
Experimental Analysis
of Algorithms
Catherine C. McGeoch

As far as the laws of mathematics refer to reality, they are not certain; and as far
as they are certain, they do not refer to reality. 	 —Albert Einstein

In theory there is no difference between theory and practice. In practice there is.
—Yogi Berra

T
he algorithm and the program. The
abstract and the physical. If you want to
understand the fundamental and uni-
versal properties of a computational
process, study the abstract algorithm

and prove a theorem about it. If you want to know
how the process really works, implement the
algorithm as a program and measure the running
time (or another quantity of interest).

This distinction between the abstract model
and the physical artifact exists in the study of
computational processes just as in every other
area of mathematical modeling. But algorithmic
problems have some unusual features. For exam-
ple, we usually build models to serve as handy rep-
resentations of natural phenomena that cannot
be observed or manipulated directly. But programs
and computers are completely accessible to the re-
searcher and are far more manipulable than, say,
weather patterns. They are also much easier to
understand: hypothetically, one could obtain com-
plete information about the behavior of a program
by consulting technical documents and code. And
finally, algorithms are usually invented before pro-
grams are implemented, not the other way around.

This article surveys problems and opportunities
that lie in the interface between theory and prac-
tice in a relatively new research area that has been
called experimental algorithmics, experimental
analysis of algorithms, or algorithm engineering.
Much work in this field is directed at finding and
evaluating state-of-the-art implementations for

Catherine C. McGeoch is an associate professor of
computer science at Amherst College. She has been
active in the development of an experimental
tradition in algorithmic studies. Her e-mail address is
ccm@cs.amherst.edu.

given applications. Another effort focuses on using
experiments to extend and improve the kinds of
results obtained in traditional algorithm analysis.
That is, rather than having a goal of measuring pro-
grams, we develop experiments in order to better
understand algorithms, which are abstract math-
ematical objects. In this article we concentrate on
examples from this latter type of research in ex-
perimental algorithmics.

It is natural to wonder whether such an effort
is likely to bear fruit. If the ultimate goal of algo-
rithm analysis is to produce better programs,
wouldn't we be better off studying programs in
their natural habitats (computers) rather than per-
forming experiments on their abstractions? Con-
versely, if the goal is to advance knowledge in an
area of mathematical research (algorithm analysis),
are we wise to study abstract objects using im-
perfect, finite, and ever-changing measurement
tools?

One answer to the first question is that reliable
program measurement is not as easy as it sounds.
Running times, for example, depend on complex
interactions between a variety of products that
comprise the programming environment, includ-
ing the computer chip (perhaps Intel Inside), mem-
ory sizes and configurations, the operating system
(such as Windows 98 or Unix), the programming
language (maybe Java or C), and the brand of com-
piler (like CodeWarrior). 1 These products are so-
phisticated, varied in design, and, especially when

l intel InsideTM is a registered trademark of the Intel
Corporation. WindowsTM 98 is a registered trademark of
Microsoft Corporation. UnixTM is a registered trademark
of The Open Group. JavaTM is a registered trademark of
Sun Microsystems, Inc. C is not a trademark. CodeWar-
riorTM is a trademark of Metrowerks, Inc.

304
	

NOTICES OF THE AMS
	

VOLUME 48, NUMBER 3



1. Array A[1... n] contains n distinct numbers. We want the rth smallest. Set lo — 1 and hi — n.
2. Partition. Set x A[lo]. Rearrange the numbers in A[lo . . . hi] into three groups around some index p such that:

a. For lo i < p, we have A[i] < x.
b. A[p] = x.
c. For p < j hi, we have A[j] > x.

3. Check Indices. If p = r, stop and report the element A[p]. Otherwise, if p < r, set lo p+ 1 and go to Step 2.
Otherwise, p > r, so set hi — p — 1 and go to Step 2.

Figure 1: Selection Algorithm S. The algorithm reports the rth -smallest number from array A[1 n

used in combination, extremely difficult to model.
There is no known general method for making ac-
curate predictions of performance in one pro-
gramming environment based on observations of
running times in another. Experimental analysis of
the abstraction allows us to have more control
over the trade-off between generality and accuracy
when making predictions about performance.

An answer to the second question is straight
from the mathematician: algorithms and their
analyses are beautiful and fundamental, and they
deserve study by any means available, including
experimentation.

