
Boltzmann Sampling of Unlabelled Structures

Philippe Flajolet ∗ Éric Fusy ∗ Carine Pivoteau ∗

Abstract

Boltzmann models from statistical physics combined with

methods from analytic combinatorics give rise to efficient al-

gorithms for the random generation of unlabelled objects.

The resulting algorithms generate in an unbiased manner

discrete configurations that may have nontrivial symme-

tries, and they do so by means of real-arithmetic computa-

tions. We present a collection of construction rules for such

samplers, which applies to a wide variety of combinatorial

classes, including integer partitions, necklaces, unlabelled

functional graphs, dictionaries, series-parallel circuits, term

trees and acyclic molecules obeying a variety of constraints,

and so on. Under an abstract real-arithmetic computation

model, the algorithms are, for many classical structures, of

linear complexity provided a small tolerance is allowed on

the size of the object drawn. As opposed to many of their

discrete competitors, the resulting programs routinely make

it possible to generate random objects of sizes in the range

104–106.

Introduction

In combinatorics, a random generation algorithm (also
called a “sampler”) produces objects under the con-
straint that two objects of the same size should have
equal chances of being drawn. The objects of inter-
est here are the usual ones of discrete mathematics,
for instance, words, tilings, trees, graphs, and permu-
tations of various sorts. In the literature, this topic is
approached under different perspectives, including ab-
stract complexity theory [13], combinatorics, algorith-
mics (design and/or engineering), as well as probability
theory (Markov chains and Monte-Carlo methods).

Random generation, in a spirit close to ours, is ex-
plored in the recently published fascicles of Knuth’s The
Art of Computer Programming, Volume 4, dedicated to
combinatorial algorithms [19]. See also a manuscript of
the book Combinatorial Generation by Frank Ruskey
that is available on the web. A prime motivation in this
area is the testing of combinatorial properties of struc-
tures (e.g., conjectured structural properties, quantita-
tive aspects) as well as properties of the corresponding

∗Projet Algo, INRIA Rocquencourt, B. P. 105, 78153 Le
Chesnay Cedex, France

algorithms (with respect to either correctness or effi-
ciency). In the case of parameters that are not exactly,
i.e., analytically, solvable, random generation makes it
possible to launch simulations studies: Denise et al.
have for instance developed combinatorial generators for
simplified models of genetic sequences, with the goal
of aiding users to isolate signal (unexpected events)
from noise (statistically unavoidable regularities); see
the GenRGenS prototype [5]. The approach known as
random testing in software engineering creates the need
to generate random instances of program inputs that
obey various sorts of syntactic and semantic constraints,
some of the corresponding problems being amenable to
random generation as we intend it here (Gouraud et
al. [4]).

Our objective here is to come up with a reasonably
general methodology that is adapted to the design of
reasonably efficient samplers. What we address is the
collection of all combinatorial structures that can be
described by means of a basic set of constructors. Pre-
cisely, we focus in this paper on the unlabelled classes,
which are defined from basic elements by means of the
fundamental constructions that form disjoint unions,
cartesian products, sequences, sets or multisets, and cy-
cles, this possibly combined with additional conditions
on the number of components. Such constructions are
basic to modern presentations of combinatorial enumer-
ation [2, 9, 14, 23]; see Fig. 1. The difficulty is that
the objects are not “rigid”—in general they possess in-
ternal symmetries—so that specific algorithms must be
designed to generate them in an unbiased way. A gen-
eral method of random generation dealing with sym-
metric classes was proposed by Jerrum [17], based on
Markov chains—however, the distribution is bound to
approximate uniformity. In contrast, our approach pro-
vides perfect uniformity, drawing some of its inspiration
from the “recursive method” pioneered by Nijenhuis and
Wilf [21], and later extended in [10]. It bases itself in
an essential manner on the notion of Boltzmann sam-
plers, as developed by Duchon et al. in [8]. It is however
appreciably different since we treat here the unlabelled
case, where symmetries (automorphisms) are to be suit-
ably handled. A striking outcome of this orbit of ideas
is the possibility of generating plane partitions [3] and

Neutral class 1 composed of a unique element (ε) of size 0
Atom Z composed of a unique element (vertex, letter, ...) of size 1
Sum C = A+ B Union of disjoint copies of A,B
Product C = A× B Cartesian product, forms ordered pairs
Sequence C = Seq(A) Forms all sequences (α1, . . . , α`)
Cycle C = Cyc(A) Forms cycles, i.e., sequences up to cyclic shift
Multiset C = MSet(A) Forms multisets, i.e., sets with repetitions allowed
Powerset C = PSet(A) Forms sets, i.e., multisets with all multiplicities 1.

