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Abstract

This is the first installment of the ALGORITHMICS COLUMN dedicated to Analysis of
Algorithms (AofA) that sometimes goes under the name Average-Case Analysis of Algo-
rithms or Mathematical Analysis of Algorithms. The area of analysis of algorithms (at
least, the way we understand it here) was born on July 27, 1963, when D. E. Knuth
wrote his “Notes on Open Addressing”. Since 1963 the field has been undergoing sub-
stantial changes. We report here how it evolved since then. For a long time this area
of research did not have a real “home”. But in 1993 the first seminar entirely devoted
to analysis of algorithms took place in Dagstuhl, Germany. Since then seven seminars
were organized, and in this column we briefly summarize the first three meetings held in
Schloss Dagstuhl (thus “Dagstuhl Period”) and discuss various scientific activities that
took place, describing some research problems, solutions, and open problems discussed
during these meetings. In addition, we describe three special issues dedicated to these
meetings.

1 Introduction

The area of analysis of algorithms was born on July 27, 1963, when D. E. Knuth wrote his
“Notes on Open Addressing” about hashing tables with linear probing (cf. Knuth’s notes
http://pauillac.inria.fr/algo/AofA/Research/src/knuthitrait-bwd.gif). The elec-
tronic journal Discrete Mathematics and Theoretical Computer Science (cf. the webside
http://dmtcs.loria.fr/) defines this area as follows:

ANALYSIS OF ALGORITHMS is concerned with accurate estimates of complex-
ity parameters of algorithms and aims at predicting the behaviour of a given
algorithm run in a given environment. It develops general methods for obtain-
ing closed-form formulae, asymptotic estimates, and probability distributions for
combinatorial or probabilistic quantities, that are of interest in the optimiza-
tion of algorithms. Interest is also placed on the methods themselves, whether
combinatorial, probabilistic, or analytic. Combinatorial and statistical properties
of discrete structures (strings, trees, tries, dags, graphs, and so on) as well as
mathematical objects (e.g., continued fractions, polynomials, operators) that are
relevant to the design of efficient algorithms are investigated.

*This research was supported in part by the NSF Grants CCR-9804760 and CCR-0208709, and Purdue
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In fact, the name “analysis of algorithms” did not emerge easily. D. E. Knuth, the founder
of the area, in the abstract of his talk “The Birth of the Giant Component” [16, 31] given
during the first Average Case Analysis of Algorithms Seminar, Dagstuhl, July 12 — 16, 1993
has the following to say:

The first few minutes of this talk considered “the birth of analysis of algorithms”
— my personal experiences from 31 years ago when I first noticed how pleasant
it is to find quantitative formulas that explain the performance characteristics
of important algorithms. Those experiences profoundly changed my life! I also
mentioned why it became necessary to invent a name for such activities.

We finally settled on “Analysis of Algorithms” after considering “Precise Analysis of Al-
gorithms”, “Mathematical Analysis of Algorithms”, and “Average-Case Analysis of Algo-
rithms”.

Since its inception in 1963 the field has been undergoing substantial changes. We see
now the emergence of combinatorial and asymptotic methods that allow the classification of
data structures into broad categories that are amenable to a unified treatment. Probabilistic
methods [2, 63] that have been so successful in the study of random graphs [3] and hard
combinatorial optimization problems play an equally important role in this field. These
developments have two important consequences for the analysis of algorithms: it becomes
possible to predict average behavior under more general probabilistic models [45, 59, 63];
at the same time it becomes possible to analyze much more structurally complez algorithms
[20, 23, 26, 27, 28, 29, 31, 32, 33, 34, 42, 37, 38, 39, 41, 43, 44, 51, 52, 55, 56, 57, 62, 64, 66]. To
achieve these goals the analysis of algorithms draws on a number of branches in mathematics:
combinatorics, probability theory, graph theory, real and complex analysis, number theory
and occasionally algebra, geometry, operations research, and so forth.

This is the first column on the analysis of algorithms. Our goal is to describe some
activities in this area since 1993 when the first workshop on analysis of algorithms took place.
We briefly describe the first three seminars, outlining some presentations and discussing in
depth some results published in three post—conference special issues. In the forthcoming
paper (Part IT) we shall report about activities after 1998.

2 Average-Case Analysis of Algorithms, Dagstuhl, 1993

In 1990 during the Random Graphs conference in Poznan Philippe Flajolet, Rainer Kemp and
Helmut Prodinger decided to organize a seminar exclusively devoted to analysis of algorithms.
Such a workshop took place in Dagstuhl, July 12 — July 16, 1993 with over thirty participants,
including the founder of the area, D. E. Knuth. The organizers summarized this meeting in
the Dagstuhl Seminar Report [16], where one finds the following quote:

This meeting was the first one ever to be dedicated exclusively to analysis of algo-
rithms. The number of invited participants was 37, of which 30 gave presentations
of recent results summarized below. The talks could be grouped roughly as deal-
ing with Methods or Applications, both aspects being often closely intertwined.