Certainly algorithms existed long before the
first computing machine was a gleam in Charles
Babbage's eye. For example, Euclid's Elements, circa
300 B.C., contains an algorithm for finding the
greatest common divisor of two numbers. While
many algorithms have been discovered and pub-
lished over the centuries, it is only with the advent
of computers that the notion of analyzing algo-
rithmic efficiency has been formalized.

Perhaps the first real surprise in algorithm
analysis occurred with Strassen's discovery in 1968
of a new method for multiplying two n x n ma-
trices. While the classic algorithm we all learned
in high school requires 2n 3 — n 2 scalar arithmetic
operations, Strassen's algorithm uses fewer than
7n log2 7 6n 2 operations, where log2 7 < 2.808.
Therefore, this new algorithm uses fewer opera-
tions than the classic method when n is greater
than 654. Strassen's discovery touched off an in-
tensive search for asymptotically better matrix
multiplication algorithms. The current champion
requires no more than cn 2 ' 376 scalar operations for
a known constant c. It is an open question whether
better algorithms exist. (See any algorithms text-
book, such as [1], for more about matrix multipli-
cation.) These fancy algorithms are not much use
in practice, however. It would be a daunting
prospect even to write an error-free program for
one of them, and the extra computation costs im-
posed by their complexity make them unlikely to
outperform the classic method in typical scenar-
ios.

Algorithm analysis is a vigorous and vital sub-
discipline of computer science, providing deep
new insights into the fundamental power and lim-
itations of computation, fodder for the develop-

ment of new mathematical techniques (mostly
combinatorial), and, not infrequently, efficient al-
gorithms that can have substantial impact on
practice. It is clear, however, that our analytical
techniques are far too weak to answer all our ques-
tions about algorithms. Computational experi-
ments are being used to suggest new directions for
research, to support or disprove conjectures, and
to guide the development of new analytical tools
and proof strategies.

This article presents examples from two broad
research efforts in experimental algorithmics: first,
to develop accurate models of computation that
allow closer predictions of performance, and sec-
ond, to extend abstract analyses beyond tradi-
tional questions and assumptions. We start with
a short tutorial on the notations and typical results
obtained in algorithm analysis.

A Tutorial on Algorithm Analysis
The selection problem is to report the rth-smallest
number in a collection of n numbers. For example,
r = 1 refers to the minimum of the collection, and
r = (n + 1)/2 is the median when n is odd. For con-
venience we assume that no duplicate numbers ap-
pear in the collection.

Figure 1 presents a well-known selection algo-
rithm. The n numbers are placed in an array called
A in no particular order. Each number has some
position from 1 to n in the array: the notation A[i]
refers to the number in position i, and i is called
an index. The notation -e lo means "set e equal
to the value of lo".

The main operation of algorithm S is to choose
a partition element x from a contiguous subarray
of A defined by indices lo and hi and to partition
the subarray by rearranging its contents so that
numbers smaller than x are to its left and num-
bers larger are to its right. This puts x at some lo-
cation p; that is, A[p] = x. After partitioning, we
know that x is the pth-smallest number in A. We
are looking for the rth-smallest number: depend-
ing on the relationship of p to r, the algorithm ei-
ther stops or repeats the process on one side or
the other of p.

To analyze the algorithm, we derive a function
that relates input size to the cost of the compu-
tational resources used by the algorithm. The pre-
cise meanings of "input size" and "cost" depend

MARCH 2001
	

NOTICES OF THE AMS
	

305



upon the model of computation being assumed.
Here we shall use the simple RAM (random access
machine) model under which all scalar numbers
have unit size and all basic operations on scalar
values—such as arithmetic, comparison, and copy-
ing of values—have unit cost. Therefore the input
size is n.

For our purposes it is sufficient to define cost
as the number of times x must be compared to el-
ements from A[lo . . . hi] during the partitioning
step. A partitioning method is known (described
later in this article) that uses hi - lo comparisons
to partition subarray A[lo . . . hi] of size hi - lo + 1.
The only problem remaining is to count up total
costs.

Obviously, the total cost depends on which par-
tition element x = A[lo] is used each time: we may
get lucky and find p = r after just one partitioning
operation, or we may have to repeat the process
several times. The worst-case cost, Cw(n), is the
maximal number of comparisons over all arrays of
size n and all r: a worst-case scenario holds, for
example, when r = n and p becomes 1, 2, ... , n in
successive partitioning stages. Letting t denote
the cost of a single comparison of x to an array el-
ement, we have Cw(n) =	 t(n - i).