Figure 1: A description of basic constructions.

labelled planar graphs in small polynomial time [11].
Plan. Section 1 introduces the general framework

of unlabelled constructions and Boltzmann models un-
der which we are operating thoughout. Generating
functions play an essential rôle. Then, we provide a
complete collection of rules that make it possible to
produce a Boltzmann generator automatically from a
structural specification (Section 2). Extensions to sets
without repetitions and to cardinality constraints are
given next (Section 3). Several classes can be sampled
in this way, and the corresponding generated objects are
displayed in Figure 8. Then, we discuss in Section 4 the
way Boltzmann samplers can be adapted to produce
objects within a given range of sizes. Our algorithms
are often of linear complexity under an abstract real-
arithmetic model, as soon as a tolerance is allowed on
size (typically, a few percent); they are usually at most
quadratic if exact-size random generation is imposed.
Issues relative to the real-arithmetic model of compu-
tation and implementation are briefly discussed in the
final section, Section 5.

1 Combinatorial classes and Boltzmann models

A combinatorial class C is a finite or denumerable set
endowed with a size function (denoted by | · |). We
systematically let Cn represent the subclass of objects
of size n and Cn be the corresponding cardinality. The
(ordinary) generating function (GF, for short) of class
C is

C(z) :=
∑
n≥0

Cnzn ≡
∑
γ∈C

z|γ|.

The Boltzmann model associated to C and to the posi-
tive parameter x ∈ R is the probability distribution that
assigns to an element γ ∈ C a probability proportional
to an exponential of its size:

P(γ) =
x|γ|

C(x)
.

(Only values of x in the range [0, ρC [, where ρC is the
radius of convergence of C are considered.) Thus, in

a Boltzmann sampler, the size of the object produced
becomes a random variable, denoted by N , with prob-
ability distribution

(1.1) P(N = n) =
Cnxn

C(x)
.

Relaxing a priori the constraint of operating with
objects of a fixed size induces, as we shall see, tangible
algorithmic gains.

The constructions we deal with are summarized in
Figures 1 and 2; details can be found in the publicly
available book Analytic Combinatorics [9]. Roughly
Seq forms linear lists, Cyc forms circular lists, MSet
(resp. PSet) form heaps of objects with (resp. with-
out) repetitions allowed (Figure 1). A class is con-
structible if it admits a complete specification in terms of
the basic classes 1,Z involving only the basic construc-
tors. We also consider constrained constructions, where,
e.g., Cyck forms cycles consisting of exactly k compo-
nents. Recursive specifications of classes are allowed.
This language of constructions then makes it possible
to describe an infinite variety of combinatorial types
by means of “grammars”, which resemble context-free
grammars augmented with commutation or cyclic-shift
rules. Our main result here is that for all such types,
a Boltzmann sampler having good complexity-theoretic
properties can be automatically obtained.

Theorem 1.1. Let C be any combinato-
rial class specifiable (possibly recursively)
from finite sets using the constructions
{+,×,Seq,Seqk,MSet,MSetk,Cyc,Cyck}. As-
sume given an oracle for values of generating functions
at positive points. Then, there exists an effective
process that produces a Boltzmann sampler ΓC(x) for C
such that the time complexity of a generation is, in the
worst-case, linear in the size of the object produced.

In this statement an oracle is an external procedure
that, given a specification of a class F and a value x,
outputs the value F (x) of the GF of F at x, provided

C = 1 C(z) = 1
C = Z C(z) = z

C = A+ B C(z) = A(z) + B(z)
C = A× B C(z) = A(z)×B(z)

C = Seq(A) C(z) = (1−A(z))−1 (quasi-inverse)

C = Cyc(A) C(z) = Log A(z) Log f(z) =
X

(ϕ(k)/k) log(1− f(zk))−1

C = MSet(A) C(z) = Exp(A(z)) Exp(f(z)) = exp
X

(1/k)f(zk)

C = PSet(A) C(z) = Exp(A(z)) Exp(f(z)) = exp
X

((−1)k−1/k)f(zk)

Figure 2: Translation of the constructions of Fig. 1 into GFs.

0 < x < ρF (with ρF the radius of convergence
of F). In the core of this paper, we adopt the real
domain R as our abstract computation domain, so
that complexity results stated here are under an exact
real-arithmetic model. (We defer to the last section
practical realizability considerations.) For clarity of
the discussion, we also assume that the oracle returns
its result in unit time: more sophisticated complexity
models taking into account bit complexity and exactness
of representations could be investigated (see Denise and
Zimmermann [6] for a parallel discussion), but doing so
here would exceed the page limitations of this abstract.

Observe finally that Theorem 1.1 describes the lin-
ear time complexity of a Boltzmann generator operat-
ing freely under the sole effect of its parameter x ∈ R≥0.
Section 4 will discuss the way to add to it some size con-
trol, so as to obtain objects in a predetermined range of
size values, while preserving low polynomial time com-
plexity.

2 Design rules for basic constructions

The goal of this section is to describe the rules by which
a Boltzmann sampler can be assembled, given the spec-
ification of a combinatorial class in terms of the con-
structions listed in the statement of Theorem 1.1. This
whole section thus constitutes the proof of Theorem 1.1.
We make use here of classical discrete probability distri-
butions listed in Figure 3, for which generators having
a linear-time complexity (in terms of the value of the
output) are well known [7, 8]. Generically, for a class
C, we let ΓC(x) denote a Boltzmann sampler that re-
turns an object of C according to the Boltzmann model
of parameter x.