Methods were well represented during the seminar. Actually, the first talk by D. E. Knuth
on evolution of random graphs belongs to this category. This talk was the highlight of the
conference, and we dwell a little bit on it. Knuth’s presentation was based on an over hundred
page paper [31] published in Random Structures €& Algorithms co-authored by S. Janson, T.
Luczak, and B. Pittel. (In a sense, this paper is a continuation of the work by Flajolet, Knuth
and Pittel [20] where analytic tools were used to study the first cycles in random graphs.) The
principal result of Knuth’s paper is that an evolving graph or multigraph on n vertices has
at most one component through its evolution with probability ?—g ~ 0.8727 as n — oo. This
result is obtained by analytic tools of generating functions and their functional/differential
equations. For example, Knuth proves that the generating function G(w,z) for random
multigraphs satisfies

1 o0
G(w,z) =€ + 5/ 92G(w, z)dw
0

where 9 is the operator z%. Enumeration of this sort, together with counting trees, unicycle
components and bicyclic components in random graphs are analyzed in Knuth’s paper.
Throughout the presentation Knuth refers to the tree function defined as

T(z) = ze'?) (1)
from which, by Lagrange’s inversion formula, we find
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In the sequel, we shall use the standard notation [2"]F(z) for the coefficient at 2" of the power
series F'(z). Of course, T'(z) generates rooted labeled trees, but it arises in surprisingly many
applications; it will appear many times in this article. As a matter of fact, it was generalized
by Knuth and Pittel in [42] as well as in [31]. Let
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where t,(y) is a polynomial of degree n in y, called the tree polynomial of order n. In
particular,

tn(1) =n".
Furthermore,
tn(2) = n"(1 4+ Q(n))
where

s n!
Q(n) = kz::l = B)F

is the Ramanujan function studied in 1962 by Knuth and denoted by him as (). Related
identities and functions appear in an incredible number of analyses: caching, hashing and
birthday paradox, random number generators and integer factorization (by Pollard’s rho
method), and union-find algorithms. Lately, they were even used in source and channel
coding (cf. [24, 61, 62]).



To finish our discussion about Knuth’s presentation, let us mention that another speaker
of the seminar, K. Compton, talked about “Ramanujan’s Q-function and Asymptotics” and
its applications to an analysis of a multiprocessing systems [7].

There were many other presentations in the Methods category. We mention here “The
Mellin Transform Technology” by P. Flajolet and “Ramanujan and the Average Case Analysis
of Trie Parameters” by Kirschenhofer and Prodinger. The first presentation found its way to
the special issue of Theoretical Computer Science that was published in 1995.

Applications group was also well represented. Sedgewick talked about his and Schaffer’s
solution of a 20 years old problem concerning the average-case analysis of heapsort [57]. Valleé
demonstrated how the lattice reduction algorithm of Gauss can be precisely analyzed. Finally,
there were three talks related to the behavior of data compression (Jacquet, Szpankowski,
Vitter). For the first time a precise analysis of the Lempel-Ziv compression scheme was
presented (we shall discuss it below in some depth).

During the seminar several open problems were discussed; ten of them were recorded in
the Dagstuhl Report [16]. We describe here only one that initiated a long term project by
Michael Drmota (see also Reed [54]) who solved it finally in 2000 [13, 14]. (We come back
to it in Part IT when we discuss the 2000 post-conference special issue.) The problem was
posed by P. Flajolet and we quote here from [16]:

Luc Devroye [10] (cf. also [11]) has used probabilistic arguments to show that
the expected height of a random binary search tree over n nodes is asymptotic
to clogn, where ¢ is Robson’s constant (¢ ~ 4.3). The problem can be recast in
analytic terms as follows: Let

() =1+ | TR, yo(z) =0, (3)

(so that yoo(z) = 1=-). Then the generating function of average heights

H(z) =Y [Yoo(2) — yn(2)] (4)
h=0
satisfies . !
H(Z)Nl—zl()gl—z’ z — 1. (5)

The problem is to show this estimate in an extended area of the complex plane.
Devroye’s result follows from (5). A consequence of an analytic proof of (5) should
be to derive estimates on the variance (the exact order is yet unknown) of height,
and most probably also a limiting distribution result.

It turned out that one needs more terms in (5) to obtain the conjectured results concerning
the variance and the limiting distribution. Indeed, the expected value of the height followed
from (5), as proved by Drmota [13], however, for the variance (which turns out to be bounded)
Drmota [14] and Reed [54] needed more terms of the asymptotic expansion of the height plus
additional concentration properties. The limiting distribution is not yet proved rigorously,
however, a heuristic argument based on the WKB method was recently presented in [36].