The average-case cost, Ca(n, r), is found by av-
eraging over some probability distribution on ar-
rays of size n. Assume here that every number in
the collection is equally likely to be in position lo
and selected as the partition element x. Then we
have:

Ca(1, 1) = 0
Ca(n, r) = t(n - 1)

E Ca(n - p,r - p) +
p=1

Ca(n — p, r)) .
p=r+i

Note that establishing the correctness of this re-
cursive formula requires a proof (which exists)
that the partitioning operation preserves the prop-
erty that each number in the subset is equally
likely to end up in position A[lo] and be chosen as
the partition element at a later stage.

Note also that the cost of this, and any, algorithm
is described by a collection of cost functions that
correspond to different scenarios. Another cost
function might be obtained with other probabilis-
tic assumptions, or a different definition of cost
might be used under some other model of com-
putation.

The first goal in algorithm analysis is the
classification of cost functions according to com-
plexity classes as defined below. Throughout, we
assume that f (n) and g(n) map nonnegative inte-
gers to positive real numbers.

Definition: f(n) E 0(g(n)) if there exist positive con-
stants c and no such that f (n) c • g(n), V n no.

Definition: f (n) E C(g(n)) iff g(n) c 0(f (n)).

The statements below are typical of the kinds
of results obtained in classic algorithm analysis.

• Any correct selection algorithm must at least
examine every element of A. Therefore, any al-
gorithm that solves the selection problem must
have a worst-case cost function in C1(n). This
is called a lower bound on the problem of se-
lection.

• It is easy to see that Cw(fl) E 0(n 2 ). We have
a complexity gap between the 0(n 2 ) worst-
case bound and the C2(n) lower bound on the
problem. Complexity gaps generate research
questions: Does an 0(n) algorithm exist? Or
should the lower bound be raised to, say,
1(n 2 ), because selection is fundamentally
harder than the first lower bound indicates?
Or is the lower bound somewhere in between,
perhaps at 0(n log n)?

• In fact, a variation on algorithm S is known that
has 0(n) worst-case cost, thus closing the
complexity gap. The variation uses an elabo-
rate strategy for choosing the partition element
at each stage and is generally considered too
complicated and expensive to be useful in
practice.

The goal of the asymptotic analyses above is to
place cost functions into complexity classes, while
the goal of exact analysis is to find closed forms
that retain constant factors in the leading terms.
A closed form for Cw is easy to obtain. Also, it can
be shown that:

Ca(n, r) = t [2 [(n + 1)Hn - (n + 2 - r)Hn+i-r
-(r + 1)Hr + + 5/3]

- Orn/3 - 6/-1/3 - 2 Orn6ri / 3]

where Hn is the nth harmonic number and 6rn is
the Kronecker delta function. This implies that
Ca(n, r) E 0(n) (see Knuth [5], Exercise 5.2.2.31, for
details).

Memory Sensitive Models of Computation
In the good old days (say around 1970) it was pos-
sible to obtain quite accurate predictions of pro-
gram running time by inserting appropriate time
units for the constants (like t above) in an exact
analysis using the RAM model of computation.
Nowadays, however, the RAM model is inadequate
to the task.

For example, consider the seemingly innocu-
ous instruction x A[lo] in Step 2 of our exam-
ple algorithm. The actual work to carry out this
instruction is performed in a computer by the Cen-
tral Processing Unit (CPU). The instruction involves
about three CPU operations: (1) calculate the mem-
ory address of A[lo], (2) fetch the value from that

1
+ -

n

306
	

NOTICES OF THE AMS
	

VOLUME 48, NUMBER 3



memory address, and then (3) store the value at
the memory address associated with x. (Normally,
array addresses need to be calculated, but scalar
addresses do not.)

A fast modern CPU is capable of performing
each operation in about a nanosecond. But the
CPU may be forced to wait upon a slow memory,
and the additional time needed for the fetch and
store operations can vary by enormous factors, de-
pending on exactly where A[lo] and x reside in the
memory hierarchy. Figure 2 gives a simplified di-
agram of a memory hierarchy ranging from a small,
fast, and expensive register set, to a huge, slow, and
inexpensive secondary memory.

I CPU1

Registers

Level I Cache

Level II Cache

Main Memory

Secondary Memory

Figure 2: The memory hierarchy, simplified.
This drawing is not to scale.