2.1 Unions, products, and sequences
(+,×,Seq). The constructions of disjoint union
and cartesian product are treated here in the same way
as in the labelled case, following the principles of [8].
To wit:

— Disjoint union. If C = A + B, then ΓC obtains by

a Bernoulli switch based on the probabilities A
C , B

C
that triggers either a ΓA or a ΓB:
(2.2)

ΓC(x) := Bern
(

A(x)
C(x)

,
B(x)
C(x)

)
−→ ΓA(x)

∣∣ ΓB(x).

— Cartesian product. If C = A× B, then

(2.3) ΓC(x) := 〈ΓA(x),ΓB(x)〉.

The verification by elementary probability theory is im-
mediate from the definition. The remarkable property,
which is at the origin of large algorithmic benefits, is
that cartesian products are produced unconditionally by
two independent calls to the component samplers.

Next, for X an integer values random variable and
f a procedure, note

(2.4) X =⇒ f

to mean: “if X = r, then launch f1, . . . , fr where each
fj is an independent call of f”. A consequence of the
definitions is that sequences are easily produced:

— Sequences. If C = Seq(A), then, with nota-
tion (2.4):

(2.5) ΓC(x) := [Geom(A(x)) =⇒ Γ(A(x))] .

(Proof [8]: Write C = 1 + A × C and unwind the
recursion.)

Equipped with the design rules of Eq. (2.2)–(2.5),
it is possible to generate in linear time in the size
of the result any object of a class described by an
unambiguous regular expression or a deterministic finite
automaton. (More generally, transfer matrix models
can be accommodated.)
Example 1. Vertically convex (V.C.) polyominoes. These
are connected assemblies of unit squares with vertices at the
points of the discrete plane Z×Z, such that the intersection
with any vertical line is an interval. Pólya and Temperley

Distribution Notation Definition
Bernoulli Bern(p1, . . . , pm) P(k) = pk (with

∑
pj = 1)

Geometric Geom(λ) P(k) = λk(1− λ) (with 0 ≤ λ < 1)
Poisson Pois(λ) P(k) = e−λ λk

k!

Logarithmic Loga(λ) P(k) = 1
L(λ)

λk

k (with L(λ) = log(1/(1− λ)), 0 ≤ λ < 1)

Figure 3: Distributions of use in Boltzmann sampling.

Define the probability distribution relative to A and x:

(2.6) P(K ≤ k) =
Y
j≤k

exp

„
1

j
A(xj)

«
.

Let Max Index(A; x) be a generator according to this
distribution (using the classical “inversion method” [7,
§2.1] and [18, §4.1]).

Algorithm ΓMSet[A](x) :
γ ← ∅; k0 ←Max Index(A; x);
for j from 1 to k0 − 1 do

γ ← γ,
h
Pois

“
A(xj)

j

”
=⇒ copy(j, ΓA(xj))

i
γ ← γ,

h
Pois≥1

“
A(xk0)

k0

”
=⇒ copy(k0, ΓA(xk0))

i
return µ.

Figure 4: The rule producing a Boltzmann sampler for
MSet.

first found, by means of certain functional equations, the
rational generating function

V C(z) =
z(1− z)3

1− 5z + 7z2 − 4z3
.

Hickerson [16] has provided what amounts to an unambigu-
ous regular language description, which can then be trans-
lated automatically into a Boltzmann sampler. That sam-
pler can equivalently be viewed as a stochastic automaton
with transitions that are rational functions of the Boltzmann
parameter x. Here is for instance a polyomino of size 275,

obtained in this way upon using a value of x close to

ρV C
.
= 0.31195. �

2.2 Multiset construction (MSet) The multiset
construction applied toA builds the class C = MSet(A)
of all finite multisets, which can alternatively be viewed,
up to combinatorial isomorphism, as an infinite product

(2.7) C = MSet(A) ∼=
∏
α∈A

Seq(α).

(Sweep over all elements α ∈ A and retain, for each α,
an arbitrary sequence of copies of α.) This gives rise to

the generating function equations

C(z) =
∏
α∈A

(1− z|α|) ≡
∏
n≥1

(1− zn)−An(2.8)

= exp
∑
k≥1

1
k

A(zk) ≡
∏
k≥1

exp
(

A(xk)
k

)
.

There the exp-log transformation, f ≡ exp(log(f)), is
used to reorganize the product. The equations (2.7)
and (2.8) are central in the construction of samplers for
multisets. We establish here:

Proposition 2.1. The generator ΓMSet[A](x) as de-
scribed in Figure 4 is a valid Boltzmann sampler for
MSet(A).

Proof. From the infinite product representation (2.7)
and the construction rule for sequences (2.5), a process
equivalent to ΓC(x) is obtained as follows: scan sequen-
tially all elements α ∈ A and output a random number
of copies of α, given by a law Geom(x|α|). In symbols
ΓC(x) ∼=

∏
α∈A αGeom(x|α|). This is of course not an

algorithm as the loop is in general infinite.
Next, the following lemma expresses the decompo-

sition of a geometric random variable as an infinite sum
of Poisson variables.

Lemma 2.1. Let (Yi)i≥1 be a sequence of independent
random variables such that Yi ∈ Pois(λi/i) with λ < 1.
Then the sum S =

∑
i≥1 iYi satisfies S ∈ Geom(λ).