In 1995 H. Prodinger and W. Szpankowski edited a special issue entitled “Mathematical
Analysis of Algorithms” in Theoretical Computer Science, 144, No. 1-2. It was dedicated
to D. E. Knuth, the founding father of the area. This special issue was meant to be a post
Dagstuhl-seminar collection of results, however, we advertised it in an open call for papers.
We accepted 10 papers and Philippe Flajolet wrote an invited paper that we discuss in some
depth below, together with a few others.

In the invited paper [19] Flajolet and his colleagues X. Gourdon and P. Dumas present a
unified and essentially self-contained approach to the Mellin transform. The Mellin transform
(Hjalmar Mellin 1854-1933, Finish mathematician) is the most popular transform in analysis
of algorithms. It is defined for a real-valued function f(z) on (0,00) as

re = " f@)r e

provided the above integral exists, with s being a complex number. D. E. Knuth, together
with De Bruijn, introduced it in the orbit of discrete mathematics in the mid-1960s, however,
Flajolet’s school systematized and applied the Mellin transform to myriad problems of ana-
lytic combinatorics and analysis of algorithms. The popularity of this transform stems from
two important properties. It allows the reduction of certain functional equations to algebraic
ones, and it provides a direct mapping between asymptotic expansions of a function near zero
or infinity and the set of singularities of the transform in the complex plane (cf. Table 1).

In analysis of algorithms and analytic combinatorics one often deals with functional equa-
tions like

f(z) = a(z) + af (zp) + Bf (zq), (6)

where «, 3 are constants, and a(z) is a known function (e.g., think of the divide-and-conquer
recursion or splitting processes). The Mellin transform maps the above functional equation
into an algebraic one that is easier to solve and hence allows us to recover f(z), at least
asymptotically as x — 0 or x — oo (cf. property (M4) in Table 1). Indeed, the Mellin
transform of f(x) defined in (6) is

fr(s) =a*(s) +ap™° f*(s) + Bq° f*(s)

provided there is a strip in the complex plane where f*(s) exists.
Flajolet and his colleagues concentrate in [19] on sums like

G(zr) = Z (1 - e_x/Qk) and  H(z) = Z(—l)ke_k% log k,
k=0 k=1

which are typical examples of a harmonic sum
> apf (brz)
k

whose Mellin transform becomes (cf. property (M3) in Table 1)

Z apb’ f*(s).
k



(M1) DIRECT AND INVERSE MELLIN TRANSFORMS. Let ¢ belong to the fundamental strip
defined below.
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(M2) FUNDAMENTAL STRIP. The Mellin transform of f(z) exists in the fundamental strip
R(s) € (—a, —p), where

for 8 < a.
(M3) HARMONIC SUM PROPERTY. By linearity and the scale rule M(f(ax);s) =
a” M(f(z);s),

f@) = Meg(ux) = (s)=97(5) D My, (8)

k>0 k>0

(M4) MAPPING PROPERTIES (Asymptotic expansion of f(z) and singularities of f*(s)).

1k
flz)y= Y cepat(logz)* + O(zM) = )= 3 05,;3%- ®)

(6,k)eA (€,k)eA

— (i) Direct Mapping. Assume that f(x) admits as z — 07 the asymptotic expansion (9)
for some —M < —a and k > 0. Then for R(s) € (—M, —f3), the transform f*(s) satisfies the
singular expansion (9)

— (ii) Converse Mapping. Assume that f*(s) = O(|s|™") with r > 1, as |s] — oo and
that f*(s) admits the singular expansion (9) for R(s) € (—M,—3). Then f(x) satisfies the
asymptotic expansion (9) at z = 0.

Table 1: Main Properties of the Mellin Transform.

From the inversion formula of the Mellin transform one obtains (cf. property (M1) in Table 1)

c+ioo

1
Ek:akf(bkﬂﬂ) = 2—m/c _

—100

Z apb, *f*(s)z™ ds.
k

Shifting the line of integration and collecting all residues leads to the desired asymptotics of
the harmonic sum. This basic Mellin transform formula for harmonic sum is the starting point
for Flajolet and his colleagues to a readable account on Mellin transform and its application
to analysis of algorithms (cf. also [22, 45, 63]). For a summary of Mellin transform properties
the reader may consult Table 1.