The idea is to keep values that the CPU needs
close to it in the fastest memory, but of course not
everything will fit. Therefore, memories are de-
signed to retain values that will be needed soon and
to evict unneeded values by moving them back to
slower memory. It is not always possible to pre-
dict which values will be needed next, so most
memory levels operate under some kind of prin-
ciple of locality, which says that values that have
been recently accessed, or that are near values re-
cently accessed, are likely to be needed soon. There
may be a different version of this principle at each
level of the hierarchy, and wide variations exist in
computing environments with respect to number
of levels, sizes of memories, and the eviction poli-
cies adopted.

Consider now the cost of fetching the value
A[lo]. If that value has been used recently, it may
be in a register, and the fetching cost is negligible.
Decisions about which elements get to stay in reg-
isters are primarily made by the compiler, a trans-
lation program that converts the original program
to machine-readable language. It is an NP-hard
problem (about which more later) to make optimal
decisions about placing variables in registers; there-
fore efficient optimal algorithms are not likely to
be found. Modern compilers incorporate heuristic
strategies for deciding which values are to be
stored in registers.

If A[lo] is not in a register, it may be in the
Level I or Level II cache. Typical cache access times
on workstations are around 5 to 10 nanoseconds.
Cache sizes and eviction policies are part of the
overall design of the computer. If not in a cache,
A[lo] is likely to be in main memory, with access
times around 50 to 100 nanoseconds. But it is pos-
sible that A[lo] has been placed in secondary mem-
ory, which may have access times greater than
106 nanoseconds. Main-to-secondary eviction poli-
cies are incorporated into the operating system.

Whereas the abstract RAM model assigns unit
cost to one access of A[lo], true memory access
times can vary by factors as large as a million.
Without a decent model of the memory hierarchy,
we cannot predict whether a given program will
take one minute or two years to run. (Of course,
this worst-case scenario is not typical, but pre-
dictions about program running times that are off
by three or more orders of magnitude are not un-
usual.)

Several threads of research in experimental al-
gorithmics are concerned with developing new
models of computation that incorporate aspects
of the memory hierarchy, especially with respect
to caches and to policies at the main-to-secondary
memory levels.

In 1996, for example, LaMarca and Ladner in-
troduced a RAM model with a two-layer memory
(cache and main memory). They and several other
researchers have since been able to reanalyze clas-
sic algorithms and data structures under the new
model. These results, obtained through a combi-
nation of analytical and experimental approaches,
have produced new theorems and new analysis
techniques, better predictions of program perfor-
mance, faster programs, and clear indications that
our "common sense" understanding of what con-
tributes to program efficiency is due for revision.

To get a feeling for the type of mathematics in-
volved, consider reanalyzing our selection algo-
rithm under the new two-layer model. We need to
be more explicit about the partition step: Figure 3
shows one well-known partitioning method that
performs hi - lo array-element comparisons for
subarray A[lo ...hi] of size hi - lo + 1.

The new model organizes main memory and the
cache into contiguous blocks of scalar values. Main
memory contains M blocks named mo through
mm-1, and the cache holds C blocks named co to
cc _ 1 , with C « M. Suppose an operation accesses
element i which resides in block nix. Then i and
the entire block containing it are transferred to
cache block cy, where y x mod C. This transfer
incurs a cost of tout, but any subsequent access of
an element in block cy will have smaller cost tin.
This block will be evicted from the cache and
sent back to main memory when another element
is accessed from some block mz such that
y E- z mod C.

MARCH 2001
	

NOTICES OF THE AMS
	

307



Partition.
2.1. Set x	 A[lo]. Set -e	 lo + 1 and h — hi. Iterate the following three steps.

1. Use -e to scan up from the left, comparing each A[-e] to x. Stop when either A[e] > x or _e = h.
2. Use h to scan down from the right, comparing each number A[h] to x. Stop when A[h] < x or h = $.
3. If _e < h, swap (exchange) the numbers A[-e] and A[h] and go to Partition Step 2.1. Otherwise, if = h, go to
Step 2.2 below.

2.2. The above process maintains the invariant that all numbers in A[lo + 1 ... -e — 1] are less than x and numbers in
A[h + 1... hi] are greater than x. At this point we also have -e = h. If A[-e] < x, swap A[lo] and A[-e] and set p -e;
otherwise, swap A[lo] and A[-e — 1] and set p -e — 1. Partitioning is now complete.

Figure 3. Partitioning A[lo . hi] around x = A[lo].

308

Now suppose subarray A[i . j] resides in mem-
ory block mx. The access cost for a particular array
element A[k] , with i k j, is therefore

• tout if this is the first access of A[k] or any of
its block neighbors A[i j].