(The verification is by characteristic functions or prob-
ability generating functions, using the exp-log transfor-
mation.)

Equipped with Lemma 2.1, we can transform the
abstract infinite-product Boltzmann sampler as follows:
(2.9)

ΓC(x) =
∏
α∈A

α
P

i i Pois(xi|α|
i) [Lemma 2.1]

=
∏

i

∏
α∈A

αi Pois(xi|α|
i) [interchange of Π’s]

=
∏

i

∏
β∈A�i

βPois(x|β|
i) [A�i := {〈α, α, . . . , α〉︸ ︷︷ ︸

i copies

}]

Next we need a basic program transformation.

Lemma 2.2. Given a class B and a constant c > 0, the
process P :

∏
β∈B βPois(cx|β|) is realized by the algorithm

A : [Pois(cB(x)) =⇒ ΓB(x)], with the notation (2.4).

Proof. The probability that P produces the multiset
{γr1

1 , . . . , γrs
s } (all ri > 0) is

(2.10)
s∏

i=1

(
cx|γj |

)rj

rj !

∏
γ∈B

e−cx|β| = c`xne−cB(x)
s∏

i=1

1
ri!

,

where ` =
∑

ri is the number of components and n =∑
ri|γi| is the size of the multiset. This same multiset is

produced by A as a sequence β1, . . . , β` in
(

`
r1,...,rs

)
ways,

each having probability

(2.11) e−cB(x) (cB(x))`

`!
x|β1|

B(x)
· · · x|β`|

B(x)
.

By (2.10) and (2.11), the two distributions induced by
P and A coincide.

We can now apply Lemma 2.2 to the last line of (2.9),
which describes an abstract Boltzmann sampler for
C = MSet(A). This gives us an algorithm that consists
of an infinite loop over all indices i of (2.9) controlling
Poisson generators. The final algorithm of Figure 4 then
results after computing separately the largest size k0

for which an element is generated (Eq. (2.6) of Fig. 4).
Proposition 2.1 is established.

Example 2. Nonplane unlabelled trees. These have

been enumerated by Cayley and Pólya. They are specified

by U = Z × MSet(U), with the multiset construction

expressing the absence of planar embedding. Algorithms to

generate such trees have been first given by Nijenhuis and

Wilf [21], but their method necessitates the maintenance of

large integer tables (of bit size Θ(n2) for trees of size n).

Here a recursive Boltzmann sampler results directly from

the multiset construction of Fig. 4. �

2.3 Cycle construction (Cyc) A cycle is a se-
quence of elements, taken up to circular permutation.
With ϕ(.) the Euler totient function, the generating
function corresponding to C = Cyc(A) is

(2.12) C(z) =
∑
k≥1

ϕ(k)
k

log
1

1−A(zk)
,

due to Pólya, Read, De Bruijn, Klarner, and others).
The design rule for cycles is given in Figure 5.

Proposition 2.2. The generator ΓCyc[A](x) of Fig-
ure 5 is a valid Boltzmann sampler for Cyc(A).

Consider the probability distribution

(2.13) P(K = k) =
ϕ(k)

kC(x)
log

“
(1−A(xk))−1

”
.

Let ReplicOrder(A; x) be a generator of this distribu-
tion.

Algorithm ΓCyc[A](x)
k ←− ReplicOrder(x);

j ←− Loga
`
A(xk)

´
;

w ←− a sequence of j calls to ΓA(xk);
return the cycle made of k copies of w cyclically chained.

Figure 5: The rule producing a Boltzmann sampler for
Cyc.

The idea behind the design rule of Fig. 5 is to build a
cycle as follows: (i) Generate a sequence w ∈ Seq(A) of
some length j, which is called the pattern; (ii) Copy the
pattern w a certain number k of times (the “replication
order”) and produce the cycle associated to wk. The
problem is to draw the pair j, k with the right probabil-
ities since a cycle can be obtained in various ways (e.g.,
[(ab)6] = [(ba)6] = [(abab)3]). We choose the replication
order according to the probability distribution (2.13)
and the length of the pattern according to a logarith-
mic distribution (Fig. 3 and 5).

Proof. By construction, the probability of the replica-
tion order to be k and of the length of the pattern to be
j is: P(k, j) = ϕ(k)

kj
A(xk)j

C(x) . A cycle γ ∈ Cyc(A) is max-
imally decomposed as γ = (ur), with u = (u1, . . . , us)
a primitive sequence (i.e., having no symmetry under
shift). Then, any decomposition γ = wk is such that k
is a divisor of r and w = ûr/k with û a cyclic shift of u.
Since u has s different cyclic shifts, the cycle γ is drawn
with probability

P(γ) = s
∑

kj=l,k|r

ϕ(k)
kj

A(xk)j

C(x)

(
xk|u1|

A(xk)
. . .

xk|us|

A(xk)

)r/k

=
s

l

x|γ|

C(x)

∑
k|r

ϕ(k) =
x|γ|

C(x)
,

where use is made of the formula
∑

k|m ϕ(k) = m.

