Randomized Jumplists—A Jump-and-Walk Dictionary Data

Structure

Hervé Bronnimann*

Abstract

This paper presents a data-structure providing the
usual dictionary operations, i.e. CONTAINS, INSERT,
DELETE. This data structure named Jumplist is a
linked list whose nodes are endowed with an ad-
ditional pointer, the so-called jump pointer. Algo-
rithms on jumplists are based on the jump-and-walk
strategy: whenever possible use to the jump pointer
to speed up the search, and walk along the list oth-
erwise.

The main features of jumplists are the following.
They perform within a constant factor of binary
search trees. Randomization makes their dynamic
maintenance very easy. Jumplists are a compact data
structure. (To the best of our knowledge, jumplists
are the only data structure providing rank-based op-
erations and iterators at a cost of 12 bytes per node.)
Jumplists are trivially built in linear time from sorted
linked lists.

In addition to the presentation of jumplists and the
probabilistic analysis of their expected performance,
the paper presents a detailed experimental study of
jumplists against Red-Black trees, randomized BST,
and splay trees.

1 Introduction

Dictionaries, Binary Search Trees (BST) and al-
ternatives. Dictionaries and related data structures
have a long standing history in theoretical computer
science. These data structures were originally de-
signed so as to organize pieces of information and
provide efficient storage and access functions. But
in addition to the standard CONTAINS, INSERT and
DELETE operations, several other functionalities were
soon felt necessary.

In order to accommodate divide-and-conquer al-
gorithms, split and merge operations are mandated.

*CIS, Polytechnic University, Six Metrotech, Brooklyn NY
11201, USA; hbr@poly.edu

TProjet Prisme, INRIA Sophia-Antipolis, F-06902 Sophia-
Antipolis, France; Frederic.Cazals@sophia.inria.fr

tProjet Algo, INRIA Rocquencourt, F- Le Chesnay, France;
Marianne.Durand@inria.fr

Frédéric Cazals’

Marianne Durand?

For priority queues, access to the minimum and/or
maximum must be supported. For applications in-
volving order statistics, rank-based operations must
be provided. Additionally, the data structure may be
requested to incorporate knowledge about the data
processed —e.g. random or sorted keys.

This variety of constraints lead to the development
of a large number of data structures. The very first
ones were randomly grown BST [10, 9] as well as de-
terministic balanced BST [19, 9, 3]. Since then, so-
lutions more geared to provably good amortized or
randomized performance were proposed. Splay trees
[17], treaps [2], skip lists [12] and more recently ran-
domized BST [11] fall into this category. An impor-
tant feature of the randomized data structures —in
particular randomized BST and skip lists— is their
ease of implementation.

This paper presents a one-dimensional data-
structure providing the usual dictionary operations,
i.e. CONTAINS, INSERT and DELETE. This data
structure named jumplist is an ordered list whose
nodes are endowed with an additional pointer, the
so-called jump pointer. Algorithms on jumplists are
based on the jump-and-walk strategy: whenever pos-
sible use to the jump pointer to speed-up the search,
and walk along the list otherwise.

Like skip lists, we use jump pointers to speed-up
searches. Similarly to skip lists too, the profile of the
data structure does not depend on the ordering of
the keys processed. Instead, a jumplist depends upon
random tosses independent from the keys processed.
Unlike skip lists, however, jumplists are a flat data
structure, in the sense that there is no hierarchy. This
means in particular that we use deterministic storage.
A jumplist for n user defined keys requires n+1 nodes
i.e. 2(n 4+ 1) pointers. (As we shall see later, the
extra node is a sentinel.) The data structures closest
to jumplists in addition to skip lists are randomized
BST. Similarly to skip lists or jumplists, the profile
of randomized BST is independent from the sequence
of keys processed.

The main features of jumplists are the following.

Their performance are within a constant factor of
optimal BST. Randomization makes their dynamic
maintenance very easy. Jumplists are a compact data
structure. (To the best of our knowledge, jumplists
are the only data structure providing rank-based op-
erations and iterators at a cost of 12 bytes per node.)
Jumplists are trivially built in linear time from sorted
linked lists. At last, it is expected that jumplists
will prove to be versatile and will adapt to geometric
problems. It should indeed be recalled that elaborat-
ing upon skip lists resulted in the fastest incremental
Delaunay triangulation algorithm known to date [4].

Overview. This paper is organized as follows. Sec-
tion 2 overviews some important properties of BST.
The jumplist data structure and its search algorithms
are described in Section 3. Section 4 analyzes the ex-
pected performance of the data structure. Dynamic
maintenance of jumplists is presented in Section 5.
Implementation details and experimental results are
presented in Section 6.

2 Searching a Binary Search Tree

This section overviews some important properties of
search algorithms for Binary Search Trees (BST).

2.1 BST and path lengths

The performance of BST (and especially random
BST) are usually analyzed in terms of Internal and
External Path Lengths —IPL and EPL, see [10, 15].
Although it is usually assumed that the cost of a
successful search (unsuccessful) is measured by IPL
(EPL), we point out here than in order for this to
hold, some care must be devoted to the implementa-
tion of the search functions.

To see why, first recall that the depth of a node in
a BST is the number of pointers traversed to reach
it from the root of the tree. Also recall that IPL
(EPL) is defined the sum of the depths of the in-
ternal (external) nodes. When searching for a key
k from a node x of the tree, three situations arise:
k < key[z],k = key[z], or k > key[z]. Since tests
are binary operators, choosing from these three situa-
tions requires two comparisons in the worst-case. For
example, one can choose from the left subtree, the
root or the right subtree by first checking whether
k < key[z], and then in case of failure whether
k = key[z]. Algorithms BST-SEARCH provided by
most textbooks [3, 6, 10, 14] proceed this way. But
the number of comparisons along a search might differ
from the path length which counts a single operation
per node.

The exact relationship between IPL and the actual

number of comparisons performed depend on the pro-
file of the tree. Consider for example a random BST
traversed by the search algorithm just outlined. It
is then easily checked that the expected cost of a
search (successful or not) is equivalent to 31nn, while
IPL/n and EPL/(n + 1) are equivalent to 2Inn.
(This validates the informal reasoning that the search
algorithm as implemented above makes 1.5 compar-
isons per node on the average.)

A subtle modification of BST-SEARCH, however,
reconciles the path lengths and the number of com-
parisons:

Observation 1 One can search a BST with at most
one comparison per node, plus one extra final com-
Parison.

Let’s say, for instance, that the algorithm tests
whether k& > key[z]: if this comparison fails, then
the search goes into the left subtree; if k& = key|z],
then every comparison in the left subtree will suc-
ceed, and the search will end up in the leaf which is
the predecessor of z. Hence it suffices to remember
the last node during the search for which the com-
parison fails, and to perform the equality test only
once at the end of the search. This lengthens the
search a bit, but not by much (the number of nodes
visited for a random key is increased by exactly one
on the average), and is made up for by the smaller
number of comparisons performed (one per node vis-
ited, plus one final equality test). It appears that it
is this version that is analyzed in [18, Thm. 4.13].