• tou t if an array element from any block y such
that y x mod C has been accessed more re-
cently than any element from block x (caus-
ing an eviction).

• tin otherwise.
Homework Problem. Write new formulas for

Cw(n) and Ca(n,r) under this model. Perform an
exact analysis on both formulas. Would an alter-
native partitioning method, say one that traverses
array elements from left-to-right rather than both-
ends-toward-the-middle, give a lower memory ac-
cess cost?

Clearly even this simple two-level model greatly
complicates the analysis task. But the tighter analy-
sis does appear to be well worth the effort in many
cases. Jon Bentley (personal communication)
reports that simple program modifications can re-
duce cache effects and improve running times by
factors as large as 16. For a nice introduction to
memory-sensitive models of computation, see
LaMarca and Ladner's [6] analysis of four sorting
algorithms under the cacheing model. They draw
conclusions about efficiency that flatly contradict
a common lore based on traditional analyses and
obtain much tighter predictions of program run-
ning times than had been possible before.

Another research effort in memory-sensitive
analysis concerns algorithms for data sets that
must reside in secondary memory because they are
too large to fit in main memory. Important appli-
cations for such algorithms include Web search en-
gines that peruse directories containing hundreds
of millions of entries, many-body simulation al-
gorithms for research problems in the natural sci-
ences, and algorithms for image processing and sci-
entific visualization. The RAM model can also be
extended to models that account for data trans-
fers between main and secondary memory (which
follow different rules from caches). New algorithms
and analyses of old algorithms under these new
models can result in huge improvements to pro-
gram running times. Reductions of running times

NOTICES OF THE AMS

from several weeks to a few hours have been re-
ported in the literature.

Heuristics for NP-Hard Problems
We now turn to another research thread in exper-
imental algorithmics. The most interesting ques-
tion about any solvable computational problem is
whether it is tractable or intractable. A problem is
tractable if it can be solved in polynomial time; that
is, there exists an algorithm for the problem that
has worst-case cost in 0(nk ) for some constant k.
A problem is intractable if no such algorithm ex-
ists. For convenience we define intractable prob-
lems to be those having exponential lower bounds
in (1(c n ) for some constant c > 1 and ignore the
fact that there exist functions like nl°g n that are
neither polynomial nor exponential.

Perhaps the most important technical idea to
arise from the study of algorithms and problem
complexity is the identification of problems that
are NP-complete and NP-hard. Hundreds of prac-
tical problems that arise naturally in all spheres
of industry, commerce, science, and government
work have been identified as NP-complete and/or
NP-hard. The technical definitions of these two
problem classes are rather too involved to fit into
this article, but the point is this: it is an open ques-
tion whether these problems are tractable or in-
tractable. That is, for every problem in these classes
there is a huge complexity gap between an expo-
nential worst-case bound on the best algorithm
known, and a polynomial lower bound on the prob-
lem complexity. Do efficient algorithms exist for
these problems, or are they fundamentally too
hard to be solved in polynomial time?

For technical reasons, "NP-complete" refers to de-
cision problems, which are always phrased as yes-
or-no questions (Does input instance I have prop-
erty P?). "NP-hard" can refer to more general types
of problems, such as optimization problems that in-
volve minimizing or maximizing some quantity as-
sociated with the desired solution. The two classes
are related as follows: Let X and Y be NP-complete
problems, and let Z be NP-hard but not a decision
problem. Then (1) a polynomial time algorithm for
X exists if and only if one exists for Y; (2) if a poly-
nomial time algorithm to produce optimal solutions

VOLUME 48, NUMBER 3



for Z exists, then polynomial algorithms exist for
X and Y.

Thus, discovery of a polynomial-time algorithm
for any NP-complete or NP-hard problem would
have profound implications about the complexity
of several hundred other problems of great prac-
tical interest, besides earning the discoverer a cool
million dollars. (To learn more about the million-
dollar Millennium Prize Problems announced by the
Clay Mathematics Institute, visit www. c I aymath
org/p ri ze_probl ems /.) Proof of an exponential
lower bound for any NP-complete problem would
reverberate similarly. To learn more about the the-
ory of NP-completeness, see the classic text by
Garey and Johnson [3]. Three famous NP-hard
problems are described below.

