
THE KERNEL METHOD:
A COLLECTION OF EXAMPLES

HELMUT PRODINGER

Abstract. The kernel method has recently become quite popular. Roughy speak-
ing, in certain cases one obtains for a multivariate generating function a functional
equation. For certain couplings of the variables, the denominator vanishes, but since
one knows a priori that a power series expansion exists, one concludes that the nu-
merator must also vanish. This is sufficient to compute the generating function, at
least at special values, and subsequently in general.

We present a collection of examples where this technique works. All of them have
a certain random walk flavour.

I am very glad of having been an invited speaker at SLC50. I presented

many examples, related to my own work. I had prepared some examples

about the kernel method, but no time to talk about them. Since this

subject is dear to my heart, I extended that section and present these

examples here.

1. Introduction

In my view, the kernel method originated in Knuth’s book [9], where it was pre-
sented as an innocent exercise 2.2.1.-4. Later, it was turned into a method in [1]. It
was probably rediscovered independently by many people; I recommend to follow the
references in [1].

I feel that I cannot do anything better as an introduction than to reproduce Knuth’s
original exercise. One starts at the origin, and can advance from (n, i) to both (n +
1, i ± 1), except in the case when i = 0, when one can only go to (n + 1, 1). In this
way, one models nonnegative lattice paths (or random walks). One wants to know how
many paths lead from the origin to (n, 0), and, more generally, to (n, i). Clearly, this
is a very classical subject, but the derivation that Knuth presented is the subject of
this note. One uses generating functions fi(z), describing walks leading to (n, i); the
coefficient of zn, denoted by [zn]fi(z), is the number of walks from the origin to (n, i).
The following recursions are immediate:

fi(z) = zfi−1(z) + zfi+1(z), i ≥ 1,

f0(z) = 1 + zf1(z).

Now one introduces F (z, x) =
∑

n≥0 fn(z)xn, multiplies the recursion by xi and sums:

F (z, x)− f0(z) = zxF (z, x) +
z

x

[
F (z, x)− f0(z)− xf1(z)

]
,

or

F (z, x) = zxF (z, x) +
z

x

[
F (z, x)− F (z, 0)

]
+ 1,

Key words and phrases. Kernel method, generating function, random walk, bin packing, toilet
paper problem, card guessing, binary tree, functional equation, Banach’s match box problem.
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whence

F (z, x) =
zF (z, 0)− x

zx2 − x + z
.

Plugging in x = 0 leads to nothing, but the denominator factors as z(x − r1(z))(x −
r2(z)), with

r1,2(z) =
1∓√1− 4z2

2z
.

Note that x − r1(z) ∼ x − z as x, z → 0. Therefore the factor 1/(x − r1(z)) has no
power series expansion around (0, 0), but F (z, x) has, so this “bad” factor must actually
disappear, i.e., (x − r1(z)) must be a factor of the numerator as well, which leads to
the equation zF (z, 0) = r1(z), from which F (z, 0) can be computed. Consequently,
F (z, x) is then also explicitly computed, and the factor (x − r1(z)) can be cancelled
from both, numerator and denominator.

From this, one finds for instance that [z2n]F (z, 0) = 1
n+1

(
2n
n

)
, a well-known Catalan

number, and similar expressions for [znxi]F (z, x), for n ≡ i mod 2. A technique to read
off coefficients like this will be described in subsequent sections for numerous examples.

Now since I find this method fascinating, simple, and extremely useful, I tried during
the last few years to collect several examples where its works. In the present paper,
which can thus be seen partially as a tutorial, I present them. It is my ambitious wish
that it might be useful for seminars and other courses. I rederive some known results
with the kernel method but also try to work out a few new ones.

The first one (Section 2) considers random walks originating from a bin packing
problem. It was originally considered by Knödel1. There are bins of size 1 and randomly
arriving objects of size i

d
, for i = 1, . . . , d − 1, and an online strategy to fill the bins

as well as possible. The problem can be described by states, coding the partially filled
bins at a specific moment. We treat the instances d = 3, 4. Higher values of d lead to
very complicated situations and I am not aware of any results in these cases.

The next one (Section 3) looks again at the toilet paper problem, a popular subject
introduced by Knuth [10]. He considers two rolls of tissues, with m resp. n units,
and random users, who are with probability p big-choosers (taking one unit from the
larger roll) resp. with probability q = 1 − p little-choosers (taking one unit from the
smaller roll). The parameter of interest is the (average) number of units remaining on
the larger roll, when the smaller one became empty.

