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Probabilistic Analysis in Linear Programming
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Abstract. The main results on probabilistic analysis of the simplex method
and on randomized algorithms for linear programming are reviewed briefly.
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1. THE LINEAR PROGRAMMING PROBLEM

The linear programming (LP) problem calls for min-
imizing a linear objective function subject to linear
constraints. Every such problem can be presented in
the following form:

(P) min {cTx | Ax = b, x = 0}.

Here the vectors ¢’ = (c1,..., ¢ca), 8T = (b1, ..., bm)
and the m X d matrix A constitute the input, and
x = (x1,..., xq) is the vector of variables to be opti-
mized. Usually, one assumes that all input numbers
are integers or rationals. The goal is to find an optimal
x if such exists, and if not, to determine that the
problem is unbounded (i.e., the minimum is —o) or
infeasible (i.e., there is no x satisfying all the con-
straints).

LP is one of the fundamental problems in operations
research and computer science. It was formulated in
the 1940s by George Dantzig, who also proposed a
method for solving it. Since then, the problem has been
studied in thousands of scientific papers and hundreds
of books, and interest in the problem has stayed on
a very high level. One reason for this is the wide
applicability of LP: it is used to model practical, real-
life problems in economics, industry, communications,
military and numerous other areas. It is perhaps the
most widely used optimization model in the world, and
except data structures, perhaps the largest single use
of computer resources (see Lovasz, 1980.) Another rea-
son is that LP problems with special structure arise in
* various theoretical and practical areas. Yet another
reason is that some fundamental properties of LP and
its algorithms are still not fully understood. One of
these is the efficiency of the simplex method, which
will be discussed here.

The method that was proposed by Dantzig for solv-
ing LP is the simplex method (e.g., Dantzig, 1963). To
describe it geometrically, we need some terminology:
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A point in R?is feasible if it satisfies all the constraints.
The set of feasible points,

X={xeR?|Ax = b, x = 0},

is a polyhedron, that is, the intersection of a finite set
of half-spaces. Each half-space is of the form {x|A4;-x =
b}, and its corresponding hyperplane is {x|A;'x = by}
(A;- denotes the ith row in A.) For simplicity, we assume
that the problem is nondegenerate; that is, each set of
d hyperplanes meets at a distinct single point. In that
case, if X # ¢, the dimension of X is d, and each
feasible point in which exactly d of the inequalities are
satisfied as equalities is a vertex of X. Vertices are
adjacent if they are connected by an edge of X, or,
equivalently, if their defining sets of equalities have
d — 1 identical elements. It is not hard to see that if
there is an optimal solution, its value will be obtained
at some vertex of X. Assuming nondegeneracy, the set
of feasible points lying on one defining hyperplane is
(if nonempty) of dimension d — 1 and is called a facet
of the polyhedron.

The simplex method starts from a feasible vertex
and moves in each iteration to an adjacent vertex until
eventually either an optimal vertex is reached or the
algorithm recognizes at some vertex that the problem
is unbounded. The move from one vertex to an adjacent
one is called a pivot, and it can be realized mathemati-
cally by a simple manipulation of the constraints ma-
trix. Usually, the next vertex is chosen so that the
objective function value will improve after the pivot
step. Even so, there is still a lot of freedom in choosing
the next vertex. The specific rule of this choice is called
a pivoting rule. Numerous pivoting rules have been
devised for the simplex method, each giving rise to a
different variant of the method. To obtain the initial
feasible vertex, one can set up another LP problem
(called the phase I problem) to which there is always
a known feasible vertex and apply the simplex method
to that problem. This problem is set up in such a way
that it is bounded, and when its optimal solution is
reached, one either has a starting feasible vertex for
the original problem or knows that that problem is
infeasible. The scope of this article does not allow us
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to get into more detail. We refer the interested reader
to the (very incomplete) reference list. Also, several
parenthetical comments on duality that are made in
the sequel can be ignored by the reader who is not
familiar with it. They are needed for accuracy but not
for understanding the essence of the results.