Traveling Salesperson. You are given a graph
or digraph G = (V, E) with positive-valued weights
on its edges. A Hamiltonian tow of G is a closed
path over vertices and edges that visits each ver-
tex of G exactly once. The cost of the tour is the
sum of the weights of edges traversed on the path.
The problem is to find a minimum-cost Hamil-
tonian tour of any given graph G.

This problem is of interest to traveling sales-
persons who wish to tour all cities in a sales re-
gion while minimizing total travel cost. It is also
of interest to any organization that must sched-
ule regular tours of delivery trucks, like the U.S.
Post Office and your favorite grocery store chain.

Bin Packing. Given a list of n weights, all from
the real number range (0, 1), the problem is to or-
ganize the weights into unit-capacity bins so as to
minimize the number of bins used. For example,
the weight list containing 0.4, 0.3, 0.6, 0.5 could be
grouped into (0.4, 0.3), (0.6), (0.5), which uses three
bins, or into (0.4, 0.6), (0.3, 0.5), which uses only
two bins.

This problem is of interest to anyone walking
into a lumberyard with a list of board lengths
needed for a construction project who must group
the lengths so as to minimize the number of stan-
dard 8-foot boards that must be purchased. It is
of interest to any construction supply firm that
must cut stock from unit-sized pieces. The prob-
lem is also of interest to anyone who wants to
back up files by copying onto unit-sized floppy
disks while minimizing the total number of disks
needed. A two-dimensional version of the problem
(where weights come in (x, y) pairs) is of interest
to any printer or pattern cutter who must lay out
parts on unit-sized rectangular sheets so as to
minimize the total number of sheets needed.

Graph-Coloring. Given a graph G, a coloring of
G is an assignment of colors to vertices under the
constraint that no two vertices sharing an edge can
have the same color. The graph-coloring problem
is, for any given graph G, to find a coloring that
minimizes the total number of distinct colors used.

Graph-coloring is a generalization of the famous
map-coloring problem to nonplanar graphs.

Graph-coloring is of interest to a university reg-
istrar who assigns times (colors) to courses (nodes),
under the constraint that no two courses with the
same professor can meet at the same time. It is of
interest to anyone who needs to create work sched-
ules or timetables that avoid certain kinds of con-
flicts. And graph-coloring arises in the context of
the compiler task, mentioned earlier in this arti-
cle, of assigning values to registers so as to mini-
mize memory access costs.

Recall that the. CPU can work only on values that
are in registers. Memory costs are incurred when
a value must be transferred from another memory
to a register (here we assume that this transfer cost
is constant).

Consider the sequence of instructions that oc-
curs at the beginning of our selection algorithm S:

(1) lo —	 1
(2) hi — n
(3) x A[lo]
(4) 8 1o+1
(5) h —	 hi

Two values interfere if one must be accessed be-
tween two accesses of the other. When two values
interfere, we want to place them in different reg-
isters so as to avoid the cost of evicting one to make
room for the other. For example, lo and hi inter-
fere because accesses of hi on line (2) come between
accesses of lo on lines (1) and (3) and also because
lo is accessed between lines (2) and (5). If both lo
and hi were assigned to register R1, then these val-
ues would incur the following memory transfer
costs: (1) fetch lo; (2) evict lo, fetch hi; (3) evict hi,
fetch lo; (5) evict lo, fetch hi; for a total of seven
memory transfers. These two values could coex-
ist peacefully if placed in registers R1 and R2, al-
though this might cause interference difficulties
with other values.

More generally, given a sequence of instruc-
tions in a program, we can build an interference
graph G where nodes represent program values
and an edge is placed between two nodes if their
values interfere. The problem is to assign a mini-
mum number of registers (colors) to values (nodes)
such that interfering values receive distinct regis-
ter assignments.

As is the case with all NP-hard problems, no
polynomial-time algorithm for finding minimal
colorings is known, and it is not known whether
such an algorithm exists. While the theoreticians
struggle with the general problem, the compiler
writers must settle for coloring algorithms that use
a "small number" of colors, if not the absolute
minimum. Dozens of algorithms have been pro-
posed, which fall into some broad categories,
broadly sketched in the list below. (Colors are

MARCH 2001
	

NOTICES OF THE AMS
	

309



310

assumed to be numbered 1 through k, for some
appropriate k.)

Greedy Algorithms. A greedy algorithm may
iterate over nodes, assigning to each the least-
numbered color that does not violate any edge
constraint. Or an algorithm may iterate over col-
ors, assigning each color to a large independent set
(finding a maximum independent set is an NP-
hard problem). Greedy algorithms are often re-
peated with different node or color orderings each
time, and the best solution found is saved. These
algorithms are fast but may produce colorings
using many more colors than necessary.