The following Section 4 considers walk on the comb, a theme studied by D. Bertacchi2

in several papers [3, 2]. The walk is on Z × Z, and from (i, j), j 6= 0, one can reach
(i, j±1), both with probability 1

2
. If j = 0, however, one can reach (i±1, 0), (i,±1) all

with probability 1
4
. One wants generating functions fi,j(z), describing all walks from the

origin to (i, j). We employ the kernel method to derive the simpler generating functions
φj(z) describing walks from the origin to (∗, j), i. e., ignoring the first coordinate. This
means now a random walk on Z, as usual, but with different rules for 0: if one is in 0,
one can stay there with probability 1

2
.

1The austrian mathematician Walter Knödel received his Ph. D. under E. Hlawka in Vienna. He
eventually became a professor in Stuttgart, Germany.

2Daniela Bertacchi got her Ph. D. under Wolfgang Woess in Milano; like me, she is a frequent
visitor of the Technical University Graz.
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The next three sections deal with subjects that I published already in [11, 8, 15]. To
extend this collection of examples, I repeat (parts of) them here.

Section 5 considers a recursion that occurs when one analyzes a certain procedure
to generate binary trees. The kernel method solves it readily.

Section 6 reviews a card guessing game with a certain random walk flavour.
Section 7 deals with a functional equation from a queuing system.
Finally, I deal with Banach’s match box problem, see [6]. The relevant recursions

somehow resemble the ones in the card guessing game. Knuth’s toilet paper problem
may be seen as an extension of Banach’s match box problem, although only expecta-
tions were considered in the toilet paper problem.

2. Knödel walks

Knödel [7] formulated a simple bin packing model as a random walk on a special
graph:

Some aspects of the analysis were treated by Prodinger in a series of papers [12, 13,
14]. Recently, Drmota [4] has picked up the subject again.

In the simplest version, there are bins of size 1, and items of size 1
3

resp. 2
3

arriving
at random. One tries to complete as many bins as possible with an online strategy,
leaving us basically with a number of bins filled 2

3
, which we reduce by 1 or augment

by 1. In the initial situation, there is a special “state” β, representing a bin filled 1
3
.

Here, we want to find the bivariate generating function related to the number of
steps taken and the state where the random walk currently is. From this, one can get
the wasted space: State 0 contributes 0, state β contributes 2/3, and state i for i ≥ 1
contributes i/3.

Random walks in this graph, starting at state 0 will be called “Knödel walks,” in
honour of their creator.

Let fi(z) be the generating function, where [zn]fi(z) counts all Knödel walks starting
at 0 and ending at state i in n steps, for i ∈ {β, 0, 1, . . .}. We have the following
recursions:

fi(z) = zfi−1(z) + zfi+1(z), for i ≥ 2,

f1(z) = zf0(z) + zfβ(z) + zf2(z),

f0(z) = 1 + zf1(z) + zfβ(z),

fβ(z) = zf0(z).

(2.1)

We introduce the bivariate generating function F (z, x) =
∑

i≥0 fi(z)xi and get from
summing up (2.1)

F (z, x) =
∑
i≥2

xizfi−1(z) +
∑
i≥2

xizfi+1(z)

+ xzf0(z) + xzfβ(z) + xzf2(z) + 1 + zf1(z) + zfβ(z)
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= xzF (z, x) +
z

x
F (z, x) + 1− z

x
f0(z) + (1 + x)zfβ(z)

= xzF (z, x) +
z

x
F (z, x) + 1−

(z

x
− (1 + x)z2

)
F (z, 0),

or

F (z, x) =
z
(
1− x(1 + x)z

)
F (z, 0)− x

x2z − x + z
=

z
(
1− x(1 + x)z

)
F (z, 0)− x

z(x− r1(z))(x− r2(z))
,

with

r1(z) =
1−√1− 4z2

2z
, r2(z) =

1 +
√

1− 4z2

2z
.

Now x− r1(z) must be a factor of the numerator, so we find

z
(
1− zr1(z)

(
1 + r1(z)

))
F (z, 0)− r1(z) = 0

or

f0(z) = F (z, 0) =
r1(z)

z(1 + z)
(
1− r1(z)

) .

Therefore

F (z, x) =
r1(z)

z(1 + z)
(
1− r1(z)

) 1 + xzr1(z)

1− xr1(z)
.

From this we get for i ≥ 1

fi(z) =
ri+1
1 (z)

z
(
1− r1(z)

) .

