
Finding Paths in Graphs

Robert Sedgewick
Princeton University



Introduction
Motivating example
Grid graphs
Search methods
Small world graphs
Conclusion

Subtext: the scientific method

is necessary in algorithm design and implementation

Scientific method

• create a model describing natural world

• use model to develop hypotheses

• run experiments to validate hypotheses

• refine model and repeat

Algorithm designer who does not run experiments

risks becoming lost in abstraction

Software developer who ignores resource consumption

risks catastrophic consequences 

Isolated theory or experiment can be of value when clearly identified

model

hypothesis

experiment
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Warmup: random number generation

Problem: write a program to generate random numbers

model: classical probability and statistics

hypothesis: frequency values should be uniform 

weak experiment:

• generate random numbers

• check for uniform frequencies

better experiment:

• generate random numbers

• use x2 test to check frequency
values against uniform distribution 

better hypotheses/experiments still needed

• many documented disasters

• active area of scientific research

• applications: simulation, cryptography

• connects to core issues in theory of computation

V = 10

random?

model

hypothesis

experiment

int k = 0;

while ( true )

  System.out.print(k++ % V);

int k = 0;

while ( true ) { 

  k = k*1664525 + 1013904223);

 System.out.print(k % V);

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7  . . .

textbook algorithm that flunks x2 test 

Introduction
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Warmup (continued)

Q. Is a given sequence of numbers random?

A. No.

Q. Does a given sequence exhibit some property
     that random number sequences exhibit?

Birthday paradox

   Average count of random numbers generated 

   until a duplicate happens is about    pV/2

Example of a better experiment: 

• generate numbers until duplicate

• check that count is close to    pV/2

• even better: repeat many times, check against distribution

“Anyone who considers arithmetical methods of producing random 
digits is, of course, in a state of sin” — John von Neumann

V = 365

average probes

until duplicate

is about 24

Introduction
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is a fundamental operation that demands understanding

Ground rules for this talk
• work in progress (more questions than answers)
• analysis of algorithms
• save “deep dive” for the right problem

Applications
• graph-based optimization models
• networks
• percolation
• computer vision
• social networks
• (many more)

Basic research
• fundamental abstract operation with numerous applications
• worth doing even if no immediate application
• resist temptation to prematurely study impact

Finding an st-path in a graph

t

s

Introduction
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Motivating example: maxflow

Ford-Fulkerson maxflow scheme 

• find any s-t path in a (residual) graph

• augment flow along path (may create or delete edges)

• iterate until no path exists

Goal: compare performance of two basic implementations

• shortest augmenting path

• maximum capacity augmenting path

Key steps in analysis

• How many augmenting paths?

• What is the cost of finding each path?

research literature

this talk

Motivating example



Introduction
Motivating example
Grid graphs
Search methods
Small world graphs
Conclusion

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters

• number of vertices V

• number of edges E

• maximum capacity C

How many augmenting paths?

How many steps to find each path? E (worst-case upper bound)

worst case 
upper bound

shortest 
VE/2
VC

max capacity 2E lg C

Motivating example
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Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters for example graph

• number of vertices V = 177

• number of edges E = 2000

• maximum capacity C = 100

How many augmenting paths?

How many steps to find each path? 2000 (worst-case upper bound)

worst case 
upper bound

for example

shortest 
VE/2
VC

177,000
17,700

max capacity 2E lg C 26,575

Motivating example
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Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters for example graph

• number of vertices V = 177

• number of edges E = 2000

• maximum capacity C = 100

How many augmenting paths?

How many steps to find each path?  < 20, on average

worst case 
upper bound

for example actual

shortest 
VE/2
VC

177,000
17,700

37

max capacity 2E lg C 26,575 7

total is a
factor of a million high

for thousand-node graphs!

Motivating example
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Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters

• number of vertices V

• number of edges E

• maximum capacity C

Total number of steps?

worst case 
upper bound

shortest 
VE2/2
VEC

max capacity 2E2 lg C

WARNING: The Algorithm General
has determined that using such results 
to predict performance or to compare 
algorithms may be hazardous.

Motivating example
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• predict performance (running time)

• guarantee that cost is below specified bounds

Common wisdom

• random graph models are unrealistic

• average-case analysis of algorithms is too difficult

• worst-case performance bounds are the standard

Unfortunate truth about worst-case bounds

• often useless for prediction (fictional)

• often useless for guarantee (too high)

• often misused to compare algorithms

Bounds are useful in many applications:

Open problem: Do better!