Within a few years of its introduction, LP had be-
come a central — perhaps the central — paradigm of oper-
ations research. The simplex method had proved itself
to be extremely useful and highly efficient in practice.
However, by the early 1970s it became clear that the
simplex is not—as far as we know—a theoretically
efficient algorithm: the complexity of the simplex
method was shown to be finite but not polynomial in
the input length. In fact, on specially structured “bad”
examples, many simplex variants were shown to re-
quire a number of pivots exponential in the problem
dimensions. Hence, as far as we know, the simplex is
not a good algorithm from the theoretical point of
view. On the other hand, Monte Carlo studies and vast
practical experience with real-life problems show that
the typical number of pivots is very low: it appears
to be a linear or slightly superlinear function of the
dimensions. How can we explain the huge gap between
the provably bad worst-case bounds and the efficiency
of the method in practice? A natural approach is to
apply probabilistic analysis: assume that the input
data are distributed according to some prespecified
distribution and show that on the average the number
of pivots is small. Another approach is to equip the
algorithm with a randomization mechanism, and show
that for every input, averaged over the possible actions
of the algorithm, the number of pivots is small.

This paper gives a brief survey of various results
from probabilistic analysis of the simplex method. The
scope of the paper forces us to omit many details, to
say nothing of proofs. We shall be able to give only
the flavor of the results and the different approaches,
in the hope of kindling the reader’s curiosity. The inter-
ested reader may find more detailed surveys in Borg-
wardt (1987), Todd (1991), Megiddo (1987) and in
Shamir (1987), from which an earlier version of this
paper originated. Much more on the context of the
problem can be found in the references thereof.

2. PROBABILISTIC ANALYSIS

In order to perform probabilistic analysis, one has
to specify the simplex variant used, the initialization
(phase I) procedure, the form of LP used and the proba-
bilistic assumption on the distribution of problem in-
puts. Given those parameters, we denote by p(n, d) [or
p(m, d)] the average number of pivots for problems with
n inequalities in d variables [or m inequalities in d
nonnegative variables].

All the probabilistic models discussed here generate
problems that are nondegenerate with probability one.

To avoid being too technical, we do not describe the
conditions that guarantee nondegeneracy in each model
but simply assume throughout that all the models deal
only with (primal and dual) nondegenerate problems.

2.1 Parametric Simplex Variants

The variant of the simplex that has been proved most
amenable to probabilistic analysis is the parametric
objective simplex algorithm due to Gass and Saaty
(1955). This variant —explicitly or in disguise—plays a
central role in most of the studies discussed below. Let
us sketch the parametric simplex method and intro-
duce some terminology that is needed later. Suppose
we have a LP with two objective functions, the original
objective ¢ and a co-objective ¢. Given an optimal
solution to problem (P) with objective c’, the goal is to
solve problem (P) with the original objective c¢. The
problem can be presented as one with a parametric
objective:

(P(2)) minficTx + (1 —A)c"x | Ax = b, x = O}.

Here A is a scalar parameter, a solution for P(0) is
known, and we want to solve problem P(1). In the
parametric simplex algorithm, the value of A is gradu-
ally increased. A new problem is obtained for each A,
but for a certain range of A values the optimal vertex
remains the same. When the current optimal vertex
ceases to be optimal, a pivot step is performed, and
the algorithm moves (along an edge) to a new vertex
that is optimal for larger A. The process terminates
when the value A = 1 is reached or when the solution
to the problem becomes unbounded at some critical
value A < 1, in which case problem P(1) is unbounded.
Under our blanket assumption of nondegeneracy, the
set of optimal points visited by the algorithm is a path
of vertices and edges. This set,

{x € R? | x is optimal for some P(A),0 < i < 1},

is called the efficient path. Hence the number of verti-
ces along that path equals the number of pivot steps
performed by the parametric simplex algorithm. An-
other set of points can be obtained by the same algo-
rithm when the value of A decreases from 0 to —oo.
The solution for A = —o corresponds to the solution
for maximizing (rather than minimizing) ¢’x. The set
of solutions for —o <A <1 is called the co-optimal
path.