Branch-and-Bound. Systematically generate col-
orings of G, avoiding redundant colorings and un-
productive starts, and save the best one found
within a given time limit. Note that even on mod-
erate-sized graphs only a tiny fraction of colorings
can be generated from the enormous space of pos-
sibilities; various strategies for generating the best
ones first may be considered.

Heuristic Search Methods. Start with a valid col-
oring. "Step" to another valid coloring by randomly
modifying the current coloring in some small way
(perhaps by changing the color of one node). Con-
tinue stepping until a good coloring is found. Steps
toward better colorings are of course preferred, but
it is important occasionally to allow steps toward
worse colorings to avoid being trapped in a local
minimum. A rich variety of stepping rules and
strategies for controlling the stepping process
have been proposed.

These general strategies can be modified to fit
many varieties of NP-hard problems, including
Traveling Salesperson and Bin Packing. In some
cases (like these two), strategies that exploit
special problem structures are known that out-
perform the general techniques. Note that the
analysis of algorithms for NP-hard problems usu-
ally involves finding functions and complexity
classes for two interesting quantities: algorithm ef-
ficiency and the quality of solution produced by
the algorithm.

In the case of heuristic algorithms like those
sketched above, average-case analyses are
extremely difficult to obtain even under the sim-
plest computational and probabilistic models. An-
alytical statements about how a coloring algorithm
performs on, say, random graphs with edge prob-
ability p, are rare, and statements about perfor-
mance on "graph structures typical of register
interference problems" are far beyond our ana-
lytical capabilities.

Computational experiments can be used to en-
rich our understanding of these heuristic algo-
rithms for NP-hard problems. Experiments have
been used to direct the discovery of new algo-
rithms and new analyses, to allow prediction of
algorithmic responses to variations in input
properties, and to sort out which approaches work

NOTICES OF THE AMS

best in which kinds of scenarios.
Indeed, graph-coloring has been the focus of

what might be termed a new mode of research in
algorithmic studies: a coordinated, multiparticipant
effort to identify the state-of-the-art in algorithmic
performance for some given problem. Since 1992
the DIMACS Center (an NSF- and corporate-funded
center for research in discrete mathematics and
theoretical computer science, located at Rutgers
University) has sponsored an annual Implementa-
tion Challenge to encourage and promote experi-
mental research on algorithms for specific prob-
lems. The focus on a particular problem allows a
great deal more coordination and interaction than
might otherwise be possible by independent re-
searchers.

The second DIMACS Challenge (1993) [4] con-
cerned algorithms for three NP-hard problems:
graph-coloring, finding large cliques in graphs,
and finding satisfying truth assignments for
Boolean formulas. While a great deal of progress
was made, one conclusion drawn at that work-
shop was that huge gaps remain in our under-
standing of the "best algorithms" for particular ap-
plications. Much more work remains to be done.

Besides the DIMACS Challenges, several other
venues for experimental research on algorithms
have appeared in the past decade. Two annual
conferences (WAE in Europe and ALENEX in North
America), the electronic Journal on Experimental
Algorithmics, and numerous small workshops have
all been developed to provide forums for re-
searchers to report on their experimental obser-
vations.

Questions of Methodology
Research in experimental algorithmics produces
new understanding of models, problems, algo-
rithms, and program efficiency. Another important
component of experimental algorithmics has been
the development of methods and techniques for
performing experiments on algorithms. As sug-
gested in the beginning of this article, the rela-
tionship between algorithms and programs and the
usual types of questions asked about algorithms
are not typical of those that arise in mathematical
modeling. Consequently, new problems of de-
signing and conducting experiments and of de-
veloping appropriate statistical tools can be iden-
tified. Some research questions concerning
methodologies for experimental analysis of algo-
rithms are sketched below. See [7] for more dis-
cussion.

How to Escape the Artifact? We study a perfect
abstract object (the algorithm) using an imperfect
measuring device (the computer). Difficulties
associated with numerical precision, nonrandom-
ness in pseudo-random number generators, and
inaccurate measuring tools can produce spurious
and erroneous results. Tools for measuring pro-

VOLUME 48, NUMBER 3



gram running times are notoriously quirky, and in
some contexts it can be quite difficult to find a de-
finition of "cost" that is useful, measurable, and
generalizable. New techniques are needed for iden-
tifying and minimizing the impact of artifact on
observation.