We also have

fβ(z) = zf0(z) =
r1(z)

(1 + z)
(
1− r1(z)

)

and find as a check that

fβ(z) +
∑
i≥0

fi(z) =
1

1− 2z
,

as it should.
To extract coefficients, we use Cauchy’s integral formula:

[zn]F (z) =
1

2πi

∮
dz

zn+1
H(z)

and the substitution z =
v

1 + v2
, dz = dv

1− v2

(1 + v2)2
.

For an arbitrary generating function H(z) we have

[zn]H(z) = [vn](1− v2)(1 + v2)
n−1

H
(
z(v)

)
.

And so

[zn]fi(z) = [vn](1− v2)(1 + v2)
n−1vi(1 + v2)

1− v

= [vn−i](1 + v)(1 + v2)
n

=

(
n

bn−i
2
c
)
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and further

[z2n]
∑
i≥1

fi(z) = 2
∑
i≥1

(
2n

n− i

)
= 22n −

(
2n

n

)
,

[z2n+1]
∑
i≥1

fi(z) = 2
∑
i≥0

(
2n + 1

n− i

)
−

(
2n + 1

n

)
= 22n+1 −

(
2n + 1

n

)
.

Hence

[zn]
(
f0(z) + fβ(z)

)
= [zn](1 + z)f0(z) =

(
n

bn
2
c
)

.

So

[zn]f0(z) =
n∑

k=0

(
k

bk
2
c
)

(−1)n−k,

or

[z2n]f0(z) =
n−1∑

k=0

(
2k + 1

k

)
,

[z2n+1]f0(z) =

(
2n + 1

n

)
− 1−

n−1∑

k=0

(
2k + 1

k

)
.

These formulæ evaluate [zn]fk(z) for any n and any state k.

Knödel walks related to 1
4
, 2

4
, 3

4
. The next model is related again to bins of size 1

and random items of size i
4
, for i = 1, 2, 3. This time one finds two infinite sequences

of states, representing i bins filled 3
4

resp. representing i bins filled 3
4

and one bin filled
1
2
.
Here is the corresponding graph.

Now we move to generating functions: fi(z) represents i bins, 3
4

full, and gi(z)

represents i bins, 3
4

full and one bin filled 1
2
. The special h(z) represents one bin, 1

4
full.

The equations are

f0(z) = 1 + zf1(z) + zg0(z) + zh(z),

g0(z) = zf0(z) + zg1(z) + zh(z),

f1(z) = zf0(z) + zf2(z) + zg0(z) + zg1(z) + zh(z),

fi(z) = zfi−1(z) + zfi+1(z) + zgi(z), i ≥ 2,

gi(z) = zgi−1(z) + zgi+1(z) + zfi(z), i ≥ 1,

h(z) = zf0(z).
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With F (z, x) =
∑

i≥0 fi(z)xi, G(z, x) =
∑

i≥0 gi(z)xi, we find

F (z, x) = 1 + zxF (z, x) +
z

x
F (z, x)− z

x
f0(z) + zG(z, x) + zxg0(z) + z(1 + x)h(z),

G(z, x) = zF (z, x) + zxG(z, x) +
z

x
G(z, x)− z

x
g0(z) + zh(z).

Set A(z, x) = F (z, x) + G(z, x):

A(z, x) = 1 + zxA(z, x) +
z

x
A(z, x)− z

x
(f0(z) + g0(z)) + zA(z, x)

+ zxg0(z) + z2(2 + x)f0(z),

thus

A(z, x) =
1− z

x
(f0(z) + g0(z)) + zxg0(z) + z2(2 + x)f0(z)

1− zx− z
x
− z

.

Define

r1,2(z) =
1− z ∓√1− 2z − 3z2

2z
.

The numerator must disappear for x = r1(z), which leads to

1− z

r1(z)

(
f0(z) + g0(z)

)
+ zr1(z)g0(z) + z2

(
2 + r1(z)

)
f0(z) = 0.

Similarly, set B(z, x) = F (z, x)−G(z, x):

B(z, x) = 1 + zxB(z, x) +
z

x
B(z, x)− z

x
(f0(z)− g0(z))− zB(z, x)

+ zxg0(z) + z2xf0(z),

thus

B(z, x) =
1− z

x
(f0(z)− g0(z)) + zxg0(z) + z2xf0(z)

1− zx− z
x

+ z
.