2.2 BST and rank-based algorithms

Data structures enabling the retrieval of the k-th or-
der value are called order-statistic trees. If the nodes
of a BST are endowed with an integer value coding
the size of the tree, a OS-SELECT can easily be im-
plemented [3].

For random BST [16], the cost of searching the k-
th element in a tree of size n is Hy + H,,_j; —with
Hy = Zle 1/i the k-th harmonic number. This cost
function is symmetric and equivalent to 2Inn when
k=0(n) and n — k = O(n).

3 Jumplist: data structure and searching
algorithms

3.1 The data structure

The jumplist is stored as a singly or doubly connected
list, with next[z] pointing forward and prev|[x] back-
ward. The reverse pointers are not needed, except
for backward traversal. If bidirectional traversal is
not supported, they can be omitted from the pre-
sentation. The list is circularly connected, and the

successor (resp. predecessor) of the header is the first
(resp. last) element of the list, or the header in either
case if the list is empty. See Figure 1. Following stan-
dard implementation technique, the list always has a
node header[L] which contains no value, called its
header, and which comes before all the other nodes.
This facilitates insertions in a singly-linked list.

To each node is associated a key, and we assume
that the list is sorted with respect to the keys. It is
convenient to treat the header as the first node of the
jumplist and give it a key of —oo, especially for ex-
pressing the invariants and in the proofs. In this way,
there is always a node with key less than k, for any k.
We will be careful to state our algorithms such that
the header key is never referenced. We may intro-
duce for each node x an interval [key[z], key[next|[x]]]
which corresponds to the keys that are not present
in the jumplist. Thus if n represents the number of
nodes, there are n — 1 keys. When all n — 1 keys are
distinct, there are n intervals defined by the keys and
by the header.

We denote by z < y the relation induced by the
order of the list (beginning at the first element and
ending at the header). If all nodes have distinct keys,
this relation is the same as that induced by the keys:
x < y iff key[z] < key[y], and x =< y iff key[z] <
key[y]. When some keys are identical, it is inefficient
to test whether 2 < y when key[z] = key[y] (one must
basically traverse the list).

Traversal of jumplists, unlike BST, is extremely
simple: simply follow the list pointers.

(o =to [t f3=f 7 [—f 5 B=f ¢ =H 5 =5 |

Figure 1: A possible jumplist data structure over 6
elements. The last node (in dashed lines) is identical
to the first one on this representation.

In addition to the list pointers, each node also has a
pointer jump[z] which points to a successor of in the
list. We refer to the pair (x, jump|z]) as an arch, and
to the arch starting at header[L] as the fundamental
arch. As mentioned earlier, the jump pointers have
to satisfy < jump[z] for every node z not equal to
the last node, as well as the non-crossing condition:
for any pair of nodes x, y, we cannot have x < y <
jump[z] < jump[y]. Thus if z < y, then either y <
jumply] < jumplz| (strictly nested), jumplz] < y <
jumply] (semi-disjoint), or y < jumply] = jump|x] if
jumply] = next[y] (exceptional pointer). In order to
close the loop, we also require that the jump pointer
of the last element points back to the header. This

last pointer is also called exceptional.

Remark. Exceptional pointers are necessary be-
cause otherwise we could not set the jump point-
ers of y = prev[jump|z]], for nodes z such that
next[z] < jumplz]. The value jumply] = next[y] is
the only one that does not break a non-strictly nested
condition. We could also get rid of exceptional point-
ers by putting jump|x] = NIL in that case. This has
the advantage of making the connection with binary
trees explicit (see next section), but also complicates
the algorithms which would have to guard against
null jump pointers. Since it will be clear during the
discussion of the search algorithm that these excep-
tional jump pointers are never followed anyway, it
only hurts to set them to NIL. Therefore, we choose
to set them to next[z] in the data structure, so that
the jump pointers are never NIL. This also has the
advantage that the search can be started from any-
where, not just from the header, without changing
the search algorithm, because in that case the excep-
tional jump pointers are followed automatically.

Remark. The list could be singly or doubly linked,
although the version we present here is singly linked
and is sufficient to express all of our algorithms.
Moreover, the predecessor can be searched efficiently
in a singly-linked jumplist, unlike singly-linked lists.

All in all, we therefore have the following invari-
ants:

I1 (LisT) L is a singly- or doubly-connected list,
with header[L] a special node whose key is
—o0, key[z] < key[next[z]] for every node z #
header|[L].

12 (Jump forward) & < jump[z]| for every node,
except the last node y for which jumply] =

next[y] = header[L].

13 (Non-crossing jumps) for any two nodes z < y,
either z < y < jump[y] < jumplz], or jump[z] <

y, or jump[y] = jumplz] = next[y].

Although we will not detail the algorithm here, it
is possible to verify the invariant in O(n) time by a
simple recursive traversal.

Let C be a jumplist node and let J and N be the
nodes pointed by its jump and next pointers. The
jumplist rooted at C will be denoted by the triple
(C,J,N) or just by C if there is no ambiguity. The
jumplists pointed by J and N are called the jump
and next sublists.

3.2 Randomized jumplists

Following the randomized BST of Martinez and
Roura [11], we define a randomized jumplist as a

jumplist in which the jump pointer of the header
takes any value in the list, and the jump and next
sublists recursively have the randomized property.

In order to construct randomized jumplists, we
need to augment the nodes with a size information.
Each jumplist node is endowed with two fields jsize
and nsize corresponding to the sizes of the two sub-
lists. Thus jsize[C] = size(J) and nsize[C] = size(N),
and for a jumplist rooted at C', we have

size(C) = 1 + jsize[C] + nsize[C].

Remark. The size of the jumplist therefore counts
the header. If only the number of keys stored in the
jumplist is desired, then subtract one.

3.3 Searching

As already pointed out, the basic search algorithm is
jump-and-walk: follow the jump pointers if you can,
otherwise continue with the linear search. Note that
if two arches (x,jump|z]) and (y,jumply]) crossed,
i.e. z < y < jump[z] < jumply], the second one would
never be followed, since to reach y the key would be
less than that of jump[z], and by transitivity less than
jumply]. Note also that in order to be useful, arches
should neither be too long (or they would never be
used) nor too short (or else they would not speed up
the search).

Several searching strategies are available depend-
ing on which pointers are tested first. Two search
algorithms are presented on Figure 2. Our search
algorithm is JUMPLIST-FIND-LAST-LESS-THAN-OR-
EQuAL, and it returns the node y after which a key &
should be inserted to preserve the list ordering. (Note
that if there are many keys equal to k, this will re-
turn the last such key; inserting after that key pre-
serves the list ordering as well, and the equal keys will
be stored in the the order of their insertions). With
this, testing if a key is present is easy: simply check
whether key[y] = k.

To evaluate both strategies, let us compute the av-
erage and worst-case costs of accessing —at random
with uniform probability— one of the n keys of a
jumplist. If the jump and next pointers are tested
in this order, accessing all the elements of the jump
and next sublists, as well as the header respectively
requires n—i—+1, 2(¢—2) and 3 comparisons (there is
an extra comparison for testing if key[y] = k), if the
jump pointer points to the ith element. This leads
to an average of (n +i)/n and a worst-case of 3. If
the next and jump pointers are tested in this order,
accessing any element always requires exactly 2 com-
parisons. We shall resort to the first solution which
has a better average case.