A similar idea can be applied to the following prob-
lem, in which b and c are parametrized simultaneously:

min {AcTx + (1 — A)¢'Tx | Ax
> b+ (1 — A, x = 0}.

(T1(a))

The parametric self-dual (PSD) simplex algorithm,
which was introduced by Dantzig (1963), starts from
an optimal solution to II(0). It increases A gradually
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and performs a sequence of (primal or dual) pivots that
yield solutions for IT(A) for increasing values of 1. Note
that with an initial choice of ¢’"=(1,1,...,1) and
-vT=1(1,1,...,1), x =0 is an optimal solution for
I1(0), so this algorithm avoids the need for two simplex
phases.

The convenience in analyzing the parametric simplex
is due to its property that, given a vertex of the feasible
set, one can determine directly if the simplex path
passes through that vertex. “Directly” means by an
algebraic closed-form condition depending on the ver-
tex and the input data, so the pivots need not be
performed.

2.2 Borgwardt’s Results

The first major probabilistic analysis results were
due to Karl Heinz Borgwardt (1977a, b; 1978). He
analyzed problems of the form

min{c’x | Ax < e},

where A is of dimensionn X d and e” = (1,1,...,1) €
R”. Note that such problems are always feasible, since
x = 0 is feasible. The basic probabilistic model he used
requires that each of the n vectors constituting the
rows of A and of the vector ¢ assume independently
the same spherically symmetric distribution on R? —
{0}. In other words, the distribution of each such vector
is invariant under any rotation around the origin. One
can visualize such a distribution as a “cloud” around
the origin, with the density of the cloud at each point
proportional to the probability of choosing the vector
from the origin to that point. In a spherically symmet-
ric distribution, the density at each point on any sphere
centered at the origin is the same, but spheres of
different radii may have different densities. Hence the
radial part of the distribution is the only part that may
- vary among such distributions.

Borgwardt used the parametric simplex. Borgwardt
(1978) showed that when ¢’ is also chosen randomly
and independently according to the same distribution,
the expected number of pivots along the efficient path
for d fixed and n = o is asymptotically bounded by

const - dznlltd—l)-

A crucial step in Borgwardt’s analysis was to restate
the problem in terms of the polar set X* of the feasible
set X, which is also a polyhedron (Griinbaum, 1967).
The number of vertices along the efficient path equals
the number of faces of X* intersected by a two-
dimensional cone spanned by the two objectives ¢ and
¢’. Borgwardt then estimates the expectation of that
number by an integral expression, which eventually
leads to the results.

Borgwardt (1977a,b) also obtained interesting
asymptotic upper and lower bounds for several specific
spherically symmetric distributions. For example,

when all the mass of the distribution is on the unit
sphere, he obtained a lower bound of d!'®n!@-V on
the expected number of pivots. He also showed that,
whenever d is fixed and n = o, p(n, d) > « for every
distribution with bounded support, and that there exist
distributions for which p(n, d) grows slower than any
polynomial in n.

Later, Borgwardt (1981, 1982) obtained a nonasymp-
totic bound on the expected length of such an efficient
path, namely,

const - d3plé-1),

In order to obtain a result for a complete (two-phased)
simplex method, Borgwardt defined a new algorithm.
It generates a sequence of subproblems with increasing
numbers of variables and uses the parametric algo-
rithm to solve each subproblem. Borgwardt (1982)
proves a polynomial expected bound for that algo-
rithm. This was the first proof that the average number
of pivots of any complete simplex variant is polyno-
mial. The bound for Borgwardt’s complete algorithm
and model was subsequently improved (Borgwardt,
1987) and now stands at

(B) pln,d) < const - (d + 1)*n!@~1,

Recently, Borgwardt (private communication, 1992) has
improved the asymptotic analysis for the complete algo-
rithm (i.e., phase I plus phase II) to const - d25p!@-1),