Motivating example: lessons

worst-case bounds

actual costs

which ones??

Motivating example
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is a basic operation in a great many applications

Q. What is the best way to find an st-path in a graph?

A. Several well-studied textbook algorithms are known

• Breadth-first search (BFS) finds the shortest path

• Depth-first search (DFS) is easy to implement

• Union-Find (UF) needs two passes

BUT

• all three process all E edges in the worst case

• diverse kinds of graphs are encountered in practice

Worst-case analysis is useless for predicting performance

Which basic algorithm should a practitioner use?

Finding an st-path in a graph

t

s

??

Introduction
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Grid graphs

Algorithm performance depends on the graph model

Initial choice: grid graphs

• sufficiently challenging to be interesting

• found in practice (or similar to graphs found in practice)

• scalable

• potential for analysis

Ground rules

• algorithms should work for all graphs

• algorithms should not use any special properties of the model 

... (many appropriate candidates)

s

t

s

t

complete random grid neighbor

t

s

s

t

small-world

t

s

if vertices have positions we can 
find short paths quickly with A*
(stay tuned)

Grid graphs
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Example 1: Statistical physics

• percolation model

• extensive simulations

• some analytic results

• arbitrarily huge graphs

Example 2: Image processing

• model pixels in images

• maxflow/mincut

• energy minimization

• huge graphs

Applications of grid graphs

conductivity

concrete

granular materials

porous media

polymers

forest fires

epidemics

Internet

resistor networks

evolution

social influence

Fermi paradox

fractal geometry

stereo vision

image restoration

object segmentation

scene reconstruction

.

.

.

t

s

t

s

Grid graphs
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Literature on similar problems

Percolation

Random walk

Nonselfintersecting paths in grids

Graph covering

  ??

Which basic algorithm should a practitioner use

to find a path in a grid-like graph?

Grid graphs
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undirected edges connecting each vertex to its HV neighbors

source vertex s at center of top boundary 

destination vertex t at center of bottom boundary 

Find any path connecting s to t

Cost measure: number of graph edges examined

Finding an st-path in a grid graph

t

s  M 2 vertices

M vertices edges

7 49 84

15 225 420

31 961 1860

63 3969 7812

127 16129 32004

255 65025 129540

511 261121 521220

 about 2M 2 edges

Grid graphs
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Abstract data types

separate clients from implementations

A data type is a set of values and the operations performed on them

An abstract data type is a data type whose representation is hidden

Implementation should not be tailored to particular client

Develop implementations that work properly for all clients

Study their performance for the client at hand

       Interface         Clients       Implementations
invoke operations specifies how to invoke ops code that implements ops

Search methods
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Vertices are integers between 0 and V-1
Edges are vertex pairs

Graph ADT implements

• Graph(Edge[]) to construct graph from array of edges

• findPath(int, int) to conduct search from s to t

• st(int) to return predecessor of v on path found

Graph abstract data type

int e = 0;

Edge[] a = new Edge[E];

for (int i = 0; i < V; i++)

 {  if (i < V-M) a[e++] = new Edge(i, i+M);

    if (i >= M) a[e++] = new Edge(i, i-M);

    if ((i+1) % M != 0) a[e++] = new Edge(i, i+1);

    if (i % M != 0) a[e++] = new Edge(i, i-1);

 }

GRAPH G = new GRAPH(a);

G.findPath(V-1-M/2, M/2);

for (int k = t; k != s; k = G.st(k))

  System.out.println(s + “-” + t);

Example: client code for grid graphs

0    1    2    3    4

5    6    7    8    9

10   11   12   13   14

15   16   17   18   19

20   21   22   23   24

M = 5

t

s

Search methods
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DFS: standard implementation

for (int k = 0; k < E; k++)

  { int v = a[k].v, w = a[k].w;

    adj[v] = new Node(w, adj[v]);

    adj[w] = new Node(v, adj[w]);

  }

graph ADT constructor code

void findPathR(int s, int t)

  { if (s == t) return;

    visited(s) = true;

    for(Node x = adj[s]; x != null; x = x.next)

      if (!visited[x.v]) searchR(x.v, t);

  }

void findPath(int s, int t)

  { visited = new boolean[V];

    searchR(s, t);

  }

DFS implementation (code to save path omitted)

0    1    2 

3    4    5

 6    7    8

4

7

7

4

graph representation

vertex-indexed array of 
linked lists 

 two nodes per edge

Search methods
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cost strongly depends on arbitrary decision in client code!