3.4 Finding predecessor

If we change the inequalities in the algorithm
JUMPLIST-FIND-LAST-LESS-THAN-OR-EQUAL to
strict inequalities, then we obtain an algorithm
JUMPLIST-FIND-LAST-LESS-THAN which can be
used to find the predecessor of a node z with key
k in the same time as a search. Thus, unlike
linked lists, jumplists allow to trade off storage (one
prev pointer) for predecessor access (constant vs.
logarithmic time). One optimization for predecessor-
finding is that, as soon as a node y such that jump|y]
is found, no more comparisons are needed: simply
follow the jump pointers until next[y] = .

3.5 Rank-based algorithms

Since we have information about the jsize and nsize of
each node, our jumplist behaves like an order-statistic
tree [3] and can be used to efficiently retrieve the
k-th element by its rank k, 1 < k < n. The al-
gorithm JUMPLIST-NTH-ELEMENT(C, k) returns the
k-th element contained in the sublist of C' (provided
1 <k <size(C)). This algorithm will be analyzed in
section 4.

JumpLIST-NTH-ELEMENT (k)

1: y < header[L], n «— 1 + nsize[y] + jsize[y]

2 9k mustbel <k<n

3: while k£ > 1 do

4: if k <1+ nsize[y] then

5; y « jumply], k — k — 1 — nsize[k]
6: else

7 y < nextly], k — k—1

8: return y

3.6 Correspondence with Binary Search trees

From a structural point of view and if one forgets the
labels of the nodes of a jumplist —i.e. the keys, there
is a straightforward bijection between a jumplist and
a binary tree: the jump and next sublists respectively
correspond to the left and right subtrees. The jump
sublist however is never empty, so that the number
of unlabeled jumplists of a given size is expected to
be less than the n-th Catalan number.

If one compares the key stored into a jumplist node
with those of the jump and next sublists, a jumplist
is organized as a heap-ordered binary tree and not a
BST the root points to two larger keys. Stated dif-
ferently, the keys are stored not in the binary search
tree order, but in preorder. But this bijection does
not help much for insertion and deletion algorithms
since there is no equivalent of rotation in jumplists.

At last a comment is in order regarding search-
ing performances. As observed in the previous sec-
tion, BST can be searched with at most one compar-

JUMPLIST- FIND-LAST-LESS- THAN- OR- EQUAL (k)
1: y « header[L]

2: < Current node, never more than k
3: while next[y] # header[L] do

4: if key[jump[y]] < k then

5: y < jumply]

6: else if key[next[y]] < k then

7 Y < next[y]

8: else

9: return y

10: return y

JUMPLIST-FIND-LAST-LESS-THAN-OR-EQUAL(k)
1: y « header[L]
2: < Current node, never more than k
3: while next[y] # header[L] do
4: if key[next[y]] < k then
5: if key[jumply]] < k then
6: Yy « jumply]
7 else
8: y < next[y]
9: else
10: return y
11: return y

Figure 2: Two implementation of the search algorithm (left) with 1+ £ comparisons per node on average. (right)

with exactly 2 comparisons per node.

ison per node. Unfortunately, the same trick cannot
work for jumplists: consider a jumplist storing the
keys [1..n] for which jumpli] = n 4+ 1 — i for each
i < (n+1)/2. For the keys in [1..(n 4+ 1)/2], no jump
pointer will be followed, so storing the last node dur-
ing the search for which a jump pointer failed will
not disambiguate between these keys, and the com-
parisons with the next pointers seem necessary in that
case.

We shall prove however that the number of compar-
isons along a jumplist search is equivalent to 31nn,
i.e. the same value than for BST if CONTAINS is im-
plemented without the refinement discussed.

4 Searching a jumplist: expected perfor-
mances

This section investigates the expected performance of
randomized jumplists.

4.1 Internal path length, expected number of

comparisons, jumplists profiles

We start the analysis of jumplists with the Internal
Path Length (IPL) statistic. Similarly to BST, the
IPL is defined as the sum of the depths of the internal
nodes of the structure, the depth of a node being the
number of pointers traversed from the header of the
list. The analysis uses the so-called level polynomial
and its associated bivariate generating function.

Definition 2 Let s; denote the expected number of
nodes at depth k from the root in a randomized
Jumplist of size n. The level polynomial is defined by
Sp(u) = 3150 sk uF. The associated bivariate gener-
ating function is defined by S(z,u) =, <o Sn(u)z".

The expected value of the IPL is given by SJ,(1), and
can easily be extracted from S(z,u). The bivariate

generating function can also be used to study the
distribution of the nodes’ depths.

Internal Path Length. Let v stand for the Fuler
constant and Fi denote the exponential integral func-
tion [1]. The following shows that the leading term
of IPL for jumplists matches that of randomized BST
[18, 10]:

Theorem 3 The expected internal path length of a
jJumplist of size n is asymptotically equivalent to

2nlnn 4+ n(=3 —2Fi(1,1) +e7 ') +2Inn

—2Ei(1,1) +e ' + 3+ o(1).

Proof. Consider a jumplist of size n. Since the jump
sublist has size k, 1 < k < n—1, with probability ﬁ,
the sequence Sy, (u) satisfy the recurrence equation

(Z Sk(u) + Snkl(u)> . (D
k=1

The generating function S(z, u) satisfies the differen-
tial equation (directly translated from the recurrence)
with respect to the variable z:

(2, u) — S(z,u) (i +uiz> - _ZZ)Z.

This differential equation is solved with the variation
of constant method and we get:

(1 + /Z(l - t)Q(“_l)e“tdt) .
’ 3)

To get the expected IPL, S is first differentiated with
respect to u then evaluated at v = 1. The coefficient
of 2" is obtained by using the dictionary [5]. O

Sp(u) =1+

u
n—1

(2)

—uz

ze

S(z,u) = e

Expected number of comparisons along a search.
A variation of the previous analysis provides
the expected number of comparisons required by
the algorithm JumpLIST-FIND-LAST-LESS-THAN-
ORr-EQuAL of Figure 2(left):

Theorem 4 The expected number of comparisons
JLC,, performed when searching all the keys of a
jJumplist of size n is asymptotically equivalent to

JLC, ~3nlnn+n(=3 - 3Ei(1,1) + 3¢ 1)

+3Inn — 3Ei(1,1) + 3¢ +9/2 + o(1).

Proof. Algorithm JuMPLIST-FIND-LAST-LESS-
THAN-OR-EQUAL checks sequentially the jump
pointer, the next pointer, and the root of the
jumplist. The costs of accessing the keys of the jump
and next sublists are therefore 1 and 2 comparisons,
while that of accessing the root is 3 comparisons.
The corresponding level polynomial is

("z: uSy(u) + qunkl(u)) .

k=1

1
1 :’3 _
Sp(u) =u +n—1

Computing S(z,u) and extracting the coefficients as
done for TPL completes the proof. [

It is not hard to see that algorithm JUMPLIST-
FIND-LAST-LESS-THAN of Section 3.4 has an ex-
pected cost of JLC, + n + o(n), since in addition
to the search, it follows all the jump pointers of the
next sublist to arrive at the predecessor. The num-
ber of comparisons is the same, however, with the
optimization mentioned at the end of Section 3.4.