Because of the importance of Borgwardt’s work, this
section concludes by noting three problems in his
model, which may be improved upon in the future:
first, the model generates only feasible problems, for
which a feasible point is known in advance. Second,
the complete algorithm that was “tailored” to facilitate
the analysis can be used only on problems whose form
fits the model. [For some progress on these two prob-
lems, see Borgwardt (1990).] Third, its phase I solves
a sequence of n — 1 problems to get a feasible point
for phase II, although such a point is known a priori.
For experimental studies on the model described above,
see Borgwardt et al. (1990).

2.3 Asymptotic Results: Smale and Others

Smale (1983a, b) investigated linear programs of the
form (P). The probabilistic model in Smale (1983a)
requires that the vector (c”, —b7) assume a spherically
symmetric distribution in R**™ — {0} and A assumes
a spherically symmetric distribution in R™%¢ — {0}.

The variant analyzed was the PSD simplex. Smale
used a theory developed by Eaves and Scarf (1976)
that implies a presentation of the PSD algorithm for
problem II(1) as a set of piecewise-linear equations.
Using this presentation, Smale (1983a) showed how to
express the probability that a vertex is in the PSD-path
in terms of the volume of a corresponding cone. A
series of estimates for the volume of the special cone
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structure generated for LP eventually yielded the re-
sult

(S) plm,d) < c(d) - (1 + log(m + 1))%+1,

In particular, this result implies that when d is fixed,
plm, d) grows with m more slowly than any fixed posi-
tive power of m. The dependence on d is, however,
exponential.

Smale’s model seems to have a certain advantage
over Borgwardt’s, because it uses a more practical
variant and there is no restriction on the form of the
linear programs it can solve. Also, the model generates
both feasible and infeasible problems. However, the
asymptotic results assume that d is fixed and m — o;
in that situation most problems generated under this
model become infeasible, so it is not clear how to
interpret such results. We shall return to this point
below.

Following Smale, Blair (1986) showed that essen-
tially the same asymptotic result can be obtained by
a simpler argument, under somewhat weaker probabi-
listic assumptions. Smale’s estimate (S) is meaningful
only when d is fixed and m — oo. Blair approached that
case directly. One way to restate his observation is
that when m > d, under Smale’s probabilistic model,
most of the constraints are “dominated” by other con-
straints and cannot participate in vertices of the PSD
path. (Intuitively, a constraint is dominated if another
constraint separates it from the origin in the positive
orthant. We omit the formal definition of domination
here.) By obtaining an upper bound of the expected
number of undominated constraints, he proved that
for fixed d and m —> oo,

plm,d) < cld) - (log m)dé+Dlogid+11+d,

The exponent of log m is higher than in (S), but the
result is essentially the same. Namely, for fixed d,
plm, d) grows with m slower than any polynomial. Blair
also showed that the same result holds for two other
simplex variants.

Adler, Karp and Shamir (1986) investigated several

probabilistic models that generalize Smale’s. Their °

most general model requires for LP of the form (P), in
+ addition to some nondegeneracy assumptions, that the
data distribution be invariant with respect to reversing
the signs of any subset of the rows of the matrix (4,
b). They define a family of algorithms that proceed
according to a “constraint-by-constraint” (CBC) princi-
ple. This principle requires that vertices that satisfy
as equality the kth constraint may be considered only
if the subproblem defined by the £ — 1 preceding con-
straints has been shown to be feasible. [A dual form
of the CBC method is closely related to the phase I
given in Borgwardt (1982).] This facilitates the detec-
tion of infeasibility of a problem at a relatively early

stage in order to exploit the high probability that a
problem is infeasible under this model when m > d.

Using the CBC principle, the authors show that
even if full enumeration of both feasible and infeasible
intersection points of d hyperplanes is done in every
subproblem,

plm,d) < const - 259,

independent of m. In particular, when d is fixed and
m —> o, the expected number of steps is bounded by a
constant. By using more efficient CBC algorithms and
stronger probabilistic assumptions, the upper bound
is reduced to a smaller function of d, but it still remains
exponential. The authors also show that these results
hold for a broad family of simplex variants.