Finally, we say a few words about the Jacquet and Szpankowski paper [28] that appeared
in the same special issue. It was devoted to the analysis of the Lempel-Ziv’78 data compres-
sion scheme, and its relation to digital search trees. This scheme partitions a sequence of



length n into variable phrases such that a new phrase is the shortest substring not seen in
the past as a phrase. The parameter of interest is the number M,, of phrases that one can
construct from a sequence of length n. Its behavior determines the compression ratio of this
scheme. It was known that for stationary and ergodic sources

where h is the entropy of the source. However, to gain more insights (e.g., to compute the
average redundancy of the code as in [44]) one needs more refined information about M,,.
In particular, Ziv asked in 1978 about the limiting distribution of M,, conjecturing that it
must be normal. Aldous and Shields [1] solved the problem for memoryless unbiased sources
(i.e., each symbol is generated by the same probability independently of others), however, the
authors of [1] insisted that “... we are not optimistic about finding a general result. We believe
the difficulty of our normality result is intrinsic ...”. In fact, the authors of [1] were not able to
estimate precisely the variance due to some oscillation. The problem of variance was solved
by Kirschenhofer, Prodinger, and Szpankowski [34], still for unbiased memoryless sources.
Jacquet and Szpankowski set out to extend Aldous and Shields results to biased memoryless
sources. Not surprisingly, the method used by the authors of [28] was mostly analytic, but
with a help from probabilistic methods (e.g., Billingsley’s renewal lemma) needed to translate
analytic results obtained for digital search trees to limiting distribution of the Lempel-Ziv
scheme.

As mentioned above, the problem is reduced to finding the limiting distribution of the total
path length in a digital search tree built from independently generated strings. Let L(z,u) be
the bivariate probability generating function of the path length in the Poisson model in which
the fized number of strings is replaced by a random number of strings generated according
to the Poisson distribution. It satisfies the following differential-functional equation

OL(z,u)

5 L(pzu,u)L(qzu, u) (10)

with L(z,0) = 1, where p (¢ = 1 — p) is the probability of generating a “0”. Usually, the
Poisson model is easier to solve than the original Bernoulli model, but is far from being trivial.
In fact, it is known only how to obtain asymptotic results for the Poisson model for z — oo in
a cone. Once it is proved that log L(z,u) = ©(z"")) for some function (u) in a cone around
the real axis (and all derivatives of L(z,u) with respect to u are proved to be bounded),
the Poisson model can be asymptotically solved. Then the authors of [28] “wrestle” with a
particularly complicated depoissonization in order to translate the Poisson model back to the
the Bernoulli model (for a more detailed exposition of analytic depoissonization the reader
is referred to [29]). The final outcome of this tour de force is a pretty complete analysis of
the limiting distribution and well as the first two moments. The authors of [28] propose also
a large deviation result, however, the exact exponent is not determined (and is still an open
problem; see Conjecture 1 below).

Actually, we finish this section with an open problem regarding the analysis of the Lempel-
Ziv scheme for a Markovian source. We formulate it is a conjecture.



Conjecture 1 Consider a (stationary, irreducible and aperiodic) Markovian source with

transition probabilities {pij}z",/jzl‘ Set A(z) = flogz — %x + O(logz) where A = v —
1+ A—=1)+ 2?2:)1) — 9 — mwap(—1) + 6,(Inm) with A(s) and X(s) are the first and the second

derivative of the eigenvector A(s) of P(s) = {p;;"}{";_1, while ¥ is a constant that we can
explicitly compute. Define x,, as a solution of A(zy) = n, that is,

H log1 A—logH log 1 2
n <1+0g0gn+ og +O<(0gogn) ))

Iy =

~ logn logn logn log® n
Then
1 k-1
EMF = of (1+0 (,/ Og”>) +0 (%) (11)
n log" " n
H3
VarM, ~ 2" 10(1), (12)
log“n
M, — EM,
——— — N(0,1), (13)
Var,
(14)
. 1 -1 n i I(y)

where 0 < y < 1 and I(y) is a function (at this point we still do not know how to compute
this function). Moreover, moments of My, converge to the appropriate moments of the normal
distribution.

The above formulas, except (15), are natural extensions of [28] and recent results pre-
sented in [30] concerning the Lempel-Ziv phrase distribution for Markov sources. The large
deviation result (15) is not even proved for memoryless sources, however, based on known
large deviation results for other codes (cf. [49]) we expect this formula to be true (provided
one finds an expression for the exponent I(y)).

3 Average-Case Analysis of Algorithms, Dagstuhl, 1995

The second Awverage-Case Analysis of Algorithms seminar took place in Dagstuhl, July 3-7,
1995. It was organized by P. Flajolet, R. Kemp, H. Prodinger, and R. Sedgewick. In the
post-conference abstract [17] the organizers have the following to say:

The field is undergoing tangible changes. We see now the emergence of combi-
natorial and asymptotic methods that permit to classify data models into broad
categories that are susceptible of unified treatment. This has two important conse-
quences for the analysis of algorithms; it becomes possible to predict average-case
behavior of more complex data models (for instance, nonuniform models and even
Markovian dependencies); at the same time it becomes possible to analyze much
more structurally complez algorithms since we have a much higher level grasp on
the average-case analysis process.