Profile of a jumplist. Theorem 3 shows that the ex-
pected depth of a node is 2lnn. We can actually be
more precise and exhibit the corresponding distribu-
tion. This distribution is Gaussian, and its variance
matches that of BST [10]:

Theorem 5 The random wvariable X, defined by
P(X, = k) = Snk/Sn(1) is asymptotically Gaussian,
with average 2Inn and variance 2Inn.

Proof. The asymptotic expansion of the generating
function S in a neighborhood of u = 1 gives informa-
tion about the limit law of the profile of the jumplist.

As
Sh(u)’v €_U(A(u>4—1)n2u_1

I'(2u) +0(n™),

(4)
uniformly in a neighborhood of u = 1, with A\(u) =
fol(l — t)2(v—Deutdt using the quasi-power theo-
rem [8] completes the proof. O

4.2 Searching the k-th element

Consider algorithm JuMPLIST-NTH-ELEMENT from
section 3. Its cost is the number of pointers traversed
when searching for the k-th element of a jumplist of
size n.

Lemma 6 Let F,) denote the expected number of
pointers traversed in a randomized jumplist of size
n when searching the k-th element with algorithm
JuMPLIST-NTH-ELEMENT. The bivariate generating
function F(z,u) =3, F,, xukz" is given by

ze UF

F(z,u) = A==) /Oz(l —)" (1 — tu)e™

u? 1 u

— dt.
T—u \(1-1¢)2 (1—tu)?
Proof. Assume that we want to retrieve the k-th
element in a jumplist of size n whose fundamental
arch is [1,4]. Depending on the relative values of k
and 4, the k-th node has to be sought in the jump
or next sublists, whence the following recurrence for
Fy

Fn,l = 07
|k
For = 1+ — Z Fo it k—iv1
=2
1 n
t 3 Z Fi2 1.
i=k+1

Using the bivariate generating function F'(z,w), this
recurrence translates into the following differential

equation
2%u n 2u
1—2 1—2zu

22u? u2?

1—u)(1—=2)2 (1—u)(l—2zu)?

2F!(z,u) — F(z,u) (1 -

This equation is solved using the variation of the con-
stant method, which yields the result. [J

The classical techniques of singularity analysis can
not be applied here to extract the coefficient of z"
(and then of u*), because there are two singularities,
located in 1 and 1/u that cannot be separated as u is
meant to tend to 1. A simple example of this prob-
lem is the function F(z,u) = 1:5 ljzu‘ Its expansion

1*1’1—"“2”, but
u

k
an attempt to misuse singularity analysis would lead

is very simple, >~ >, . z"u® ="

to results like [2"]F(z,u) = u", if u is assumed > 1,
[2"F(z,u) =nif u =1 and [z2"]F(z,u) = 1/(1 — u)
otherwise. The results are not coherent in a neighbor-
hood of u = 1. Trying to extract first the coefficient
of u* and then of 2z would lead to other incorrect
results.

The method used to obtain the asymptotic of the
coefficients F;, i, is a technical study of the expansion
of the generating function. This study leads to the
theorem:

Theorem 7 Asymptotically, the cost of accessing
the k-th element in a list of size n, F, i is equiva-
lent to 2Inn if 3lnn < k <n —31nn.

The proof of this theorem is a systematic study of
the behavior of the coefficients of all the generating
functions factors of F'(z,u). Everything is based on
the fact that the Stirling coefficients of the first kind
[%] (as denoted in [7]) are very concentrated around
their mean value. More precisely the distribution of
the coefficients [Z]o <k<n is Gaussian when n tends
to infinity [16]. This property is not sufficient when
k is either too small or too large. The precise state-
ments and proof are fairly technical and omitted in
this abstract.

When &k < 31nn, the cost of the k-th element F), j,
is bounded by k. So we expect that the cost is at
first linear (as all the jump pointers are useless for
the first elements), and then tends to be constant at
2Ilnn. When k > n — 31nn, we expect that the cost
behaves better than if there was a stopover around
n—31nn, that would give 2Inn+21Inlnn as an upper
bound for the cost. In fact experiments seem to show
that the cost is slightly decreasing when k becomes
close to n.

This result should be compared against its party
for BST as recalled in section 2. The complexity is
essentially the same, yet better for k < 3lnn. !

5 Insertion and deletion algorithms

So far, we have shown that the performances of ran-
domized jumplists are as good as those of randomized
BST. We now show how to maintain the randomized
property upon insertions and deletions. This mainte-
nance will make the performances of jumplists identi-
cal for random keys or sorted keys —a property sim-
ilar to that of randomized Binary Search Trees [11].

Hn all fairness, it is possible to implement OS-SELECT in
BST with the same time complexity, but the procedure is then
markedly more complex: it involves maintaining a pointer to
the min element, and starting the search there, while always
going to parent[z] from the current node x if k > size[z]. The
same idea can be used for starting the search at a node of
known rank.

5.1 Creating a jumplist from a sorted linked list

Constructing a jumplist from a list is very simple:
we only have to choose the jump pointer of the
header, and recursively build the next and jump sub-
lists. We use a recursive function REBALANCEIN-
TERVAL(L, 2, n), which creates a randomized jumplist
for the n elements of L starting at z, next[z], ...,
z = next"~![z]. The element y = next™[x] acts as a
sentinel (the last element z jumps to it, but jump|y]
is not set). It is this element y which is returned.
Hence:
JumpLIsSTFROMLIST(L)

1: y < header[L]

2: REBALANCEINTERVAL(y, 1 + nsize[y] + jsize[y])

REBALANCEINTERVAL(x,n)
1: while n > 1 do

2: m < random number in [2, 7]
3: jump[z] < REBALANCEINTERVAL(next[z],m — 2)
4: < jump|x]

5 n«—n—m-+1
6: return x

Consider a jumplist of size n and assume the fun-
damental arch is [1, m] with m = [22 |41, The sizes
of the jump and next sublists are 1njymp = n—m+1 =
[n/2]| and nperr = m—2 = [n/2]—1. Such a jumplist
is called perfectly balanced since the sizes njymp and
Nnext differ by at most one. Algorithm REBALAN-
CEINTERVAL can easily be modified so as to return a
balanced jumplist by having m be set to [2F] +1
instead of being chosen at random.

5.2 Maintaining the randomness property upon
an insertion

Suppose as depicted on Figure 3 that we aim at in-
serting the key z into the jumplist (C,J, N), and let
X be the jumplist node to be allocated in order to
accommodate z. The general pattern of the insertion
algorithm is the search algorithm of Figure 2(left)
since we need to figure out the position of z. But on
the other hand we have to maintain the randomness

property.

Figure 3: Insertion: notation.

We now describe algorithm JUMPLISTINSERT. Due
to the lack of space, we omit the pseudo-code. Refer
to Figure 3 for the notation.