The numerator must disappear for x = −r1(−z), thus

1 +
z

r1(−z)
(f0(z)− g0(z))− zr1(−z)g0(z)− z2r1(−z)f0(z) = 0.

Now we have two equations and can compute the functions f0(z) and g0(z):

f0(z) =
r1(z)− r1(−z) + r2

1(z)r1(−z) + r1(z)r2
1(−z)

z
(
2− 2zr1(z)− (1 + z)r2

1(z) + (1− z)r2
1(−z)− 2zr1(z)r2

1(−z)
)

= 1 + 3z2 + 3z3 + 15z4 + 28z5 + 101z6 + 230z7 + 763z8 + 1882z9 + · · · ,

g0(z) =
r1(z) + r1(−z)− 2zr1(z)r1(−z)− zr2

1(z)r1(−z)− zr1(z)r2
1(−z)

z
(
2− 2zr1(z)− (1 + z)r2

1(z) + (1− z)r2
1(−z)− 2zr1(z)r2

1(−z)
)

= z + z2 + 5z3 + 9z4 + 33z5 + 73z6 + 245z7 + 593z8 + 1921z9 + · · · .
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The expressions for F (z, x) and G(z, x), although known in principle, become quite
messy, so we don’t give them here. However, we want to compute the average wasted
space after n steps. For this, we need

∑
i≥0

i

4
fi(z) +

∑
i≥0

( i

4
+

1

2

)
gi(z) +

3

4
h(z),

which we get as

1

4

∂F

∂x
(z, 1) +

1

4

∂G

∂x
(z, 1) +

1

2
G(z, 1) +

3

4
zf0(z).

Computer algebra can generate and expression equivalent to this which is not nice, but
we give its local expansion around the dominant singularity, z = 1

3
:

√
3

12
(1− 3z)−3/2 +

(1

8
+

√
3

24

)
(1− 3z)−1 + · · · ,

whence we get for the average wasted Wn space using singularity analysis of generating
functions [5]

Wn =

√
3

6

√
n

π
+

1

8
+

√
3

24
+ O(n−1/2),

with more terms being available if necessary. (There is also a singularity at z = −1
3
,

but it contributes only terms of order n−1/2.)

3. The toilet paper problem

Following the description in the introduction, let m be the number of units on the
larger, and n on the smaller roll; Mm,n is the expected number of units left on the
larger roll, when the smaller one becomes empty.

The recursions are

Mm,0 = m,

Mm,m = Mm,m−1, m ≥ 1,

Mm,n = pMm−1,n + qMm,n−1, m > n > 0.

Define

F0(z) =
∑
m≥0

Mm,mzm, F1(z) =
∑
m≥1

Mm,m−1z
m.

Note that
F0(z) =

∑
m≥0

Mm,mzm =
∑
m≥1

Mm,m−1z
m = F1(z).

Define
F (z, x) =

∑
m≥n≥0

Mm,nz
mxm−n.

Then, by summing up,

F (z, x) =
∑

m>n>0

Mm,nz
mxm−n +

∑
m>0

Mm,0z
mxm +

∑
m≥0

Mm,mzm

=
∑

m>n>0

[pMm−1,n + qMm,n−1]z
mxm−n +

zx

(1− zx)2
+ F0(z)
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= pzx
∑

m−1≥n>0

Mm−1,nz
m−1x(m−1)−n +

q

x

∑
m>n>0

Mm,n−1z
mxm−(n−1)

+
zx

(1− zx)2
+ F0(z)

= pzx
[
F (z, x)−

∑
m≥0

Mm,0z
mxm

]
+

q

x

∑
m>>n≥0

Mm,nz
mxm−n +

zx

(1− zx)2
+ F0(z)

= pzx
[
F (z, x)− zx

(1− zx)2

]
+

q

x

[
F (z, x)− x

∑
n≥0

Mn+1,nz
n+1 −

∑
n≥0

Mn,nz
n
]

+
zx

(1− zx)2
+ F0(z)

= pzxF (z, x) +
q

x

[
F (z, x)− xF1(z)− F1(z)

]
+

zx(1− pzx)

(1− zx)2
+ F1(z).

(Here, we used the ad hoc notation a >> b :⇔ a− b ≥ 2.) Solving,

F (z, x) =

zx(1−pzx)
(1−zx)2

+ F1(z)[1− q − q/x]

1− pzx− q/x
=

F1(z)[q − px]− zx2(1−pzx)
(1−zx)2

pzx2 − x + q

=
F1(z)[q − px]− zx2(1−pzx)

(1−zx)2

pz(x− r1(z))(x− r2(z))
,

with

r1,2(z) =
1∓√1− 4pqz

2pz
.