Basic flaw in standard DFS scheme

...

for (int i = 0; i < V; i++)

  {

    if ((i+1) % M != 0) a[e++] = new Edge(i, i+1);

    if (i % M != 0) a[e++] = new Edge(i, i-1);

    if (i < V-M) a[e++] = new Edge(i, i+M);

    if (i >= M) a[e++] = new Edge(i, i-M);

  }

...

west, east, north, south south, north, east, west

order of these
statements
determines

order in lists

order in lists
has drastic effect
on running time

t t

s s

~E/2 ~E
1/2

bad news
for ANY

graph model

Search methods
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Addressing the basic flaw

Advise the client to randomize the edges?

• no, very poor software engineering

• leads to nonrandom edge lists (!)

Randomize each edge list before use?

• no, may not need the whole list

Solution: Use a randomized iterator

int N = adj[x].length;

for(int i = 0; i < N; i++)

  { exch(adj[x], i, i + (int) Math.random()*(N-i));

    process vertex adj[x][i];

  }

exchange random vertex from 
adj[x][i..N-1] with adj[x][i]

randomized iterator

int N = adj[x].length;

for(int i = 0; i < N; i++)

  { process vertex adj[x][i]; }

standard iterator

represent graph
with arrays,

not lists

x

i N

x

i

N

i

x

Search methods
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Use of randomized iterators
turns every graph algorithm into a randomized algorithm

Important practical effect: stabilizes algorithm performance

Yields well-defined and fundamental analytic problems

• Average-case analysis of algorithm X for graph family Y(N)?

• Distributions?

• Full employment for algorithm analysts

s t

s

t

s

t

cost depends on problem
  not its representation

s

t s

t

Search methods
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(Revised) standard DFS implementation

for (int k = 0; k < E; k++)

  { int v = a[k].v, w = a[k].w;

    adj[v][deg[v]++] = w;

    adj[w][deg[w]++] = v;

  }

graph ADT constructor code

void findPathR(int s, int t)

  { int N = adj[s].length;

    if (s == t) return;

    visited(s) = true;

    for(int i = 0; i < N; i++)

    { int v = exch(adj[s], i, i+(int) Math.random()*(N-i));

      if (!visited[v]) searchR(v, t);

    }

  }

void findPath(int s, int t)

  { visited = new boolean[V];

    findpathR(s, t);

  }

DFS implementation (code to save path omitted)

0    1    2 

3    4    5

 6    7    8

4

7

7

4

graph representation
vertex-indexed 
array of variable-
length arrays

Search methods
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BFS: standard implementation

Use a queue to hold fringe vertices

 void findPathaC(int s, int t)

  { Queue Q = new Queue();

    Q.put(s); visited[s] = true; 

    while (!Q.empty())

      { int x = Q.get(); int N = adj[x].length;

        if (x == t) return; 

        for (int i = 0; i < N; i++)

          { int v = exch(adj[x], i, i + (int) Math.random()*(N-i));

            if (!visited[v])

              { Q.put(v); visited[v] = true; }            }

      }

  }

while Q is nonempty

        get x from Q

  done if x = t

  for each unmarked v adj to x

         put v on Q

         mark v

FIFO queue for BFS

tree vertex

fringe vertex

unseen vertex

s

t

Generalized graph search: other queues yield A* and other graph-search algorithms

randomized iterator

Search methods
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Union-Find implementation

1. Run union-find to find component containing s and t

2. Build subgraph with edges from that component

3. Use DFS to find st-path in that subgraph

t

s

t

s

       initialize array of iterators

       initialize UF array

       while s and t not in same component

             choose random iterator

             choose random edge for union

Search methods
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for basic algorithms

DFS is substantially faster than BFS and UF

Analytic proof?

Faster algorithms available?

Experimental results

M V E BFS DFS UF

7 49 168 .75 .32 1.05

15 225 840 .75 .45 1.02

31 961 3720 .75 .36 1.14

63 3969 15624 .75 .32 1.05

127 16129 64008 .75 .40 .99

255 65025 259080 .75 .42 1.08

BFS

DFS

UF

Search methods
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for finding an st-path in a graph

Use two depth-first searches

• one from the source s

• one from the destination t

• interleave the two

Examines 13% of the edges

3-8 times faster than standard implementations

Not loglog E, but not bad!