When inserted into the list rooted at ', the node
X containing z becomes a candidate as the endpoint
of the fundamental arch stating at C'. Assume that
jsize[C] 4 nsize[C] = n — 1. Since z is inserted into
(C,J,N), X has to be made the fundamental arch
of C' U X with probability 1/n. (Notice that if C
is the end of the list, this probability is one so that
we create a length one arch between the last item
of the list and X, and exit.) With probability 1 —
1/n the fundamental arch of C' does not change. If
x is more than the keys of J or N, we recursively
insert into the jump or next sublist. If not, z has
to be inserted right after C', that is X becomes the
successor of C' and the randomness property must be
restored for the jumplist rooted at X. To summarize,
the recursive algorithm JUMPLISTINSERT stops when
one of the following events occur:

e (Case 1: z is inserted in the list rooted at C, and
[C, X] becomes the new fundamental arch. The
randomness property of the list rooted at C', that
is C' U X, has to be restored.

e Case 2: x is inserted right after C. The ran-
domness property of the list rooted at X that is
X U N has to be restored.

Following this discussion, we have the following

Proposition 8 Algorithm JUMPLISTINSERT main-
tains the randomness property of the jumplist under
insertion of any key.

We proceed with the complexity of algorithm
JUMPLISTINSERT. The reorganization to be per-
formed in cases 1 and 2 consists of maintaining the
randomness property of a jumplist whose root and
size are known. This can be done using the algorithm
JUMPLISTFROMLIST of section 5.1. Alas, algorithm
JuMPLISTFROMLIST has linear complexity and the
following observation shows that applying JUMPLIST-
FroMmLisT to cases 1 and 2 is not optimal.

Observation 9 Let C be a randomized jumplist of
size m and suppose that x has to be inserted right
after C. The expected number N, of keys involved in
the restoration of the randomness property of C' U X
satisfies Ny, ~ n/2.

Proof. With probability 1/n, Case 1 applies and we
rebuild the whole list. With probability 1—1/n, Case
2 applies and insertion is performed after C. Whence
an expected number of keys

1 1 -
== 1—= i — 2
N, nn—i—(n)an(Z),

which solves to N,

5.3

As just observed, inserting a key after the header of
the list may require restoring the randomness prop-
erty over a linear number of terms. We show that
this can be done at a logarithmic cost. The intuition
is that instead of computing from scratch a new ran-
domized jumplist on XUN, and since by induction N
is a randomized jumplist, one can reuse the arches of
N in order to maintain randomness. More precisely,
we shall make X usurp N and proceed recursively.

Algorithm USURPARCHES runs as follows. Due to
the lack of space, we also omit the pseudo-code.
As depicted on Figure 4(a,b), assume that x is in-
serted after C' and that prior to this insertion C
has a successor N which is the root of the jumplist
(N,O,R). Let n be the size of N. With probabil-
ity 1/n we just create the length one arch [X, N]
Figure 4(c). If not and with probability 1 — 1/n, the
arch of X has to be chosen as any of the nodes in the
jumplist rooted at N. But since by induction hypoth-
esis (IV, O, R) is a randomized jumplist, X can usurp
the arch of N —Figure 4(d). The next sublist of X
then has to be re-organized. We do so recursively by
having N usurp its successor.

Following the previous discussion we have the fol-
lowing

Insertion algorithm

Proposition 10 Algorithm USURPARCHES main-
tains the randomness property of the jumplist.

Analyzing the complexity of algorithm
USURPARCHES requires counting the number of
jump pointers updates along the process. We have:

Proposition 11 Let X be a jumplist node whose
next sublist (N, O, R) has size n. The expected num-
ber S,, of jump pointers updates during the recursive
usurping strategy starting at X satisfies S, ~ Inn.

Proof. With probability 1/n we just create the
length one arch [X, N], whence an expected cost of
1/n. With probability 1 — 1/n, X usurps N —one
jump pointer update, and the recursive algorithm
proceeds. The expected cost of a recursive call has
to be computed wrt the position of the fundamental
arch, whence the recurrence

1 1 J—
S, = —1+(1-=2)— 145,
n +(n)n—lg(—i_ 2)
1 1 «
= 1+(1-=) — i o,
+< n)n—l;S 2

The equivalent follows from the application of the
continuous master theorem of [13]. O

We are now ready to prove the main result of this
section:

Theorem 12 Algorithm JUMPLISTINSERT using al-
gorithm JUMPLISTFROMLIST for Case 1 and algo-
rithm USURPARCHES for Case 2 returns a random-
ized jumplist. Moreover, its complexity is O(logn).

Proof.
and 10.

For the complexity, let C}, denote the complexity of
JUMPLISTINSERT and assume for the induction that
Cy, is O(logn). Upon insertion of X and following the
instructions of algorithm JUMPLISTINSERT, we have
to examine the following situations:

—Case 1: jumplist rebuilt. Since algorithm
JUMPLISTFROMLIST is used to restore the random-
ness property, the cost incurred is O(n).

—Recursive insertion: z is inserted recursively into
the jump or next sublist. Since since we do not make
any assumption on z, we actually do not know which
situation arises. But by induction hypothesis and
letting ¢ be the position of the fundamental arch, the
corresponding costs are log(n — i + 1) or log(i — 2).
—Case 2: z inserted after C. If i denotes the po-
sition of the fundamental arch and since algorithm
USURPARCHES is used, the corresponding cost is
O(log(i — 1)).

Let 1,c5 (1zen) be the boolean variable whose
value is one if z is inserted into the jump (next)
sublist, and zero otherwise. Define 1,-¢c similarly.
Weighing the three events just listed the 1/n and
1 — 1/n probabilities yields the following recurrence

Lo+ (1-1) -

n/n—1

The correctness stems from propositions 8

C, =

> [lees O(log(n —i + 1)
=2
+1zen O(log(i —2))

+1sec Ollog(i — 1))].

An upper bound on the operand of the sum is
max(O(log(n — i + 1),0(log(i — 1)), from which the
induction is worked out easily. [

5.4 Deletion algorithm

We show in this section how to remove keys from
jumplists. Assume key x has to be removed from a
jumplist C. To begin with, the node containing = has
to be located. To do so, we search for z as usual fol-
lowing the pattern of the search algorithm of Figure
2(left). To be more precise, we actually seek the node

¢ N O R J CXN O R J
0 i mns w e
c XN O R J c XN O R J

Figure 4: Usurping arches

C such that key[jump[C]] = z or key[next[C]] = z.
The actual removal of the node X containing x dis-
tinguishes between the following two situations.

Removing X with key[jump[C]] = z. First, X is
removed from the linked list. If we assume a singly
connected linked list is used, the removal of X re-
quires the knowledge of its predecessor, but this
can be obtained by using the algorithm JUMPLIST-
PREDECESSOR(X) of section 3. Second, the system
of arches starting at X needs to be recomputed. To
do so, we again use the function JUMPLISTFROMLIST.