On the analytic side, there were talks on diagonal Poisson transform (Viola [51]) and
analytic depoissonization (Jacquet and Szpankowski [29]). These tools of general nature are
strongly tied with the analysis of hashing and digital trees or data compression. Tools for
extracting limiting distributions were discussed by Drmota and Soria (cf. [15])

In Dagstuhl 1995 there were several talks on trees and their analyses (Flajolet, Hubalek,
Gittenberger, Prodinger, Steyaert). For example, in an interesting paper [52] “Solution of
a Problem of Yekutieli and Mandelbrot” H. Prodinger solved an open problem posed by
physicists. The author of [52] first reminded us that the register function of a binary tree
is defined recursively as follows: leaves get the register number equal to 0; while if a left
subtree was assigned the register number ¢ and the right subtree the number b, then the
whole tree obtains the larger of these two, if there are different, and a 4+ 1 if a = b. Yekutieli
and Mandelbrot asked the following question: if the tree has register function p, how many
maximal subtrees of register function p — 1 are there? Experiments indicated that the av-
erage value oscillates between 3 and 4. Using generating functions, Mellin transforms and
singularity analysis Prodinger established in [52] the precise value to be 3.341266 + §(log, n)
where d(log, n) is an oscillating function of small amplitude.

Finally, there were several talks on new applications of analysis of algorithms: M. Régnier
presented a pattern matching approach for the DNA sequence analysis; G. Louchard discussed
computing with faulty processors; parallel simulations were main topic of A. Greenberg’s
talk; average-case analysis of prefixes of formal languages was presented by R. Kemp; Rob-
son talked about simulation of trees; Gonnet about computer algebra; Gardy described the
occupancy problem, and Wright spoke about parallel scheduling.

The second Dagstuhl meeting was coupled with a special issue of Random Structures €
Algorithms, 10, No. 1-2, 1997 edited by P. Flajolet and W. Szpankowski. A. Frieze and C.
McDiarmid in the invited paper “Algorithmic Theory of Random Graphs” discussed how to
use random graphs as models for the average case analysis of graph algorithms. The issue
contains eleven accepted papers on analysis of algorithms on (random) strings, trees, per-
mutations, words, and graphs. For example, random string models were discussed in the
paper by Mahmoud, Régnier and Smythe [47] who analyzed the Boyer-Moore pattern match-
ing algorithm. Random permutations lie at the heart of all sorting and searching algorithms.
Kirschenhofer, Prodinger and Martinez [35] obtained a precise analysis of “quickselect”. Shell-
sort was analyzed by S. Janson and D. E. Knuth [32] who sharpened A. C. Yao’s arguments to
obtain a refined analysis of the algorithm. Random trees, as expected, were well represented
in the special issue. Schmid [58] applied tree modes to the analysis of scheduling in real
time systems. Finally, probabilistic methods were used by McDiarmid, Johnson, and Stone
[48] to investigate the growth of a minimum spanning tree given random edge weights, while
Coffman, Johnson, Shor and Weber [5] developed probabilistic properties of random walks
to analyze the first-fit strategy for bin packing.

To wrap up this brief presentation, we say a few more words about an important paper
by Drmota [12] who in “Systems of Functional Equations” discussed asymptotic properties
of the coefficients of generating functions satisfying a certain system of functional equations.
Standing on shoulders of Bender, Richmond, Flajolet, and Odlyzko, Drmota is interested in



an analytic solution y(z, z) of the following (system of) functional equation(s)

y = F(z,y,2). (16)
Examples of such equations are:

zy(z, 2)

y(z,z) =xz + 1= y(@,2)

that represents the number of planted plane trees with given number of leaves; and

T

———— —ay(z,2)" + wzy(, 2)
- y(:E,Z)

y(z, 2) =
which is the generating function for the numbers y,, ;. of planted plane trees of size n and k
nodes of outdegree d. Drmota reduces the analysis of (16) to the following form

y(, 2) = g(x,2) = h(z, 2)\/1 — 2/ f(2)

with proper analytic functions ¢(z,z), h(z,z), and f(z). This form is a consequence of the
Weierstrass preparation theorem. In the next step Drmota applied the Flajolet and Odlyzko
[21] transfer theorem to obtain the asymptotics of y,(z) = [2"]y(x,z). Finally, the saddle
point method applied to the Cauchy formula completed the derivations.

In summary, Drmota proves that the coefficient (we deal here only with the one dimen-
sional case) of

y(r,2) = > ynmz"2"
n,m

has the following asymptotic solution

azg " (m — pun)? —1/2
= O
Ynm 2mn2/ 2w xp ( 2no? +0(n )

where a, g, 4 and o are certain constants. In the multidimensional case one obtains a similar
expansion. The above formula is an example of a local limit Gaussian approximation.