Therefore, for x = r1(z), the numerator must vanish, yielding

F1(z)[q − pr1(z)]− zr2
1(z)(1− pzr1(z))

(1− zr1(z))2
= 0,

or

F1(z) =
zr2

1(z)(1− pzr1(z))

(q − pr1(z))(1− zr1(z))2
=

z

q(1− z)2

(
q − C(pqz)

)
,

with

C(z) =
1−√1− 4z

2
.

Note that r1(z) = C(pqz)
pz

and that 1/r2(z) = r1(z)pz/q.

The expression for F (z, x) is ugly, but we can extend Knuth’s asymptotic analysis
to Mm,m−n for m →∞ and fixed n; the instance n = 0 was given in [10].

For q < p, Knuth has shown that the local expansion of C(z) around z = 1 starts
like

q + (p− q)
(

pq
(p−q)2

(z − 1) + (pq)2

(p−q)4
(z − 1)2 + · · ·

)
.

Hence the local expansion of F (z, x) around z = 1 starts like

1

1− z
· p

(2p− 1)(1− x)
+ · · · .
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So Mm,m−n = p/(2p− 1) + O(rm), and the n plays no role here. Well, this is intuitive,
the big-choosers dominate, so it does not really make a difference whether the second
roll is slightly smaller. Now let us assume that p < q. Then F (z, x) starts like

1

(1− z)2
· 2p− 1

(p− 1)(1− x)
+

1

1− z

[
− 1

1− x
+

p

q(1− x)2
− p(1− p)

(2p− 1)(q − px)

]
+ · · · .

The coefficient of zm is asymptotic to

(m + 1) · 2p− 1

(p− 1)(1− x)
+

[
− 1

1− x
+

p

q(1− x)2
− p(1− p)

(2p− 1)(q − px)

]
.

And the coefficient of xn (n fixed) in this is

(m + 1) · 2p− 1

p− 1
+

[
− 1 +

p

q
(n + 1)− p

2p− 1

(p

q

)n
]
,

or

m · 1− 2p

q
+

pn

q
+

p

1− 2p

(p

q

)n

,

For n = 0, we find again Knuth’s value q−p
q

m + p
q−p

. Perhaps it is not very intuitive at

the first glance why this grows with n. However, for larger n, the process tends to be
over more quickly, and so more will be left on the large roll.

Now let us discuss the case p = q. Then

C(pqz) =
1

2
− 1

2

√
1− z,

and

F (z, x) ∼ (1− z)−3/2 · 1

1− x
− (1− z)−1/2 · 1− 2x

(1− x)3
,

and the coefficient of zm behaves like
[
2

√
m

π
+

3

4
√

πm

]
· 1

1− x
− 1√

πm
· 1− 2x

(1− x)3
.

Furthermore the coefficient of xn (n fixed) in this is

2

√
m

π
+

3

4
√

πm
+

1√
πm

· (n + 1)(n− 2)

2
.

For n = 0 we find again

2

√
m

π
− 1

4
√

πm
.

Again, since everybody takes at random, the process tends to be over more quickly,
leaving more on the other roll.

4. Walks on a comb

As explained in the introduction, we walk on the integers as described in the following
graph.
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One derives recursions for the probability generating functions immediately:

φ0(z) = 1 +
z

2

(
φ−1(z) + φ1(z)

)
+

z

2
φ0(z),

φ1(z) =
z

4
φ0(z) +

z

2
φ2(z),

φi(z) =
z

2

(
φi−1(z) + φi+1(z)

)
, i ≥ 2,

φ−i(z) = φi(z).

Now set

F (z, x) =
∑
i≥0

xiφi(z).

As a check, we should have 2F (z, 1)− F (z, 0) = 1
1−z

.
Summing, we get

F (z, x) = 1 + zφ1(z) +
z

2
φ0(z) + x

z

4
φ0(z) + x

z

2
φ2(z) +

∑
i≥2

xi z

2

(
φi−1(z) + φi+1(z)

)

= (1− z

2
)φ0(z) +

z

2
φ0(z) + x

z

4
φ0(z) + x

z

2
φ2(z) +

zx

2

∑
i≥1

xiφi(z) +
z

2x

∑
i≥3

xiφi(z)

= φ0(z) +
zx

4
φ0(z) +

zx

2

[
F (z, x)− φ0(z)

]
+

z

2x

[
F (z, x)− φ0(z)− xφ1(z)

]
.