Example 3. Cyclic compositions and necklaces. A necklace

is a sequence of words over a finite alphabet taken up to

cyclic shift. In the binary case, a specification is N =

Cyc(Z + Z). Thus, a generator is derived automatically

from Fig. 5. Similarly for cyclic compositions described

by C = Cyc(Z Seq(Z)): a logarithmic generator triggers

a geometric generator. �

MSetk: Define the polynomials Mk(z) as in (2.15).
• Define a partition-sequence of size k as an integer
sequence (ni) such that

Pk
i=1 ini = k, and denote by

Pk the set of partition-sequences of size k. For P ∈ Pk,
introduce MP (z) :=

Qk
i=1 A(zi)ni/(ni!i

ni) and define the
corresponding sampler:
ΓMP (x) := µ← ∅;

for i from 1 to k do
for j from 1 to ni do

µ← µ, copy(i, ΓA(xi))
return µ.

• Observe that Mk(z) =
P

P∈Pk
MP (z). The sampler

ΓMSetk[A](x) is defined as follows: draw P ∈ Pk under
the Bernoulli choice P(P) = MP (x)/Mk(x), and return
ΓMP (x).

—————

Cyck: Define the sampler as follows:
ΓCyck[A](x) := • draw a divisor i of k with distribution

P(i) = ϕ(i)A(xi)k/i/(kCk(x));
• return the cycle made of i cyclically
chained copies of a sequence of length
k/i, obtained by k/i independent calls
to ΓA(xi).

Figure 6: The rules producing Boltzmann samplers for
MSetk, Cyck.

Example 4. Unlabelled functional graphs. A functional
graph is a directed graph in which each vertex has outde-
gree 1. The unlabelled version appears as equivalence class
of mappings from a finite set to itself, also known as a “map-
ping pattern” [20]. The specification is

F = MSet(K), K = Cyc(U), U = Z ×MSet(U).

A Boltzmann sampler then results from the cycle and

multiset constructions, given the sampler for nonplane trees

of Example 2. �

2.4 Constructions with k components
(Seqk,MSetk,Cyck) In order to complete the
proof of Theorem 1.1, there only remains to treat the
case of constructions of type Kk, where K is any of
Seq,MSet,Cyc and the subscript k indicates the
restriction to k components in the construction.
Seqk. Since Seqk(A) = A×· · ·×A (k times), it suffices
to generate independently the components:
(2.14)

ΓSeqk[A](x) := 〈ΓA(x), . . . ΓA(x)〉 (k times).

MSetk: The generating function Mk(z) of MSetk(A)

is1

(2.15) Mk(z) = [uk] exp

∑
i≥1

ui

i
A(zi)

 .

This is a polynomial in A(z), A(z2), . . . , A(zk). In
particular, we have

M2(z) =
1
2
A(z)2 +

1
2
A(z2),(2.16)

M3(z) =
1
6
A(z)3 +

1
2
A(z)A(z2) +

1
3
A(z3).

Remember that B(z) = A(z`) is the GF of the class
B = A�` composed of `-tuples of identical elements,
B = {〈α, . . . , α〉|(` copies), α ∈ A}. Then, the idea of
the algorithm is to interpret Mk(z) as a weighted union,
perform the corresponding Bernoulli switch to pick up
a term, and, once a monomial has been chosen, return
a tuple composed of repeated elements. For instance,
in the case of M3, we may generate elements of one
of the three types 〈α, α′, α′′〉, 〈α, α′, α′〉, 〈α, α, α〉, in
accordance with (2.16). The formal description is given
in Figure 6.
Cyck : The generating function of Cyck is

Ck(z) = [uk]
∑
i≥1

ϕ(i)
i

log
1

1− uiA(zi)
(2.17)

=
1
k

∑
i|k

ϕ(i)A(zi)
k
i .(2.18)

We derive from it a sampler along the same lines as
MSetk, only simpler (Fig. 6).

Proposition 2.3. The generators ΓSeqk[A](x),
ΓMSetk[A](x), ΓCyck[A](x) of Eq. (2.14) and Fig. 6
are valid Boltzmann sampler for sequences, multisets,
and cycles of a fixed number of components k.

Proof. (Sketch) Obvious for sequences. For multi-
sets, it can be observed that the algorithm emulates
ΓMSet[A](x) conditioned upon the value of k (alter-
natively, use basic Burnside-Pólya theory [15, 22]). Sim-
ilarly for cycles.

The combination of Propositions 2.1–2.3, and
Eq. (2.2)–(2.5) completes the proof of Theorem 1.1.

Let us remark finally that one can realize samplers
for constructions K≤k (K = Seq,MSet,Cyc) involving
at most k components by decomposing them as disjoint
unions,

∑
Kj , for j ≤ k. (Dually, for K≥k, one can

proceed by piling up a rejection procedure on top of
unconstrained K samplers.)

1The notation [uk]Φ(u) represents the coefficient of uk in the
u-expansion of Φ(u).

Algorithm ΓPSet[A](x)
µ←− ΓMSet[A](x); $:= ∅;
for γ ∈ µ do

if the multiplicity of γ in µ is odd
then $:= $, γ;

return $

Figure 7: The rule for producing a Boltzmann sampler
for PSet.