4 Average-Case Analysis of Algorithms, Dagstuhl, 1997

The third Average-Case Analysis of Algorithms seminar took place in Dagstuhl, July 7-11,
1997. It was organized by P. Flajolet, R. Kemp, H. Mahmoud, and H. Prodinger. Twenty
eight talks were given ranging from methodological to applied, covering such diverse prob-
lems as string matching and computational biology, hashing, tree data structures, selection
problems in statistics, data compression and information-theory, adaptive data structures
and learning, real-time and system programming, as well as computer algebra. We discuss
some of them below.

Urn models were presented by Gardy who stressed their diverse applications to hashing,
allocations or learning. Guy Louchard, a pioneer of the Brownian motion approach to analysis
of algorithms (cf. [43]) used Brownian excursion local times to the analysis of random trees,
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while Luc Devroye presented a unifying approach to the analysis of depth and height for
random search trees.

Analytic combinatorics were well represented in talks of Flajolet (on Gaussian laws),
Odlyzko (on constrained set partitions) and Salvy (on automatic saddle point methods).

Pattern in strings are of interest to a number of applications such as retrieval, indexing,
computational biology, source coding, and so forth. Several talks were devoted to this topic.
Régnier presented a generalization of the Guibas and Odlyzko “autocorrelation” to sequences
generated by Markovian sources (cf. [55]). Nebel applied formal languages to an interesting
enumerative problem on strings. Vallée used dynamic systems approach to analyze digital
tree for the so called dynamic sources (cf. [65]).

As expected, trees have attracted a lot of interest from AofA community, however, com-
binatorial models still pose intriguing questions. Kemp analyzed balanced trees. Drmota had
the first “crack” into the problem of height in a binary search tree using analytic approach,
as suggested by Flajolet during the first Dagstuhl meeting. Mahmoud gave a solution to the
quickselect algorithm, which can be viewed as a one-sided quicksort (a complete analysis of
the regular quicksort problem is still needed). Finally, Bob Sedgewick surveyed some sixty
open problems introduced by Knuth in his Vol. 3 and discussed about twenty of them that
were solved. Three open problems were discussed in detail, namely the average case analysis
of shellsort, balanced trees, and development of sorting networks that are substantially better
than Batcher’s network.

In passing, we should mention that there were several talks illustrating applications
of analysis of algorithms. Golin focused on computational geometry, Fill discussed self-
organizing search, Coffman gave a talk on reservation policies in communication systems (cf.
[6], Jacquet analyzed an on/off queue, and Schmid surveyed some recent results in real-time
systems (cf. [58]).

We end this brief presentation with the highlight of the Dagstuhl 1997 meeting, namely
a definite solution to the variance analysis of linear probing hashing that was presented for
the first time by Poblete and Viola. This unfolding story has it continuation in the special
issue that we discuss next.

Following our tradition, we edited a special issue of Algorithmica, vol. 22, No. 2, 1998
(eds. H. Prodinger and W. Szpankowski), where we collected more definite results presented
during the last AofA meeting. This was very “special” special issue. It was dedicated to “.
our colleague, teacher, and friend Philippe Flajolet on the occasion of his 50th birthday”.
The editors prepared an article on “Philippe Flajolet’s Research in Analysis of Algorithms”
[53] describing Flajolet’s accomplishments in analysis of algorithms.

In my opinion this special issue was one of the best so far devoted to analysis of algorithms
that I was involved in. A number of research results were published that solved long standing
open problems. In particular, we dwell on two results, namely that of linear probing hashing
by Flajolet, Poblete, Viola [23] and Knuth [40], and (in Knuth’s words) “an exciting paper”
[64] by Vallée who for the first time analyzed rigorously the binary Euclidean gcd algorithm
proving a 20-year old conjecture of Brent.

Let us recall that in linear probing hashing a table of length m is set up together with
a hash function h that maps n < m keys (randomly) to the m cells of the hash table. A
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collection of n objects (keys) enter sequentially into the hash table so that element x is placed
at the first unoccupied location starting from A(z) in a cyclic order. The displacement is the
number of collisions until an unoccupied cell is found. The total displacement corresponding
to a sequence of hashed values is the sum of all individual displacement, and it is usually
denoted as dy, 5. In his 1963 paper Knuth proved that

Eldyq] = 5 (Qo(m,n 1) = 1) (17)

where Q,(m,n) is the generalized Ramanujan’s function defined as

Qr(m,n)zz<T—;k>ﬁn_1---n_k+1.

>0 m o m m

Here are Knuth’s personal remarks from [40] regarding this problem:

The problem of linear probing is near and dear to my heart, because I found
it immensely satisfying to deduce (17) when I first studied the problem is 1962.
Linear probing was the first algorithm that I was able to analyze successfully,
and the experience had a significant effect on my future career as a computer
scientist. None of the methods available in 1962 were powerful enough to deduce
the expected square displacement, much less the higher moments, so it is an even
greater pleasure to be able to derive such results today from other work that has
enriched the field of combinatorial mathematics during a period of 35 years.