Therefore

F (z, x)
[
1− zx

2
− z

2x

]
= φ0(z) +

zx

4
φ0(z)− zx

2
φ0(z)− z

2x
φ0(z)− z

2
φ1(z)

= φ0(z)− zx

4
φ0(z)− z

2x
φ0(z)− 1

2
(1− z

2
)φ0(z) +

1

2

and

F (z, x) = φ0(z) +
zx

4
φ0(z)− zx

2
φ0(z)− z

2x
φ0(z)− z

2
φ1(z)

=
φ0(z)− zx

4
φ0(z)− z

2x
φ0(z)− 1

2
(1− z

2
)φ0(z) + 1

2

1− zx
2
− z

2x

=
F (z, 0)(−x + zx2

2
+ z − zx

2
)− x

zx2 − 2x + z
.

Now, set as usual

r1(z) =
1−√1− z2

z
, r2(z) =

1 +
√

1− z2

z
.
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For x = r1(z) the numerator vanishes, as always:

F (z, 0) =
2r1(z)

−2r1(z) + zr2
1(z) + 2z − zr1(z)

=
2r1(z)

−2r1(z) + 2r1(z)− z + 2z − zr1(z)

=
2r1(z)

z(1− r1(z))

and

F (z, x) =

2r1(z)
z(1−r1(z))

(−x + zx2

2
+ z − zx

2
)− x

zx2 − 2x + z

=
−2z + zr1(z)x

z2(x− r2(x))(1− r1(z))

=
2zr1(z)− 2xr1(z) + xz

z2(1− r1(z))(1− xr1(z))
.

From this explicit form we can now read off coefficients:

[xn]F (z, x) =
2zr1(z)

z2(1− r1(z))
rn
1 (z) +

−2r1(z) + z

z2(1− r1(z))
rn−1
1 (z)

=
2rn+1

1 (z)

z(1− r1(z))
− 2rn

1 (z)

z2(1− r1(z))
+

rn−1
1 (z)

z(1− r1(z))

= rn−1
1 (z)

2zr2
1(z)− 2r1(z) + z

z2(1− r1(z))

= rn−1
1 (z)

2r1(z)− z

z2(1− r1(z))

= rn−1
1 (z)

zr2
1(z)

z2(1− r1(z))

=
rn+1
1 (z)

z(1− r1(z))
.

This is only correct for n ≥ 1.
And now set z = 2v/(1 + v2), which is the trick we used before. Then r1 = v;

[zm]
rn+1
1 (z)

z(1− r1(z))
=

1

2πi

∮
dz

zm+1

rn+1
1 (z)

z(1− r1(z))

=
1

2πi

∮
(1− v2)(1 + v2)m+1

2mvm+1(1 + v2)2

vn+1(1 + v2)

v(1− v)
dv

=
1

2πi

∮
2(1 + v)(1 + v2)m

2m+1vm−n+1
dv

= 2−m[vm−n](1 + v)(1 + v2)m

= 2−m

(
m⌊

m−n
2

⌋
)

.
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For n = 0 we can do this:

[x0]F (z, x) = F (z, 0) =
2r1(z)

z(1− r1(z))
,

and one must multiply the previous formula by 2:

[zmx0]F (z, x) = 21−m

(
m⌊
m
2

⌋
)

.

5. A recursion from generating binary trees

We don’t aim to describe how the following recursion is related to generate binary
trees; we merely show how to solve it with the kernel method.

The recursion is

gn,k = gn−1,k−1 + 2gn−1,k + gn−1,k+1 + 1 for 0 ≤ k ≤ n

with the assumption that all values gn,k outside the range 0 ≤ k ≤ n are zero.
We set up the generating function

G(z, x) =
∑

0≤k≤n

gn,kx
kzn.

Summing up the recursion (multiplied by xkzn) we find

G(z, x) = zxG(z, x) + 2zG(z, x) +
z

x

(
G(z, x)− g(z)

)
+

∑

0≤k≤n

xkzn,

with g(z) = G(z, 0). Note that

∑

0≤k≤n

xkzn =
∑

k≥0

∑
j≥0

xkzk+j =
1

1− z

∑

k≥0

(zx)k =
1

(1− z)(1− zx)
.