Removing X with key[next[C]] = . Here too, we
first remove X and second maintain the randomness
property of the next sublist of C'. The former opera-
tion is trivial. For the second one, first observe that
if we have a length one arch, i.e. jump[X] = next[X],
the situation is trivial too. Consider the situation
where this is not the case. To create a random arch
rooted at IV, we recursively unwind the usurping op-
eration described for the insertion algorithm. Since
the operations to be performed are exactly the oppo-
site of those described for the usurping algorithm, we
omit them in this version. The expected complexity
is also logarithmic.

6 Experimental results

There are many variants and choices to make when
implementing tree-like data structures. Sedgewick’s
book [14] includes a nice discussion of the possi-
ble search structures, and concludes by saying that
red/black trees are the best suited for a general-
purpose library implementation. Indeed, red/black
trees are the structure of choice in many implemen-
tations of the C+4 STL set and map structures.
We based our implementation of red/black trees on
the publically available SGI STL implementation [],
which is based on [3] and is highly optimized. In ad-
dition, the search procedure uses the observation 1
from section 2. For augmented red/black treees and
splay trees, we simply maintain the subtree sizes. For
randomized BST and compact jumplists, we use a
trick or Roura [11] and store only one of the two sub-
structure sizes (and a bit to remember which): this
avoids the problem of incrementing sizes when the

key is alreay present and no insertion will occur —
we simply flip the bit if necessary to store the size of
the substructure that does not contain the key to be
inserted.

We perform some experiments to verify the claims
about the performance of the three kinds of data
structures (jumplists, randomized and red/black
BST). The complete experimental setup is described
in the appendix. Moreover, the code will be avail-
able online from the first author’s web page. In order
to make sure that the random generator works cor-
rectly for randomized trees and jumplists, we gather
the number of links followed by the search procedure,
as well as the number of comparisons performed. We
observe indeed that the values we get are in accor-
dance to the expected values derived in Section 4.
The complete results and data structures are given
in the appendix. A more thorough comparison of
dictionary data structures including the results here
will be submitted to ALENEX. Here we summarize
only the main points which can be derived from those
results.

First, the node size ranges between 3 and 5 pointers
(assuming an integral size takes the same storage as a
pointer), not including the storage needed to store the
information. The only data structure to provide 3-
pointer nodes and rank-based operations is the singly-
linked jumplist in which only one of the sublist sizes is
stored (and a bit compacted in the parent pointer). If
the value is a pointer and the key is dereferenced from
it, this means a savings of 20% in storage compared
to randomized binary trees or augmented red/black
trees, and 33% compared to treaps or similar data
structures.

It turns out that maintaining only one of the size
fields in jumplists saves one pointer of storage (same
applies to randomized BST) and also improves per-
formance (probably because the memory cache can be
better utilized). Likewise, going from doubly-linked
to singly-linked jumplists increases performance by a
little bit (less than 5%), while decrease storage by
25%.

We measure the impact of compacting the bit
color into the parent pointer for red/black trees. We
used the parent pointer because it is only needed for
traversal and not in the search algorithm, hence is the
best choice for compaction. It turns out that the im-
pact on all the operations is less than 3% in the run-
ning time. Given that the savings is a whole 4 bytes
(due to alignment issues in modern architectures), it
is surprising that this technique is not applied more
often.

We also measure the impact of maintaining the

10

subtree sizes, by augmenting the red/black tree. We
augment the red/black tree using the procedure of [3].
In particular, since we maintain the whole subtree
size, we need to do two passes for insertion, one to
check if the element is not already present, and the
other for the insertion proper. We note that inser-
tions are slowed down by about 25%. These findings
are confirmed by splay trees as well. For fairness, it is
the augmented variants of red/black and splay trees
that ought to be compared to the randomized dic-
tionaries. The timings mentioned below follow that
suggestion.

Our next observation is that traversal costs are neg-
ligible in all three structures, compared to insertions
and deletions. Nevertheless, in an application where
traversal accounts for a substantial part of the run-
ning time, jumplists should have a clear advantage
over BST (of any kind). This does not appear to be
the case, however. For random order, the nodes are
allocated in a completely different order as they are
traversed. Thus the bad performance of the memory
cache completely spoils the advantage of jumplists.
For increasing and decreasing insertion orders, how-
ever, we still don’t see a difference, and this time we
cannot yet explain why.

For random keys, the insertion and deletion per-
formances of jumplists are about three times slower
than those of red/black trees, and 50% slower than
randomized BST. The query performances are com-
parable, though, with a difference of only 30% over
red/black trees and randomized search trees. Splay
lists are comparable to randomized trees both in stor-
age and in insertion time, but since searching also
splays the tree, searching on all the keys is about
twice slower. Thus, splay trees present an improve-
ment over randomized search trees only if the access
pattern presents a strong coherence.

For sorted keys, the picture is different. First, lo-
cality of reference means that the insertion is much
faster (up to 25%). We also observe that the insertion
and deletion costs for red /black trees behave similarly
(up to 45%). However, the search time of jumplists
benefits greatly from the locality of reference: it be-
comes less than half of the search time of red/black
trees, which was already improved by 50%. Excep-
tionally, splay trees are extremely fast for insertion
(always at the root) when keys are sorted, but the
search then performs quite a bit of splaying, and ends
up being as slow as the insertion would otherwise be.

For reverse sorted keys, however, there is no
marked improvement over the random order in ei-
ther the red/black tree (a side effect of a bias in the
insertion?) or the jumplists (as expected). At the

moment, though, we don’t fully understand the real
impact of caching and other systems phenomena for
reverse keys. Further profiling seems appropriate.

We verify experimentally that the randomized
search tree is relatively immune to the insertion or-
der, up to a small improvement of about 5% in the
insertion time when keys are sorted or reverse sorted.

Profiling jumplists shows that insertion and dele-
tions are expensive due to calls to the JUMPLIST-
FrROMLIST function. An appealing improvement of
JUuMPLISTFROMLIST would be to use a recycling or
usurping strategy instead of rebuilding the random-
ized jumplist from scratch.

7 Conclusion

In this paper, we have presented a data structure
called jumplist, which is inspired by skip lists and
by randomized binary search trees, and which shares
many of their properties. Jumplists are in bijection
to binary trees with keys stored in preorder, but there
are minor differences as explained in this paper.

There are a few advantages to randomized
jumplists over randomized BST and treaps, the main
one being the low storage used (if only forward traver-
sal is needed; note that BST require parent pointers
in order to provide the successor operation), and that
the traversal is very simple (simply follow the un-
derlying list, in O(1) worst-case time per element).
Moreover, it is conceivable to avoid storing the sublist
sizes, but the insertion is more involved and does not
have the randomness property. It is an exciting open
challenge to design deterministic jumplists. Deter-
minism would likely make the data structure faster,
and can probably be achieved by weight balancing
(since the sublist sizes are known). Yet we have not
carried it to its conclusion. Another exciting chal-
lenge is to identify a splay operation on jumplists (in
the manner of splay trees) in order to provide good
amortized performance.

The main advantage to jumplists over skip lists is
the size requirement: the jumplist stores exactly one
jump pointer per node, whereas this number is not
constant for skip lists (although the total expected
storage remains linear).