Although the bound obtained above is better than
in Smale (1983a), it is not an improvement on Smale’s,
because the variant that he analyzed is not a CBC
algorithm. Using the approach developed in Smale
(1983a), Megiddo (1986a) improved the analysis for
Smale’s model to

plm,d) < c(d).

Furthermore, Megiddo showed that p(m, d) decreases
to the limit for any fixed d. However c(d) is superexpo-
nential in d.

The results of Blair (1986) and Adler, Karp and
Shamir (1986) emphasized a considerable drawback of
the asymptotic analyses of sign-invariant (and spheri-
cally symmetric) models: Blair showed that Smale’s
result can be explained in terms of the small expected
number of vertices of the feasible set, without really
using the properties of the specific parametric simplex
variant. Adler, Karp and Shamir showed that upper
bounds for p(m, d) that depend on d only can be ob-
tained by enumeration procedures, without using any
property of the simplex method. Both of these results
indicate that those asymptotic bounds reflect the prop-
erties of the probabilistic model rather than those of
the simplex method. Later studies, as we shall soon
see, overcame this drawback by obtaining results that
are meaningful for all d and n.

Later, Smale (1983b) extended his results to a more
general probabilistic model. The main addition in that
model is the replacement of spherical symmetry with
invariance of the probability distribution under coordi-
nate permutations of R The results of Adler, Karp
and Shamir (1986) and Megiddo (1986a) do not apply
to the more general model. Blair’s result does apply
to Smale’s second model, and it indicates a similar
drawback in interpreting asymptotic results under it.

Recently, Portnoy (1991) used probabilistic tech-
niques to analyze the number of pivots in the paramet-
ric simplex algorithm. His motivation was to study a
statistical regression problem, which led to a somewhat
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specific LP, but one in which random variation in the
constraints arise naturally. For fixed dimension, when
the number of constraints n tends to infinity, he showed
that the number of pivots is O (n log n) in probability.

2.4 Adler, Haimovich: Sign-Invariant Model
for Phase Il

Adler (1983) and Haimovich (1983) studied indepen-
dently the expected number of pivots along paths gen-
erated by some parametric simplex variants. We
present their results with respect to the form P(A). The
probabilistic model they used assumes sign invariance:
the input distribution must be invariant under chang-
ing the signs of any subset rows and columns of

cT 0
c¢T0o).
Ab

(Changing the sign of row i simply replaces the inequal-
ity Ai.x < b;by A;.x = b;. Changing the sign of column
i is equivalent to changing the constraint x; = 0 to
x; < 0. In other words, the hyperplane does not change;
rather, the other half-space that is supported by it is
chosen.) In addition, a certain nondegeneracy condition
is required. This model generalizes Smale’s first model,
since every spherically symmetric distribution satisfies
the sign-invariance condition. Certain discrete distribu-
tions and certain problems with sparse matrices also
fall under this model.

The main advantage of this model is that it facili-
tates analysis in terms of simple counting arguments.
Under this model, Adler and Haimovich showed that
the average number of pivots along a nonempty co-
optimal path in a feasible LP is no more than

min(m,d)+ 1.

Similar results were obtained using other parameteriza-
tions. In particular, Adler showed the same bound for
the PSD simplex with the sign-invariance assumptions
extended to the additional right-hand side vector &'
The Adler-Haimovich results were very significant
but still less than a complete explanation of the good
real-life behavior of the simplex method. These results
show that the co-optimal path from a point that mini-
mizes a random objective to a point maximizing that
objective is on average short. One problem is that this
analysis assumes that a phase II algorithm starts from
a random point, and this assumption has not been
proved so far for any known variant. Furthermore,
the co-objective must be chosen independently of the
particular problem. In known phase I algorithms the
starting point is not random but is either fixed or
dependent on the particular data. Such differences may
change the results dramatically. There are striking
examples from linear complementarity theory (Meg-

iddo, 1986b; Saigal, 1983) where a path starting from
a random point has expected polynomial length and a
path starting at a fixed point has expected exponential
length.