Hence

G(z, x) =
zg(z)− x

(1−z)(1−zx)

zx2 + (2z − 1)x + z

Now note that

zx2 + (2z − 1)x + z = z
(
1− xr1(z)

)(
1− xr2(z)

)

with

r1,2(z) = −1 +
1∓√1− 4z

2z
.

Since the denominator vanishes for x = r1(z), the numerator should also vanish, which
means

zg(z) =
r1(z)

(1− z)(1− zr1(z))
,

which leads already to the solution

g(z) =
r1(z)

z(1− z)(1− zr1(z))
,

whence G(z, x) is known as well.
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6. A card guessing game

One starts with a deck of cards consisting of m red and n black cards. A guess is
made as to the colour of the top card, after which it is revealed and discarded. To
maximise the number of correct guesses one chooses the colour corresponding to the
majority of cards remaining in the deck. We rederive here the probability distribution
for the number of correct guesses for a pack of m+n cards, found originally by Sulanke
[16].

In what follows, m always refers to the number of cards of the colour that is pre-
dominant, n to the other colour.

Let p(m,n; k) denote the probability that, assuming that one has m cards of one
colour and n cards of a second colour, with m ≥ n ≥ 0, that one guesses k cards
correctly. Introducing probability generating functions

ϕm,n(u) =
∑

m≤k≤m+n

p(m,n; k)uk,

one sees the recursions

ϕm,n(u) = u
m

m + n
ϕm−1,n(u) +

n

m + n
ϕm,n−1(u) for m > n ≥ 0,

ϕm,m(u) =
1 + u

2
ϕm,m−1(u) for m ≥ 1, ϕ0,0(u) = 1

almost immediately. If one defines Φm,n(u) =
(

m+n
m

)
ϕm,n(u) instead, the recursions are

nicer, viz.

Φm,n(u) = uΦm−1,n(u) + Φm,n−1(u) for m > n ≥ 0,

Φm,m(u) = (1 + u)Φm,m−1(u) for m ≥ 1, Φ0,0(u) = 1.

Now we use the kernel method to get the probabilities p(m,n; k): We set

F (z, x) =
∑

m≥n≥0

Φm,n(u)zmxm−n,

F0(z) =
∑
m≥0

Φm,m(u)zm,

F1(z) =
∑
m≥1

Φm,m−1(u)zm.

The first and second recursion for Φm,n(u) give

F (z, x)− F0(z) = uzx F (z, x) +
1

x

[
F (z, x)− F0(z)− F1(z)x

]

and F0(z) = 1 + (1 + u)F1(z), respectively. Hence

(1− x + uzx2)F (z, x) = 1− x + (1 + u− ux)F1(z).

Now the fact that the power series F (z, x) remains finite at x = λ := 2/(1+
√

1− 4uz )
gives F1(z) = (λ− 1)/(1 + u− λu) and finally

F (z, x) =

(
1 +

√
1− 4uz

2
− 1−√1− 4uz

2
u

)−1(
1− 1−√1− 4uz

2
x

)−1

.
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From this, using the expansion of the geometric series and the identity [6, (5.61)]

∑
n≥0

(
2n + k

n

)
Xn =

2k

√
1− 4X(1 +

√
1− 4X )k

we eventually find

p(m,n; k) =
1(

m+n
m

)
[(

m + n

k

)
−

(
m + n

k + 1

)]
for m ≤ k ≤ m + n.

7. A functional–difference equation of Runyon, Morrison, Carlitz,
and Riordan

A certain functional–difference equation that Runyon encountered when analyzing
a queuing system was solved in a combined effort of Morrison, Carlitz, and Riordan.
Here we apply the kernel method to it.

The functional–difference equation is

(x− α)(α− β)n−1gn(x) = α(x− β)ngn−1(α)− x(α− β)ngn−1(x), n ≥ 1, g0(x) = 1.

We introduce the generating function

G(x, t) :=
∑
n≥0

(α− β)n−1gn(x)tn.

Multiplying the recursion by tn and summing we get

G(x, t) =
α

∑
n≥1(x− β)ntngn−1(α) + x−α

α−β

x− α + xt(α− β)2
=

α(x− β)(α− β)tG
(
α, t(x−β)

α−β

)
+ x−α

α−β

x− α + xt(α− β)2
.

For

x = x̄ =
α

1 + t(α− β)2

the denominator vanishes. Consequently, the numerator must also vanish:

∑
n≥1

(x̄− β)ntngn−1(α) =
x̄− α

(β − α)α
.