We end up this essay with a pretty detailed description of the derivation that Knuth was
able to carry on after 35 years. In fact, we follow Knuth as well as Flajolet, Poblete and
Viola [23] whose analysis lead to a distribution of the total displacement.

The most interesting behavior of linear probing hashing occurs when m =norm =n—1
which we shall call full and almost full tables, respectively. Here, we only consider the case
when n = m — 1 and write d, = d;, ,—1. Using Knuth’s circular symmetry argument we shall
assume from now on that the nonempty cell is the rightmost one. Define F), ;. as the number
of ways of creating an almost full table with n elements (with empty cell in the rightmost
location) and total displacement k. The bivariate generating function is denoted as

Z’rL
F(z,u) = Z Fnykuk—'.
n,k>0 n:

Following Knuth [40], and Flajolet, Poblete and Viola [23] we observe that F},(u) = n![2"]F(z, u)
satisfies

“in-1

Fn(u) = Z < k >Fk(u)(1 +u+---+ uk)anlfk(u)'

k=0
Indeed, consider an almost full table of size n (and length n 4+ 1 with the rightmost location
empty). Just before the last element is inserted there is another empty cell, say at position
k 4+ 1. The address of the last element belongs to the interval [1..k + 1] which corresponds
to the displacement in the interval [0..k]. The above functional equation follows. Observe
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also that after some simple algebra this equation satisfies the following differential-functional

equation
F(z,u) —uF(uz,u)

3F(z,u):F(z,u)- T—a

0z
for |u| < 1. Then, denoting by F()(z,1) the Ith derivative of F(z,u) at v = 1, the rth

factorial moment of d,, is

(18)

F) (2, 1)

Bldn(dn = 1)+ (dn =7+ Dl = 2ommgr

We must solve (18) in order to compute the factorial moments. We shall follow now
Knuth’s solution [40]. After introducing

Ap(u) = (u—1)"Fp(u),
Bp(u) = (u" = 1)An_1(u),

we observe that the exponential generating functions A(z,u) and B(z,u) satisfy
A(z,u) = eBlzu)
But Cy(u) = A,—1(u) becomes
B(z,u) = C(zu,u) — C(z,u),

and
C; (Za ’U,) = A(Z, U) = ec(zu,u)—C(z,u).

Finally, the substitution G(z,u) = e“*®) leads to
G (2,u) = Glou,u)

which translates into
u"Gr(u) = Gpy1(u).

Therefore,
Zoo (n-1)/22"
G = =

and finally (with v =1 + w)
i w" F, 1 (1+ w)ﬁ =In (i(l + w)”(”l)ﬁﬁ) . (19)
n=1 i TL' n=0 n'

At this point Knuth observes that the right-hand side of (19) is the exponential generating
function for labeled connected graphs. After introducing the exponential generating function

n

o0
z
Wk(z) = E Cn—l—l—k,nm
n=1 :

13



where (), , is the number of connected labeled graphs on n vertices and m edges, Knuth
concludes that
F(z,1 4+ w) = W{(z) + wW{(2) + w*Wy(z) +---.

But Wy (z) can be expressed in term of the tree-generating function 7'(z) defined in (1). Using
Wright’s construction [67] (cf. also [31]) Knuth finally arrives at

F(z,14+w) = @f(waT(z))

where f(w,t) has the following leading terms

t2

m + O(wZ).

flwt) =1+w

This allows to compute all factorial moments of the total displacement. In particular,

10 -3 16 —3
Var[d,] = 5 T3 4 i 7r’I’L2+O(’I’L3/2),

which solves the 35 year old problem of Knuth. As a matter of fact, an exact formula
through the function @,(m,n) on the variance can be derived as shown in [23, 40]. Even

more, Flajolet, Poblete and Viola were able to prove that has the Airy distribution.

Bk
I refer the interested reader to [23] for details of the derivations.

As a consequence of the results presented in [23, 40], combinatorial relationships between
total displacement in linear probing, connectivity in graphs, inversions in trees, area of excur-
sions and path length in trees, were re-discovered and placed in an unified framework. This
initiated several new research lines in the AofA community, and will be further discussed in
the forthcoming Part II of this article.

Finally, we devote the last part of this survey to “an exciting paper” by B. Vallée [64]
who completed the work of Brent [4] on the analysis of the binary greatest common divisor
(ged) algorithm. Let us recall that the Euclidean ged algorithm finds the greatest common

divisor of two integers, say v and v by using divisions and exchanges as below:
ged(u, v) = ged(v mod u, u).

Heilbronn and Dixon proved independently that the average number Dy of divisions on
random inputs less than N is asymptotically

121og 2

log N.
n ——log

However, there is a more efficient implementation of the Euclidean algorithm called the
binary ged that does not require divisions. It works as follows: Let

valg(u) := max{b: 2°|u},

that is, the largest b such that 2° divides u. The binary Euclidean algorithm is based on the

following recursion

u—v
ged(u, v) = ged (W,v> .