2.5 The Quadratic Results

Toward the end of 1983, three independent investiga-
tions obtained an upper bound on p(m, d) that is qua-
dratic in min(m, d). Two of the studies, Todd (1986) and
Adler and Megiddo (1985), analyzed the PSD simplex.
The third, Adler, Karp and Shamir (1987), analyzed a
parametric version of the CBC method. The probabilis-
tic model was the same in all three investigations. It
was essentially the sign-invariance model described in
the previous section, with a stronger nondegeneracy
assumption. It is still more general than the model in
Smale (1983a).

The PSD simplex was analyzed under a specific
choice of so-called lexicographic initialization vector.
Todd analyzed that algorithm using tools from matroid
theory, whereas Adler and Megiddo developed further
Smale’s approach. Adler, Karp and Shamir analyzed a
parametric CBC algorithm with a lexicographic co-
objective, building on the previous results and ideas of
Adler and Haimovich.

After the completion of these three investigations,
Megiddo (1985) observed that, although the parametric
CBC algorithm and the PSD algorithm are in general
quite different, their lexicographic versions execute
exactly the same sequence of pivots. Thus, all three
investigations were concerned with the same simplex
variant and obtained the result

plm,d) < const - [min(m, d)]2.

Later, Adler and Megiddo (1985) obtained a qua-
dratic lower bound on the average number of pivots.
The probabilistic assumptions required for that result
are stronger. They require that all coordinates of the
data (A, b, ¢) are independent, identically distributed ran-
dom variables with a common distribution symmetric
about the origin. Their result was obtained by estab-
lishing bounds on the correlation between the probabili-
ties for bases to be both primal and dual feasible
simultaneously. That result, together with the upper
bound above, establishes that, at least for the stronger
model, p(m, d) is in fact bounded between two quadratic
functions of min(m, d). This also proves that there
cannot exist a subquadratic upper bound for the weaker
model.

Unlike the Adler-Haimovich results, the quadratic
bound was not obtained under conditioning of feasibil-
ity. The sign-invariance model manifests the same be-
havior as Smale’s spherically symmetric model; namely,
as the ratio n/d grows, the proportion of feasible prob-
lems diminishes, and the meaning of averaging the num-
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ber of pivots over all feasible and infeasible problems
is put in question. However, using the fact that the
quadratic result holds for all » and d, it was shown that
for n = 2d the expected number of pivots in a feasible
problem under that model is at most const - d°.

3. RANDOMIZED ALGORITHMS

Suppose we allow a simplex algorithm to choose
randomly among several possibilities at certain points
along its computation. For example, the algorithm can
randomly choose to which vertex to move next among
the adjacent vertices that provide a better value to the
objective. We can then compute the expected number
of pivots required to solve a problem when the average
is taken over the possible random choices. The ex-
pected number of pivots of such a randomized algo-
rithm is the largest average number of pivots on any
problem with the same size. (The maximum is over all
problems of this size, and the average is over the internal
randomizations performed by the algorithm.) Hence in
this approach the algorithm is randomized, and the
input data are not. In contrast, in the probabilistic
analyses described in previous sections the algorithm
is completely deterministic, and the randomization is
over the problem set.