Now we set T = (x̄− β)t, i. e.,

t =
1− T (α− β)−

√
1− 2T (α + β) + T 2(α− β)2

2β(α− β)
.

So

∑
n≥0

T ngn(α) = (α− β)G
(
α, T

α−β

)
=

1 + T (α− β)−
√

1− 2T (α + β) + T 2(α− β)2

2Tα
.

Since this series is now known, the generating function G(x, t) is known as well. From
this, one can expand this function and describe its coefficients. We refer for this to the
original paper.
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8. Banach’s match box problem

This is a very classical exercise. A certain mathematician has two match boxes in
each of his two pockets. Initially, both contain m matches each. He makes random
drawings for one of his pockets to get one match box. How many matches are left
in the larger box when one box has become empty? A small variation is to count the
remaining matches when he tries to get a match and finds that his chosen box is empty.
In what follows, m (n) is always the number of matches in the larger (smaller) box.
We want the probability generating function ϕm,n(u), where the coefficient of uk is the
probability that this parameter is k. The following recursions are self-explanatory:

ϕm,n(u) =
1

2
ϕm−1,n(u) +

1

2
ϕm,n−1(u) for m > n ≥ 1,

ϕm,m(u) = ϕm,m−1(u) for m ≥ 1,

ϕm,0(u) = um, for m ≥ 0.

Define

F (z, x) =
∑

m≥n≥0

ϕm,n(u)zmxm−n,

F0(z) =
∑
m≥0

ϕm,m(u)zm, F1(z) =
∑
m≥1

ϕm,m−1(u)zm,

Summing the recursion, we get

∑
m>n≥1

ϕm,n(u)zmxm−n +
∑
m≥1

ϕm,m(u)zm

=
1

2

∑
m>n≥1

ϕm−1,n(u)zmxm−n +
1

2

∑
m>n≥1

ϕm,n−1(u)zmxm−n +
∑
m≥1

ϕm,m−1(u)zm

or

F (z, x)−
∑
m≥0

ϕm,0z
mxm

=
zx

2

∑
m≥n≥1

ϕm,n(u)zmxm−n +
1

2x

∑
m−1>n≥1

ϕm,n(u)zmxm−n + F1(z)

or

F (z, x)− 1

1− zxu

=
zx

2

[
F (z, x)− 1

1− zxu

]
+

1

2x

[
F (z, x)− xF1(z)− F0(z)

]
+ F1(z).

Note F1(z) = F0(z)− 1. We get

F (z, x) =
1

1−zxu
(1− zx

2
) + x−1

2x
F0(z)− 1

2

1− zx
2
− 1

2x

=
x

1−zxu
(zx− 2) + (1− x)F0(z) + x

zx2 − 2x + 1
.
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Now set r1(z) = 1−√1−z
z

; as before, (x−r1(z)) must be a factor of the numerator, which
gives us the equation

r1(z)

1− uzr1(z)
(zr1(z)− 2) + (1− r1(z))F0(z) + r1(z) = 0

whence

F0(z) =
r1(z)(−zr1(z) + 1 + uzr1(z))

(1− uzr1(z))(1− r1(z))
.

We don’t want to explore that in much detail; let us just compute the averages, as this
is the classical problem. So, we differentiate this with respect to u and set u = 1 and
get the generating function E(z) of the averages:

E(z) =
(zr1(z)− 2) zr2

1(z)

(1− zr1(z))2 (1− r1(z))
.

With the substitution z = 4v/(1 + v)2,

E(z) =
4v(1 + v)

(1− v)3
.

Hence

[zm]E(z) =
1

2πi

∮
dz

zm+1
E(z) =

1

2πi

∮
4dv(1− v)(1 + v)2m+2

(1 + v)3(4v)m+1

4v(1 + v)

(1− v)3

= 41−m[vm−1]
(1 + v)2m

(1− v)2

= 41−m

m−1∑

k=0

(
2m

k

)
(m− k) = 41−m (2m− 1)!

(m− 1)!2
∼ 2

√
m

π
.

Note that this is the special case p = q of the toilet paper problem, considered in Sec-
tion 3. However, there, the recursions were only set up for the averages (expectations),
whereas here we have full access to the probability generating functions.

One could consider them in the toilet paper as well. We leave this to the interested
reader. All one has to do is to replace the boundary conditions Mm,0 = m by Mm,0 =
um.

Acknowledgment. Thanks are due to Margaret Archibald and Michael Drmota
who read earlier drafts of this paper.
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