Example 5. Series-parallel circuits. These are a classical

abstraction of electrical circuits, where both parallel (P)

and serial (S) compositions are allowed. The recursive

specification is C = Z + S + P, S = Seq≥2(Z + P), P =

MSet≥2(Z + S). Circuits of large sizes (e.g., size n = 104

in ≈ 1011 machine cycles) are then easily generated. . . . �

3 The powerset construction (PSet)

A powerset is a multiset in which multiplicities of
elements are all equal to 1. In other words, an element of
C = PSet(A) is a finite subset (in the usual sense) of A.
Generating powersets is more complicated than in the
case of multisets, because of the distinctness condition
imposed on elements.

A serendipitous consequence of the close relation-
ship that Boltzmann models entertain with generating
functions is that suitable GF identities can often guide
the design of Boltzmann samplers. From the GF ex-
pressions of Fig. 2, one deduces the fundamental iden-
tity (Vallée’s identity [9]): P (z)M(z2) = M(z), which
reflects a fundamental combinatorial isomorphism

(3.19) MSet(A) ∼= PSet(A)×MSet(A�2).

(Elements can be grouped by pairs of identical elements,
plus possibly an isolated element, depending on the par-
ity of their multiplicity.) This suggests the following
scheme to generate powersets: “draw a multiset; retain
all elements of odd multiplicity; discard the rest” (Fig-
ure 7). Notice that this procedure has an additional
cost, called overhead, which is the total size of the dis-
carded elements.

Theorem 3.1. (i) The sampler ΓPSet[A](x) of Fig. 7
is a valid Boltzmann sampler for PSet(A).

(ii) If the generating function A(z) of A has a
radius of convergence ρ that satisfies the condition2

ρ < 1, then, for all x ∈ (0, ρ), the expectation of
the overhead is uniformly bounded from above by the

constant K =
2ρ2A′(ρ2)

1− ρ2
.

2This condition is satisfied by almost all specifications

(in a precise measure-theoretic sense) and is algorithmically
testable [9].

Proof. Correctness follows from a general division
lemma (Lemma 3.1) applied to the decomposition of
multisets given in (3.19).

Lemma 3.1. (Division) Let H,K,L satisfy the iso-
morphism H ∼= K × L. Given a Boltzmann sampler
ΓH(x) for H, the process of extracting the first compo-
nent of an object generated by ΓH(x) is a valid Boltz-
mann sampler ΓK(x) for K.

The complexity analysis results from the fact that
the probability generating function of the overhead
relative to sampler ΓPSet[A](x) is

Y
n

„
1+xn+u2n(x2n+x3n) + · · ·
1 + xn + x2n + x3n + · · ·

«An

=
Y
n

„
1− x2n

1− u2nx2n

«An

.

Differentiation followed by the specialization u = 1 then
gives E(overhead) =

∑∞
n=1

2nAnx2n

1−x2n , a quantity easily
verified to be majorized by K.

Example 6. Partitions of integer. These are specifiable

as P = MSet(Z Seq(Z)). The subclass of partitions into

distinct summands is Q = PSet(Z Seq(Z)). A sampler

for P results from Proposition 2.1; a sampler for Q derives

automatically from Theorem 3.1. �

Example 7. Nonplane unlabelled trees without automor-

phisms. They are specified by U = Z × PSet(U), with the

powerset construction expressing the fact that two subtrees

pending from the same node are structurally different (“iden-

tity trees” of [15, p. 64]). These trees are less ramified than

unlabelled trees; see Figure 8. �

Generators for PSetk and variants are then ob-
tained by methods akin to those of the previous section.

4 Size-controlled samplers

Random generation usually requires us to draw objects
with a target size either of a fixed value n—exact-size
sampling—or in a range of the form [(1−ε)n, (1+ε)n]—
approximate-size sampling. In the latter case, the
parameter ε, called the tolerance, is a small real number
(ε = 1

10 or ε = 1
100 suffices for many practical purposes).

In all cases, uniformity amongst objects of the same size
must be preserved. Given the uniformity inherent in the
definition of Boltzmann models, one can achieve this
goal by plainly controlling size by means of rejection:

(4.20)
ΓC(x | Ωn) := repeat γ ←− ΓC(x)

until |γ| ∈ Ωn;
returnγ.

There, Ωn = {n} (exact size) or Ωn = [(1−ε), n(1+
ε)] (approximate size). In addition, by maintaining a
global variable that records at each stage the size of

the partial object generated and aborting execution if
necessary, it is possible to avoid building any object with
size exceeding the upper limit max Ωn.

The rejection technique of (4.20) can be coupled
with the tuning of the value xn of the control parameter
x, which maximizes the chances of success. This tuning
relies on the analysis of the random size N ≡ Nx of the
object produced by a free Boltzmann sampler ΓC(x):

Ex(uN) =
C(xu)
C(x)

, Ex(N) =
xC ′(x)
C(x)

,

Vx(N) =
x2C ′′(x)

C(x)
+

xC ′(x)
C(x)

−
(

xC ′(x)
C(x)

)2

.

