994, pp. 252]262.

14. Y.-J. Chiang, Experiments on the practical IrO efficiency of geometric algorithms:
Distribution sweep vs. plane sweep, in ‘‘Proceedings of the WADS ’95,’’ Lecture Notes in
Computer Science, Vol. 955, pp. 346]357, Springer-Verlag, BerlinrNew York, 1995.

15. M. Cierniak and Wei Li, Unifying data and control transformations for distributed
shared-memory machines, in ‘‘Proceedings of the 1995 ACM Symposium on Program-
ming Languages Design and Implementation,’’ Assoc. Comput. Mach., New York, 1995,
pp. 205]217.

Ž .16. D. Clark, Cache performance of the VAX-11r780, ACM Trans. Comput. Systems 1 1
Ž .1983 , 24]37.

Ž . Ž .17. J. De Graffe and W. Kosters, Expected heights in heaps, BIT 32 4 1992 , 570]579.
18. F. Dehne, W. Dittrich, and D. Hutchinson, Efficient external memory algorithms by

simulating coarse-grained parallel algorithms, in ‘‘Proceedings of the Ninth Annual ACM
Symposium on Parallel Algorithms and Architectures,’’ 1997, pp. 106]115.

THE INFLUENCE OF CACHES 103

19. A. Diwan, D. Tarditi, and E. Moss, Memory subsystem performance of programs using
copying garbage collection, in ‘‘Proceedings of the Twenty-First Annual ACM Symposium
on Principles of Programming Languages,’’ 1994, pp. 1]14.

20. W. Feller, ‘‘An Introduction to Probability Theory and Its Applications,’’ Wiley, New
York, 1971.

21. D. Fenwick, D. Foley, W. Gist, S. VanDoren, and D. Wissell, The AlphaServer 8000
Ž . Ž .series: High-end server platform development, Digital Tech. J. 7 1 1995 , 43]65.

Ž . Ž .22. R. W. Floyd, Treesort 3, Comm. ACM 7 12 1964 , 701.
Ž .23. E. H. Friend, J. ACM 3 1956 , 152.

24. S. Gal, Y. Hollander, and A. Itai, Optimal mapping in direct mapped cache environments,
Ž .Math. Programming 63 1994 , 371]387.

25. S. Gal and B. Klots, Optimal partitioning which maximizes the sum of the weighted
Ž .averages, Oper. Res. 43 1995 , 500]508.

26. D. Gannon, W. Jalby, and K. Gallivan, Strategies for cache and local memory manage-
Ž . Ž .ment by global program transformation, J. Parallel Distributed Comput. 5 5 Oct. 1988 ,

587]616.
Ž . Ž .27. G. Gonnet and J. Munro, Heaps on heaps, SIAM J. Comput. 15 4 1986 , 964]971.

28. D. Grunwald, B. Zorn, and R. Henderson, Improving the cache locality of memory
allocation, in ‘‘Proceedings of the 1993 ACM Symposium on Programming Languages
Design and Implementation,’’ Assoc. Comput. Mach., New York, 1993, pp. 177]186.

29. J. Hennesey and D. Patterson, ‘‘Computer Architecture A Quantitative Approach,’’ 2nd
ed., Morgan Kaufman, San Mateo, CA, 1996.

Ž .30. C. A. R. Hoare, Quicksort, Comput. J. 5 1962 , 10]15.
31. F. E. Holberton, in ‘‘Symposium on Automatic Programming,’’ 1952, pp. 34]39.
32. Y. Hollander and A. Itai, ‘‘On the Complexity of Direct Caching,’’ Technical Report

CS0794, Technion, Computer Science Department, Jan. 1994.
33. L. Hui and K. C. Sevcik, Parallel sorting by overpartitioning, in ‘‘Proceedings of the Sixth

ACM Symposium on Parallel Algorithms and Architecture,’’ June 1994, pp. 46]56.
34. D. B. Johnson, Priority queues with update and finding minimum spanning trees, Inform.

Ž .Process. Lett. 4 1975 .
35. K. Kennedy and K. McKinley, Optimizing for parallelism and data locality, in ‘‘Proceed-

ings of the 1992 International Conference on Supercomputing,’’ 1992, pp. 323]334.
36. R. Kessler and M. Hill, Page placement algorithms for large real-indexed caches, ACM

Ž . Ž .Trans. Comput. Systems 10 4 Nov. 1992 , 338]359.
37. D. E. Knuth, ‘‘The Art of Computer Programming, Vol. III.}Sorting and Searching,’’

Addison-Wesley, Reading, MA, 1973.
38. V. Kumar and E. Schwabe, Improved algorithms and data structures for solving graph

problems in external memory, in ‘‘Proceedings of the IEEE Symposium on Parallel and
Distributed Processing,’’ 1996, pp. 169]177.