Thus, jumplists provide an alternative to the classi-
cal dictionary data structures, and like skip lists, they
have the potential to extend for higher-dimensional
search structures in computational geometry [4].
Anecdotically, this is the reason we started to inves-
tigate jumplists. We plan to continue our research in
this direction.

Acknowledgments. Philippe Flajolet, Marc Glisse

11

and Bruno Salvy are acknowledged for discussions on
the topic.

References

[1] M. Abramowitz and 1. A. Stegun. Handbook of Math-
ematical Functions. Dover, 1973. A reprint of the
tenth National Bureau of Standards edition, 1964.

C. Aragon and R. Seidel. Randomized search trees.
In Proc. 80th Annu. IEEE Sympos. Found. Comput.
Sci., pages 540—-545, 1989.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

Olivier Devillers. Improved incremental randomized
Delaunay triangulation. In Proc. 14th Annu. ACM
Sympos. Comput. Geom., pages 106-115, 1998.

P. Flajolet and A. M. Odlyzko. Singularity analy-
sis of generating functions. SIAM J. Disc. Math.,
3(2):216-240, 1990.

G. H. Gonnet and R. Baeza-Yates. Handbook of Algo-
rithms and Data Structures. Addison-Wesley, 1991.

R.L. Graham, D.E. Knuth, and O. Patashnik. Con-
crete Mathematics: A Foundation for Computer Sci-
ence. Addison Wesley, second edition, 1994.

2]

H.-K. Hwang. Théorémes limites pour les structures
combinatoires et les fonctions arithmetiques. PhD
thesis, Ecole Polytechnique, Palaiseau, France, De-
cember 1994.

Donald E. Knuth. The Art of Computer Program-
ming, Vol 3., @nd Edition. Addison-Wesley, 1998.

H.M. Mahmoud. FEwvolution of random search trees.
Wiley, 1992.

C. Martinez and S. Roura. Randomized binary
search trees. J. Assoc. Comput. Mach., 45(2), 1998.

W. Pugh. Skip lists: a probabilistic alternative
to balanced trees. Commun. ACM, 33(6):668-676,
1990.

S. Roura. An improved master theorem for divide-
and-conquer recurrences. J. Assoc. Comput. Mach.,
48(2), 2001.

R. Sedgewick. Algorithms in C++, Parts 1-4:
Fundamentals, Data Structure, Sorting, Searching.
Addison-Wesley, third edition, 1998.

R. Sedgewick and P. Flajolet. An Introduction to the
Analysis of algorithms. Addison-Wesley, 1996.

R. Sedgewick and P. Flajolet.
combinatorics—symbolic combinatorics.
pear, 2002.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652—686, 1985.

J.S. Vitter and P. Flajolet. Average-case analy-
sis of algorithms and data structures. In J. van
Leeuwen, editor, Algorithms and Complexity, vol-
ume A of Handbook of Theoretical Computer Science,
pages 432-524. Elsevier, Amsterdam, 1990.

N. Wirth. Algorithms + Data Structures = Pro-
grams. Prentice-Hall, 1975.

(10]
(11]

(12]

(13]

(14]

(15]

[16] Analytic

To ap-
(17]

(18]

(19]

A

There are many variants and choices to make when
implementing tree-like data structures. Sedgewick’s
book [14] includes a nice discussion of the possi-
ble search structures, and concludes by saying that
red/black trees are the best suited for a general-
purpose library implementation. Indeed, red/black
trees are the structure of choice in many implemen-
tations of the C4+4 STL set and map structures.
We based our implementation of red/black trees on
the publically available SGI STL implementation [],
which is based on [3] and is highly optimized. In ad-
dition, the search procedure uses the observation 1
from section 2.

We offer two additional optimizations: One is a
highly optimized pool memory allocator for nodes,
which is taken from the Boost library Boost.alloc.?
The other is to compact the color bit into the parent
pointer: since a node is aligned to memory bound-
aries, the last two bits are necessarily 0, and can be
used for other purposes (they are masked out when
accessing the pointer).

We implemented jumplists in the same framework,
and compared them against red /black trees, as well as
randomized search trees [11]. The search procedure
was implemented using the superior one-comparison-
per-node paradigm in all BST, and using the algo-
rithm of Figure 2(left) for jumplists. When maintain-
ing the subtree sizes, a problem occurs during inser-
tion in a set: a node may be inserted or not if its key
is already present, depending on whether the set is a
multiset or not; traditional implementations perform
a search to determine this, then a second traversal to
update the size fields. For both jumplists and ran-
domized search trees, we use the following trick of
Martinez & Roura: instead of maintaining the size of
the substructure rooted at a node, we maintain the
size of one of its two children and a bit to indicate
which (for jumplist, the bit differentiates between the
jsize and the nsize; for BST, between left and right
subtree size). When inserting an element, the size
field is flipped if necessary to always store the size of
the substructure that is not recursed into, and the size
is maintained during the search by subtraction. This
allows to perform a single traversal prior to insertion,
whether the node will be inserted or not. The size
field contains both an integer and a bit in a compact

Implementation details

2The boost repository (www.boost.org) is a compendium
of peer-reviewed very high quality libraries, and is generally
very highly regarded among programmers in C++. Its libraries
range from simple utilities, fixes for buggy compilers, and more
involved domain-specific solutions. In particular, it has a very
complete random generator library, and a graph library which
represents the state of the art.

12

format.

The issue of single/double linkage notwithstand-
ing, a minimal jumplist node thus takes two point-
ers and size field, in addition to the node’s key and
data. With compaction, a (either randomized or
red/black) BST node takes three pointers and a size
field (optional for red/black trees). Note that if
traversal through iterator is provided, as demanded
by the C++ concept of container, the parent pointer
is necessary as it is used in the algorithm TREE-
SUCCESSOR. If bidirectional iterators are provided,
then jumplist nodes also need to store a third pointer
as well.?

Given size fields, it is possible to implement rank-
based operations for all three types of dictionaries,
thereby providing random-access iterators with loga-
rithmic time.*

We implemented our code in C++, following best
practice and using aggressive optimizations. Con-
sequently, we verified that our implementation of
red/black trees is more memory-efficient and about
as fast as the C++ standard library implementation
which it was based on. The implementation is freely
available (consult http://photon.poly.edu/ hbr)
and we plan to release it eventually in the form of
a Boost library.

B Complete experimental results

In this section, we offer the complete experimental re-
sults, in the form of three tables detailing the running
times for the following operations:
1. Insert a million elements in a certain order.
2. Traverse the data structure in order a hundred
times.
3. Search for all the elements in the same order as
inserted.
4. Gather the number of links followed by the search
procedure of 3 divided by nlnn (this gives a mul-
tiplicative constant that should match the results of
Section 4), as well as the number of comparisons per-
formed (per node visited).
5. Perform a hundred thousand searches (either suc-
cessful, or unsuccesful), picked at random without re-
placement from a pool of keys present or not present.
6. Destroy the data structure.

The data structures tested are summarized in Ta-

3Therefore jumplists are not likely to be used for imple-
menting a standard-conforming C++ set, as the concept re-
quires bidirectional iterators. Their advantage lies mainly in
situations when forward traversals only are required.