A fruitful optimisation technique is the targetting
heuristic: “choose x := xn which satisfies the relation
Ex(N) = n”. (Due to properties of Boltzmann distri-
butions an approximate solution is normally sufficient.)
In all cases, one needs to take xn → ρC as n→∞.

The behaviour of the rejection sampler (4.20) for a
class C then tightly depends on the singularity type of
the generating function C(x), that is, on the behaviour
of C(x) as x approaches the critical (singular) value ρC .
We refer to the discussion in [8]. For several commonly
encountered singularity types, a combination of rejec-
tion and the targetting heuristic leads to approximate-
size random generators having linear-time complexity.
This applies in particular to regular languages.

Theorem 4.1. Given a regular language L and a fixed
ε > 0, there exists an approximate-size sampler with
expected linear-time complexity for L. If the automa-
ton recognizing L corresponds to a strongly connected
digraph, then there exists an exact-size sampler with ex-
pected linear-time complexity.

Proof. From the automaton, a recursive specification
for L involving {+,×} is derived. This gives rise to a
Boltzmann sampler ΓL(x) (using Eq. (2.2)-(2.3)), which
is equivalent to a Markov chain with suitable transition
probabilities. (The transformation is nontrivial—since
the automaton is not necessarily complete, we emulate
in fact a substochastic matrix.) The approximate-
size (resp. exact-size) sampler is obtained by running
the derived Markov chain for x chosen according to
the targetting heuristic (resp. with x = ρL and with
rejection if the state at the nth step is not the final
state).

The next theorem applies to any finite collection of
classes of trees with degrees constrained to fixed finite
sets, where the classes are bound by a context-free like
grammar. This covers term trees in logic and symbolic
calculation (even in the case of typed operators) and it

allows for various commutativity rules. It also covers the
case of acyclic molecules formed from atoms endowed
with specific valencies (see [12] for the cyclic case).

Theorem 4.2. Consider a class C having a recursive
specification

{F1 = Ψ1(Z;F1, . . . ,Fm), . . . ,Fm = Ψm(Z;F1, . . . ,Fm)},

where the Ψi’s are taken from the collection of construc-
tors {+,×,Seq,MSet,Cyc,Seqk,MSetk,Cyck}.
Assume that the dependency graph of the Fi’s is
strongly connected. Then an approximate-size sampler
and an exact-size sampler can be derived for C, having
respectively linear and quadratic expected running time.

Proof. We make use of a singular sampler defined by the
limit value x = ρ (see [8]). The coefficients of C obey
the universal asymptotic estimate Cn ∼ cρ−nn−3/2.
This results from the Drmota-Lalley-Woods theorem [9],
with an adaptation to Pólya theory of which [1] is typi-
cal. The expected complexity of ΓC(ρ) turns out to be
O(
√

n), while the success probabilities for approximate-
size and exact-size sampling are of respective order
O(n−1/2) and O(n−3/2). The statement follows.

Example 8. Acyclic alcohols. These molecules, enumer-

ated by Pólya [22], correspond to the specification A =

Z + Z × MSet3(A). An example is drawn in Fig. 8. A

related example is the class of Otter trees (nonplane binary

trees), O = Z +Z ×MSet2(O), which correspond to terms

built on a commutative operation. �

5 Realization of Boltzmann samplers

There are two basic choices for actually implementing
computations over the real abstract domain R used so
far.

EIA Exact interval arithmetic is a way to implement
exact real computations, refining estimates in an
adaptive manner (see [6] for similar context).

FPA Fixed precision arithmetic consists in adopting a
large enough (but fixed) floating point precision for
all real computations.

We have implemented the second strategy, FPA, using
20 digits of accuracy in the calculations of values
of generating functions. Statistical tests conducted
on various simulation results indicate no detectible
bias. In other words, the deviation from uniformity,
though mathematically nonzero, is “small” (and, in
a sense, of the order of 10−20). Also, the oracle
is, under such circumstances, efficiently realized by a
combination of recursive calls mimicking the functional

Partition of integer
Cyclic composition

Functional graph

Partition of integer into distinct summands

Series-parallel circuit

Nonplane tree — w/o automorphism Acyclic alcohol

Figure 8: Examples of generated objects.

Class Approx. Exact Method 104 ± 10% 105 ± 10%
Partitions O(n1/2) O(n5/4) target. 0.1s 1s
Partitions distinct summands O(n1/2) O(n5/4) target. 0.1s 1s
VC polyominoes O(n) O(n2) target. 15s 130s
Nonplane trees O(n) O(n2) sing. 10s 100s
Nonplane binary trees O(n) O(n2) sing. 5s 90s
Trees w/o automorphisms sing. 10s 180s
Series-parallel circuits sing. 60s
Necklaces O(n) O(n2) target. 1s 10s
Circular compositions O(n) O(n2) target. 3s 30s
Functional graphs O(n) O(n2) target. 10s 100s

Figure 9: Complexity and computation time of example classes.

equations of Fig. 2, memorization on the fly, and
Newton’s method. Altogether, for each of our pilot
examples, the computation time associated to the FPA
implementation of the oracle appears to be negligible.