A faster algorithm

M V E BFS DFS UF two

7 49 168 .75 .32 1.05 .18

15 225 840 .75 .45 1.02 .13

31 961 3720 .75 .36 1.14 .15

63 3969 15624 .75 .32 1.05 .14

127 16129 64008 .75 .40 .99 .13

255 65025 259080 .75 .42 1.08 .12

Search methods
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Other search algorithms

• randomized?

• farthest-first?

Multiple searches?

• interleaving strategy?

• merge strategy?

• how many?

• which algorithm?

Hybrid algorithms

• which combination?

• probabilistic restart?

• merge strategy?

• randomized choice?

Better than constant-factor improvement possible? Proof?

Are other approaches faster?
Search methods
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Randomized search

• use random queue in BFS

• easy to implement

Result: not much different from BFS

Multiple searchers

• use N searchers

• one from the source

• one from the destination

• N-2 from random vertices

• Additional factor of 2 for N>2

Result: not much help anyway

Best method found (by far): DFS with 2 searchers

Experiments with other approaches

DFS

BFS

2 3 4 5 10 20

.12

1

.40

.70

1.40

Search methods



Introduction
Motivating example
Grid graphs
Search methods
Small world graphs
Conclusion

Small-world graphs

are a widely studied graph model with many applications

A small-world graph has

• large number of vertices

• low average vertex degree (sparse)

• low average path length

• local clustering

Examples:

• Add random edges to grid graph

• Add random edges to any sparse graph
with local clustering

• Many scientific models 

Q. How do we find an st-path in a small-world graph?
t

s

s

t

Small-world graphs
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Small-world graphs

model the six degrees of separation phenomenon

Example: Kevin Bacon number

A tiny portion of the movie-performer relationship graph

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielguld

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Audrey
Tautou

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

Small-world graphs
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Example 1: Social networks

• infectious diseases

• extensive simulations

• some analytic results

• huge graphs

Example 2: Protein interaction

• small-world model

• natural process

• experimental
validation

Applications of small-world graphs

social networks

airlines

roads

neurobiology

evolution

social influence

protein interaction

percolation

internet

electric power grids

political trends

.

.

.

A tiny portion of the movie-performer relationship graph

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielguld

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Audrey
Tautou

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

Small-world graphs
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Finding a path in a small-world graph

is a heavily studied problem

Milgram experiment (1960)

Small-world graph models

• Random (many variants)

• Watts-Strogatz

• Kleinberg

How does 2-way DFS do in this model?

Experiment: 

• add M ~ E1/2 random edges to an M-by-M grid graph

• use 2-way DFS to find path

Surprising result: Finds short paths in ~ E1/2 steps!

add V random shortcuts
to grid graphs and others

A* uses ~ log E steps to find a path

Small-world graphs

no change at all in graph code
just a different graph model
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Finding a path in a small-world graph
is much easier than finding a path in a grid graph

Conjecture: Two-way DFS finds a short st-path
in sublinear time in any small-world graph

Evidence in favor

  1. Experiments on many graphs

  2. Proof sketch for grid graphs with V shortcuts

• step 1: 2 E1/2 steps ~ 2 V1/2 random vertices

• step 2: like birthday paradox

Path length?

Multiple searchers revisited?

Next steps: refine model, more experiments, detailed proofs

t

t

s

s

two sets of 2V 1/2 randomly chosen
vertices are highly unlikely to be disjoint

Small-world graphs
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Answers

• Randomization makes cost depend on graph, not representation.

• DFS is faster than BFS or UF for finding paths in grid graphs.

• Two DFSs are faster than 1 DFS — or N of them — in grid graphs.

• We can find short paths quickly in small-world graphs

Questions

• What are the BFS, UF, and DFS constants in grid graphs?

• Is there a sublinear algorithm for grid graphs?

• Which methods adapt to directed graphs?

• Can we precisely analyze and quantify costs for small-world graphs?

• What is the cost distribution for DFS for any interesting graph family?

• How effective are these methods for other graph families?

• Do these methods lead to faster maxflow algorithms?

• How effective are these methods in practice?

• ...

More questions than answers

Conclusion
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Conclusion: subtext revisited

The scientific method is necessary

in algorithm design and implementation

Scientific method

• create a model describing natural world

• use model to develop hypotheses

• run experiments to validate hypotheses

• refine model and repeat

Algorithm designer who does not run experiments

risks becoming lost in abstraction

Software developer who ignores resource consumption

risks catastrophic consequences 

We know much less than you might think

about most of the algorithms that we use

model

hypothesis

experiment

Conclusion