4Technically speaking, the C++ standard mandates that all
operations on random-access iterators take amortized constant
time. It is an interesting open problem to try and meet this
guarantee with jumplist iterators.

ble 1. We assume a setup in which a pointer has the
same number of bytes as an integer representing the
size (as indeed they should), and this number is 4
bytes. Because of alignment issues, a bool field with
other pointer fields will require 4 bytes for storage as
well.

The results for a random insertion order are pre-
sented in Table 2, for an increasing insertion order in
Table 3, and for a decreasing insertion order in Ta-
ble 4. Because of time limitations, we could not im-
plement treaps, but we expect they will figure in the
full version of the paper. As a rule, all the function-
ality gathering information about path length and
number of comparisons is given in separate functions
in order to keep the search functions free of side ef-
fects. Thus the search times as quoted do not include
the time taken to gather the statistics.

13

Name Type Description Node size | Bidirectional
std::set Det. C++ set, internally red/black tree. | 16 bytes YES
rb_tree Det. Custom red/black trees, derived | 16 bytes YES

from the SGI STL std::set im-

plementation, augmented to gather

path length information.
rb_cp_-tree Det. Same as previous entry, augmented | 12 bytes YES

to gather path length information.

The color bit is compacted in the

parent pointer.
rb_aug_tree Det. Same as rb_tree, augmented with | 20 bytes YES

subtree size information.
rb_aug_cp_tree | Det. Same as rb_cp_tree, augmented | 16 bytes YES

with size information. The color bit

is compacted in the parent pointer.
rand_tree Rand. Randomized BST, storing the size of | 16 bytes YES

only one of the two subtree sizes and

with a bit to remember which (com-

pacted in the parent pointer).
treap Rand. Treaps, storing a randomly chosen | 16 bytes YES

priority.
splay_tree Amort. | Splay trees. 12 bytes YES
splay_aug_tree | Amort. | Splay trees, augmented with subtree | 16 bytes YES

size information
jl Rand. Doubly linked randomized | 20 bytes YES

jumplists, storing both sublist

sizes.
jl_fw Rand. Singly linked randomized jumplists, | 16 bytes NO

storing both sublist sizes.
jlcp Rand. Same as j1, storing only one of the | 16 bytes YES

two sublist sizes, and a bit to re-

member which (compacted in the

parent pointer).
jl fw_cp Rand. | Combination of j1_fw and j1l_cp. 12 bytes NO

Table 1: Data structures tested in our experiments.

Data structure 1 2 3 4(ptr.) 4(comp.) | 5(succ.) 5(unsucc.) 6
std::set 3.18s | 0.43s | 2.58s 0.28s 0.27s 0.35s
rb_tree 3.25s | 0.37s | 2.69s 1.023 1.049 0.29s 0.27s 0.37s
rb_cp_-tree 3.33s | 0.36s | 2.5Ts 1.022 1.049 0.28s 0.27s 0.41s
rb_aug tree 4.11s | 0.36s | 2.83s 1.022 1.049 0.3s 0.29s 0.38s
rb_cp_aug_tree | 4.12s | 0.37s | 2.84s 1.026 1.049 0.3s 0.29s 0.38s
rand_tree 9.55s | 0.36s | 3.06s 1.005 1.05 0.33s 0.32s 0.37s
splay_tree 6.28s | 0.34s | 7.66s 1.388 1.036 0.66s 0.63s 0.48s
splay_aug_tree | 9.62s | 0.34s | 10.16s 1.388 1.036 1.15s 1.06s 0.33s
jl 14.45s | 0.43s | 4.28s 0.9514 1.625 0.45s 0.44s 0.02s
jl fw 13.91s | 0.43s | 4.18s 0.9495 1.626 0.47s 0.43s 0.12s
jl_cp 14.13s | 0.43s | 4.23s 0.9862 1.603 0.44s 0.44s 0.11s
jl fw_cp 14.02s | 0.43s | 4.15s 0.9992 1.595 0.43s 0.44s 0.13s

Table 2: Random insertion order.

14

Data structure 1 2 3 4(ptr.) 4(comp.) | 5(succ.) 5(unsucc.) 6
std::set 1.99s | 0.44s | 1.25s 0.18s 0.16s 0.17s
rb_tree 1.98s | 0.37s | 1.32s 1.02 1.049 0.18s 0.16s 0.21s
rb_cp_tree 2.7s | 0.36s | 1.44s 1.02 1.049 0.18s 0.17s 0.19s
rb_aug tree 3.92s | 0.37s | 1.55s 1.02 1.049 0.2s 0.18s 0.21s
rb_cp_aug_tree | 3.72s | 0.37s | 1.37s 1.02 1.049 0.18s 0.17s 0.23s
rand_tree 9.05s | 0.36s | 3.02s 1.008 1.05 0.36s 0.31s 0.36s
splay_tree 0.55s | 0.31s | 1.15s 89.47 1.001 0.9s 0.26s 0.24s
splay_aug_tree | 0.64s | 0.33s | 1.57s 89.47 1.001 0.99s 0.23s 0.25s
jl 10.68s | 0.43s | 0.45s 0.9505 1.595 0.09s 0.08s 0.15s
jl-fw 10.33s | 0.43s | 0.44s 0.9505 1.595 0.1s 0.08s 0.14s
jlcp 10.35s | 0.44s | 0.45s 0.9505 1.595 0.09s 0.08s 0.16s
jl fw_cp 9.87s | 0.43s | 0.43s 0.9505 1.595 0.09s 0.07s 0.16s
Table 3: Increasing insertion order.

Data structure 1 2 3 4(ptr.) 4(comp.) | 5(succ.) 5(unsucc.) 6
std::set 3.18s | 0.43s | 2.56s 0.27s 0.26s 0.36s
rb_tree 3.24s | 0.36s | 2.69s 1.022 1.049 0.29s 0.27s 0.37s
rb_cp_-tree 3.36s | 0.37s | 2.56s 1.021 1.049 0.31s 0.26s 0.41s
rb_aug tree 4.1s | 0.37s | 2.82s 1.025 1.049 0.3s 0.29s 0.38s
rb_cp_aug_tree | 4.11s | 0.37s | 2.83s 1.022 1.049 0.3s 0.29s 0.38s
rand _tree 9.05s | 0.36s | 3.02s 1.008 1.05 0.36s 0.31s 0.36s
splay_tree 6.09s | 0.33s | T7.1s 89.47 1.001 0.89s 0.74s 0.4s
splay_aug-tree | 9.51s | 0.35s | 10.82s 89.47 1.001 1.26s 1.15s 0.5s
jl 14.4s | 0.43s | 4.36s 1.012 1.587 0.45s 0.47s 0.01s
jl1_fw 14.33s | 0.43s | 4.14s 0.9388 1.633 0.44s 0.42s 0.01s
jl_cp 13.92s | 0.43s | 4.13s 0.9446 1.63 0.43s 0.42s 0.01s
jl_fw_cp 13.94s | 0.43s | 4.07s 0.9491 1.626 0.45s 0.44s 0.16s

Table 4: Decreasing insertion order.

15