Sampling from Large and Infinite Spaces. It is
not possible to measure the performance of a
given graph-coloring algorithm over the space of
all graphs of a given size n, nor is it always feasi-
ble to sample from the space of all colorings of a
given graph. We need good methods for defining
and generating input classes and input samples to
support observations that can be generalized out-
side the realm of observation. For example, very lit-
tle is known about methods for extrapolating from
a finite data set to obtain the kind of asymptotic
statements about complexity classes (e.g., does
the data come from a function that is 0 (n2 )?) that
are of interest to computer scientists.

New Data Analysis Techniques. Computational
experiments on algorithms can produce enormous
data sets. Some sets are too massive to be amenable
to standard statistical techniques, so we must
either make do with fewer measurements or
develop faster techniques. Computational experi-
ments can be very interactive and iterative, and it
seems likely that new methods of data analysis can
be developed to take advantage of these
properties.

How Important Are Algorithms?
As the discussion in this article suggests, suffi-
ciently precise results for all but the simplest al-
gorithms, input models, and models of computa-
tion are quite difficult to obtain by purely analytical
methods. With our current techniques, asymptotic
analyses of algorithms are just barely adequate for
making very rough predictions about program run-
ning times. Some researchers have wondered if
we would be better off discarding our analytical
models and building new empirical models based
entirely on observations.

In an experiment to test the relevance of big-oh
algorithm analysis to practice, Bentley [2] describes
a race between two algorithms implemented under
extreme conditions. He implemented an 0(n) al-
gorithm (under the RAM model) using 1980's
low-end technology, which required 19.5n
milliseconds to run, and an 0(n3 ) algorithm in
high-end 1999 technology, which required 0.58n3
nanoseconds to run. At small n the cubic algorithm
dominates, and at large n the linear algorithm
dominates: Bentley found that even with this max-
imal difference in computing environments, the
crossover point was low, near n = 5, 800, where
both implementations required around 2 minutes
of running time. At n = 10 5 the 0(n 3 ) implemen-
tation with small coefficients required 7 days,

while the 0(n) implementation with huge coeffi-
cients took only 32 minutes.

This and other experiences reported in the lit-
erature suggest some rough guidelines about the
relative importance of algorithmic and environ-
mental factors: In typical scenarios changes in en-
vironment (such as switching computers, compiler
optimization level, or operating system; or im-
proving programmer skills) can affect running
times by factors in ranges between 2 and 100. Im-
provements on a larger scale can be obtained
through asymptotic improvements to algorithms,
by factors of 0(n) or more, and algorithmic im-
provements by factors below, say, 0 (log n) are not
likely to have much real impact on performance.

Continuing research in the new and rapidly de-
veloping field of algorithm experimentation will
allow us to refine these guidelines, to produce bet-
ter understanding of environmental effects, and to
generate better algorithms and tighter analyses.

Acknowledgment. I thank the editor, Harold
Boas, and an anonymous reviewer for several sug-
gestions for improving the clarity of this article.

References
[1] S. BAASE and A. VAN GELDER, Computer Algorithms: In-

troduction to Design and Analysis, Third Edition, Ad-
dison-Wesley, 2000. A very readable undergraduate
textbook.

[2] J. L. BENTLEY, Programming Pearls, Second Edition,
ACM Press and Addison-Wesley, 2000. Short articles
about the interface between theory and practice in
computer programming.

[3] M. R. GAREY and D. S. JOHNSON, Computers and In-
tractability: A Guide to the Theory of NP-Complete-
ness, W. H. Freeman and Company, 1979. A classic
introduction to the field.

[4] D. S. JOHNSON and M. TRICK, eds., Cliques, Coloring,
and Satisfiability: Second DIMACS Implementation
Challenge, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 26, Amer.
Math. Soc., 1996. Papers presented at the workshop.

[5] D. E. KNuTH, The Art of Computer Programming, Vol-
ume 3: Sorting and Searching, Addison-Wesley, 1973.
Classic results in algorithm analysis.

[6] A. LAMARCA and R. E. LADNER, The influence of caches
on the performance of sorting, Proceedings of the 8th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ACM, 1997, pp. 370-379. A very readable
technical paper.

[7] C. McGEocH, Towards an experimental method for
algorithm simulation, INFORMS J. Corn put. 8 (Win-
ter 1995). A survey of methodological issues, with
an extensive bibliography.

MARCH 2001
	

NOTICES OF THE AMS
	

311


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