39. A. LaMarca, ‘‘Caches and Algorithms,’’ Ph.D. dissertation, University of Washington,
May 1996.

40. A. LaMarca and R. E. Ladner, The influence of caches on the performance of heaps, J.
Ž . Ž .Experimental Algorithmics 1 4 1996 .

41. A. Lebeck and D. Wood, Cache profiling and the spec benchmarks: a case study,
Ž . Ž .Computer 27 10 Oct. 1994 , 15]26.

42. D. Naor, C. Martel, and N. Matloff, Performance of priority queue structures in a virtual
Ž . Ž .memory environment, Comput. J. 34 5 Oct. 1991 , 428]437.

43. C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet, Alphasort: a RISC machine
sort, in ‘‘1994 ACM SIGMOD International Conference on Management of Data,’’ May
1994, pp. 233]242.

LAMARCA AND LADNER104

44. R. Reischuk, Probabilistic parallel algorithms for sorting and selection, SIAM J. Comput.
Ž .14 1985 , 396]409.

Ž . Ž .45. R. Sedgewick, Implementing quicksort programs, Comm. ACM 21 10 Oct. 1978 ,
847]857.

46. H. H. Seward, Masters thesis, M.I.T. Digital Computer Laboratory Report R-232, 1954.
47. J. P. Singh, H. S. Stone, and D. F. Thiebaut, A model of workloads and its use in

Ž . Ž .miss-rate prediction for fully associative caches, IEEE Trans. Comput. 41 7 1992 ,
811]825.

48. A. Srivastava and A. Eustace, ATOM: A system for building customized program analysis
tools, in ‘‘Proceedings of the 1994 ACM Symposium on Programming Languages Design
and Implementation,’’ Assoc. Comput. Mach., New York, 1994, pp. 196]205.

49. G. Taylor, P. Davies, and M. Farmwald, The TBL slice: a low-cost high-speed address
translation mechanism, in ‘‘Proceedings of the Seventeenth Annual International Sympo-
sium on Computer Architecture,’’ 1990, 355]363.

50. O. Temam, C. Fricker, and W. Jalby, Cache interference phenomena, in ‘‘Proceedings of
the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems,’’ 1994, 261]271.

51. O. Temam, C. Fricker, and W. Jalby, Influence of cross-interferences on blocked loops: A
case study with matrix-vector multiply, ACM Trans. Programming Languages Systems
Ž . Ž .17 4 1995 , 561]575.

52. D. E. Vengroff and J. S. Vitter, IrO-efficient scientific computation using TPIE, in
‘‘Proceedings of the Goddard Conference on Mass Storage Systems and Technologies,’’
NASA Conference Publication 3340, Vol. II, 1996, pp. 553]570.

Ž . Ž .53. A. Verkamo, External quicksort, Performance E¨aluation 8 4 Aug. 1988 , 271]288.
54. A. Verkamo, Performance comparison of distributive and mergesort as external sorting

Ž . Ž .algorithms, J. Systems Software 10 3 Oct. 1989 , 187]200.
Ž . Ž .55. L. Wegner and J. Teuhola, The external heapsort, J. Systems Software 15 7 July 1989 ,

917]925.
Ž . Ž .56. J. W. Williams, Heapsort, Comm. ACM 7 6 1964 , 347]348.

57. M. Wolf and M. Lam, A data locality optimizing algorithm, in ‘‘Proceedings of the 1991
ACM Symposium on Programming Languages Design and Implementation,’’ Assoc.
Comput. Mach., New York, 1991, pp. 30]44.

58. M. Wolfe, More iteration space tiling, in ‘‘Proceedings of Supercomputing ’89,’’ 1989, pp.
655]664.

	1. INTRODUCTION
	2. RELATED WORK
	3. CACHES
	4. DESIGN AND EVALUATION METHODOLOGY
	5. MERGESORT
	FIG. 1.
	FIG. 2.

	6. QUICKSORT
	FIG. 3.
	FIG. 4.

	7. HEAPSORT
	FIG. 5.

	8. RADIX SORT
	FIG. 6.
	FIG. 7.

	9. DISCUSSION
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.

	10. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