14



The challenge is to analyze the number of operations of this algorithm.
Vallée first reduces the problem to a continued fraction expansion. Indeed, observe that

v:u+2b1v1, U1 :u+2b21)2, V_1 :u—l—2blvl

represent the sequence of the shifts until the first interchange between v and v occurs. If
k=by+by+---+b and

a=1+ 2b1 4 2b1+b2+"'+bl—1’

then

U 1

— =

v ooa+2F

In general, the rational u/v has a unique continued fraction expression:
U 1

v 2k1
2"

as +

2k7‘71
I
ar + okr

The parameters of interest are:

e The height or the depth (it equals the number of exchanges); here, it is equal to 7.

e The total number of operations that are necessary to obtain the expansion; if p(a)
denotes the number of 1 in the binary expansion of the integer a, it is equal to p(a1) +
plaz) + ... + p(ar) — 1, when the a;’s are the denominators of the binary continued
fraction.

e The total sum of exponents of 2 in the numerators of the binary continued fraction:
here, it is equal to k1 + ko + - - - + k..

Vallée analyzes these three parameters in a uniform manner using an operator called now
the Vallée operator:

we =Y ¥ () 1)

k>1 aodd,
T 1<ax2k

defined on a suitable Hardy space of holomorphic functions inside a disk that contains the
real segment |0, 1]. Vallée proves that all three parameters are asymptotic to Alog N where
the constant A depends on the dominant eigenvector of the operator Vs.

Briefly, Vallée uses various tools to prove her results such as generating functions, Ruelle
operators, Tauberian methods, functional analysis. First, she applies classical tools of analysis
of algorithms, namely generating functions which in the context of computational number
theory are Dirichlet series. Second, Vallée shows that these generating functions are closely
linked to the operator

e =Y Y () ()

k>1 aodd,
T 1<a<2k
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which is a Ruelle operator. More precisely, the generating functions involve the quasi-inverse
operator Ay := (I — V,)~!, and the expectations of parameters of interest are partial sums
of coefficients of these Dirichlet series. Thus the main results follow from an application of
Tauberian Theorems due to Delange, provided that they can be applied. Vallée proves this
is the case by showing that the operator V; acting in a suitable Banach space has a “spectral
gap”, i.e. a unique dominant eigenvalue separated from the remainder of the spectrum by a
gap. When acting on a Hardy space of holomorphic functions relative to a suitable disk, the
operator Vg is proven to be compact and positive for real values of parameter s, and then
it has a spectral gap. Since Tauberian theorems link the asymptotics of coefficients to the
dominant singularity of the function, the constant A involves the dominant singularity of the
quasi-inverse (I — V,)™L.

In summary, a consequence is that the binary ged algorithm has average-case complex-
ity asymptotic to Alog N, where A is a computable constant that is mathematically well-
characterized in terms of spectral characteristics of Vallé’s operator.

5 Conclusion

In this survey we briefly reviewed the first three meetings in Schloss Dagstuhl (so called
“Dagstuhl Period”) of the newly created Analysis of Algorithms Group. We presented some
ideas, solutions, and discussed some open problems. In Part II we shall describe the next five
meetings of AofA that starting from 1998 became annual events.

The emergence of AofA as an organized field of research, which began with the Dagstuhl
seminars, started a transformation from a collection of results on individual problems to a
study of methods of general applicability, to an understanding of relationships to classical
methods of analysis, combinatorics, and discrete probability, to a web of knowledge that
applies in a broad context.

As D. E. Knuth mentioned in the conclusion of his paper [40], none of the methods
he used in his work on linear probing hashing were available in 1962. We are now in a
much better situation. Knuth himself popularized the field in his three volumes of The Art
of Computer Programming [37, 38, 39|, and quite recently in Selected Papers on Analysis
of Algorithms [41]. Sedgewick and Flajolet prepared the first undergraduate textbook [59]
that is widely used. They are in the process of writing a monograph on Analytic Com-
binatorics (cf. http://pauillac.inria.fr/algo/flajolet/Publications/books.html).
H. Hamoud and M. Hofri contributed to popularizing the area by publishing fine books
[25, 45, 46], while A. Odlyzko taught us in [50] the art of asymptotics. Finally, I myself put
up a book on Average Case Analysis of Algorithms on Sequences [63] devoted to probabilistic
and analytic methods used in analysis of algorithms. The reader is referred to these books
as a good starting point to learn more about our field.

In passing we should finally add that in 1997 Philippe Flajolet and Helmut Prodinger
started a webpage of AofA. Everybody is invited to http://pauillac.inria.fr//algo/AofA/
to read about fascinating story about linear probing hashing, binary Euclidean algorithms,
wobbles in analysis of algorithms, and other new developments.
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