Randomized pivoting rules have been suggested in the
past for LP; see Dantzig (1963). Recently, there were
several important developments in the theory of ran-
domized algorithms for LP. Dyer and Frieze (1989) and
Clarkson (1991) described a randomized algorithm for
LP in case the dimension d is fixed, improving the
deterministic algorithm of Megiddo (1984) for this spe-
cial case. Clarkson’s algorithm has expected complex-
ity O(d?n + d¥?*0W log n). Clarkson’s method was also
exploited to obtain a fast parallel algorithm for LP in
fixed dimension (Alon and Megiddo, 1990) and general-
ized to convex programming (Adler and Shamir, 1989).
Seidel (1990, 1991) described another very simple “dual
simplex” randomized algorithm for LP in fixed dimen-
sion, of complexity ®(d!n). This has been improved by
Sharir and Welzl (1992) and extended to cover a fairly
general class of convex programming problems, to a
dual simplex algorithm with O(n - 2¢) expected number
of pivots. A previous attempt at improving Seidel’s
algorithm is due to Welzl (1991). It seems to run very
fast in practice but no analysis of its complexity is
known yet.

In a remarkable recent development, Kalai (1992b)
has given the first randomized simplex algorithm for
general LP problems that is subexponential. His algo-
rithm takes on the average -

nC-V dflogd

pivots, where C is an absolute constant. Roughly
~ speaking, his algorithm starts from a vertex v, then

reaches vertices on r different facets, randomly chooses
one facet among them and works recursively on that
facet to find the optimal vertex in it. A judicious choice
of r (and a careful analysis) leads to the above bound.

Although this bound is not polynomial, this is a
substantial improvement over the exponential upper
bounds known previously. Kalai’'s work was preceded
by important results on the diameter of polyhedra. [See
Kalai (1991, 1992a) and Kalai and Kleitman (1992) and
the excellent survey by Klee and Kleinschmidt (1987)
for the context of this problem. In that context, Kalai
has also shown that if one does not limit the computa-
tional effort per pivot step, n'°¢ ¢ pivot steps always
suffice.] Shortly after Kalai’s result, Matousek, Sharir
and Welzl (1992) showed that a careful analysis of the
previous randomized simplex algorithm of Sharir and
Welzl (1992) leads to the same expected complexity
bound.

4. THE ROAD AHEAD

In retrospect, one can see two parallel lines of re-
search on probabilistic simplex analysis. The first line
of research, on the feasible rotation-symmetric model,
was carried out single-handedly by Borgwardt. The
second started with Smale’s model and was later gener-
alized to the sign-invariant model, leading finally to
the quadratic results. In both models the analysis
advanced in three stages:

1. asymptotic results for fixed dimension,

2. nonasymptotic results for phase II, starting from
a vertex optimal with respect to a random objec-
tive, and

3. results for a complete simplex algorithm.

In both cases the average complexity and the “natural-
ness” of the variant had to be sacrificed to some extent
between stages 2 and 3.

Although the gap between the good practical behav-
ior of the simplex and its proven bad worst-case bounds
has been explained in part by the probabilistic analy-
ses, many related questions are still open. Both models
have some undesirable properties that were mentioned
above. Analyzing, or even merely defining, a widely
acceptable model that generates “real-life” problems is
a major challenge. Any analysis of the concentration
of the number of pivots around the mean (e.g., the
variance) will be new and interesting. More natural
simplex variants, especially those used in practice, are
also still awaiting analysis.

A short time after the quadratic results were ob-
tained, Karmarkar (1984) announced a new algorithm
for LP that is both theoretically and practically effi-
cient. The interest of the research community shifted
to this exciting development, and for a while some
people believed that the simplex method had met its
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match and was now obsolete. Now that most of the
dust has settled, it looks as if both algorithms have
their respective advantages, and each has problems
that it solves faster. Moreover, usually it is not possible
to tell a priori which algorithm will be faster on a given
problem. (One of the wonderful side benefits of this
development is that the existing codes for the simplex
method have been improved by almost two orders of
magnitude to make them competitive with the new
challenger.) As is often the case, new solutions raise
new problems, and one of them is related to our theme:
the efficiency of Karmarkar’s method in practice is
much faster than what can be proved theoretically.
Explaining this gap by probabilistic analysis is a new
great challenge for the LP community.

In randomized algorithms for LP, a major challenge
is now to find a randomized simplex algorithm that is
polynomial or to prove that no such algorithm exists.
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