Figure 9 indicates, for a variety of classes, the
complexity and the observed computation time3 of a
Boltzmann generation. The case of integer partitions
is worthy of note since the complexity of approximate-
size sampling is sublinear—- this makes it possible to
attain sizes well in range of 109–1010. For all other
classes listed in Fig. 9, the complexity of approximate-
size sampling is linear. Objects with sizes of 104 to 105

are effectively drawn by means of at most 1012 machine
cycles. Figures 8 and 10 display some random objects
generated under our implementation.

References

[1] Jason P. Bell, Stanley N. Burris, and Karen A.
Yeats. Counting rooted trees: The universal
law t(n) cρ−nn−3/2, July 2005. Available at
http://arxiv.org/abs/math.CO/0512432.

[2] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial
species and tree-like structures. Cambridge University
Press, Cambridge, 1998.

[3] Olivier Bodini, Éric Fusy, and Carine Pivoteau. Ran-
dom sampling of plane partitions. In Renzo Pinzani
and Vincent Vajnovszki, editors, Gascom 2006, pages
124–135, Dijon, France, 2006. LE2I.

[4] A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A
generic method for statistical testing. In ISSRE ’04:
Proceedings of the 15th International Symposium on
Software Reliability Engineering (ISSRE’04), pages 25–
34, Washington, DC, USA, 2004. IEEE Computer
Society.

[5] Alain Denise, Yann Ponty, and Michel Termier. Ran-
dom generation of structured genomic sequences. In
RECOMB 2003, page 3 pages (poster), Berlin, April
2003.

3Our prototype is implemented under the symbolic manipula-
tion system Maple.

Figure 10: A plane partition of size about 15000,
generated by a Boltzmann sampler [3].

[6] Alain Denise and Paul Zimmermann. Uniform ran-
dom generation of decomposable structures using
floating-point arithmetic. Theoretical Computer Sci-
ence, 218(2):233–248, 1999.

[7] Luc Devroye. Non-Uniform Random Variate Genera-
tion. Springer Verlag, 1986.

[8] Philippe Duchon, Philippe Flajolet, Guy Louchard,
and Gilles Schaeffer. Boltzmann samplers for the ran-
dom generation of combinatorial structures. Combi-
natorics, Probability and Computing, 13(4–5):577–625,
2004. Special issue on Analysis of Algorithms.

[9] Philippe Flajolet and Robert Sedgewick. Analytic
Combinatorics. October 2005. Chapters I–IX of a book
to be published, 688p.+x, available electronically from
P. Flajolet’s home page.

[10] Philippe Flajolet, Paul Zimmerman, and Bernard
Van Cutsem. A calculus for the random generation
of labelled combinatorial structures. Theoretical Com-
puter Science, 132(1-2):1–35, 1994.

[11] Éric Fusy. Quadratic exact-size and linear
approximate-size random sampling of planar graphs.
Discrete Mathematics and Theoretical Computer
Science, AD:125–138, 2005. Proceedings of 2005
International Conference on Analysis of Algorithms.

[12] Leslie Ann Goldberg and Mark Jerrum. Randomly
sampling molecules. 1997.

[13] Vivek Gore, Mark Jerrum, Sampath Kannan,
Z. Sweedyk, and Stephen R. Mahaney. A quasi-
polynomial-time algorithm for sampling words from a
context-free language. Information and Computation,
134(1):59–74, 1997.

[14] Ian P. Goulden and David M. Jackson. Combinatorial
Enumeration. John Wiley, New York, 1983.

[15] Frank Harary and Edgar M. Palmer. Graphical Enu-
meration. Academic Press, 1973.

[16] Dean Hickerson. Counting horizontally convex poly-
ominoes. Journal of Integer Sequences, 2, 1999. Elec-
tronic.

[17] Mark Jerrum. Uniform sampling modulo a group of
symmetries using markov chain simulation. Technical
Report ECS-LFCS-94-288, University of Edinburgh,
1994.

[18] Donald E. Knuth. The Art of Computer Programming,
volume 2: Seminumerical Algorithms. Addison-Wesley,
3rd edition, 1998.

[19] Donald E. Knuth. The Art of Computer Programming:
Volume 4, Combinatorial Algorithms. Addison Wesley,
2005–6. Fascicles 2-4.

[20] A. Meir and J. W. Moon. On random mapping
patterns. Combinatorica, 4(1):61–70, 1984.

[21] Albert Nijenhuis and Herbert S. Wilf. Combinatorial
Algorithms. Academic Press, second edition, 1978.

[22] G. Pólya and R. C. Read. Combinatorial Enumeration
of Groups, Graphs and Chemical Compounds. Springer
Verlag, New York, 1987.

[23] Richard P. Stanley. Enumerative Combinatorics, vol-
ume I. Wadsworth & Brooks/Cole, 1986.

P.F., E.F., C.P.: Algorithms Project, INRIA Rocquencourt,
F-78153 Le Chesnay (France)

C.P.: Université Pierre et Marie Curie, LIP6 -Équipe CalFor,
8, rue du Capitaine Scott, 75015 Paris (France)

