
COMPSCI 720S1C, 2006

Mark C. Wilson

April 28, 2006

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

1 Background
Probability
Algorithm Analysis

2 Introduction
First example - quicksort

3 Generating Functions
GF definitions
GFs and recurrences
GFs and enumeration
Coefficient extraction from GFs

4 Combinatorial and Algorithmic Applications
Trees
Strings
Tries

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Probability

Probability basics I

A probability space is a set X with a probability measure Pr
defined on a σ-algebra S.

A σ-algebra is a collection of subsets of X that contains ∅
and is closed under complement, unions.

A probability measure is a function Pr : S → [0, 1] such that
Pr(∅) = 0; Pr(∪iAi) =

∑
i Pr Ai if the Ai are pairwise disjoint.

For us, usually X is finite of size n and S contains all the 2n

subsets of X. The space is discrete.

A random variable is a (measurable, real-valued) function on
X. For us, the “measurable” can safely be ignored.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Probability

Probability basics II

The mean of a discrete random variable T is
µ := E[T] :=

∑
x∈X T (x) Pr({x}) =

∑
y y Pr(T (x) = y).

The variance of T is σ2 := E[T 2]− E[T]2.

Chebyshev’s inequality says that Pr(|T − µ| > cσ) < c−2 for
each c > 0. In practice this probability is often exponentially
small in c.

The measure is uniform if the probability of a subset depends
only on its size. The probability of a k-element subset of an
n-element space is then k/n. In this case all the above
quantities can be computed via counting.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Algorithm Analysis

Recalling ideas from previous courses

We aim to compare resource use of algorithms for a given
computational problem. A mathematical model is needed.

We measure asymptotic running time for large inputs. Small
inputs are not a challenge. We don’t care about constant
factor speedups due to faster machine, better programming,
etc.

We identify elementary operations and measure running time
in terms of these (e.g. comparisons, swaps for sorting).

Every comparison-based sorting method must use Ω(n log n)
comparisons in the worst case for a file of size n.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Algorithm Analysis

Asymptotic notation

Let f, g : N → N. We say that f ∈ O(g) if there is C > 0
such that f(n) ≤ Cg(n) for all sufficiently large n.

f ∈ Ω(g) ⇔ g ∈ O(f).

f ∈ Θ(g) ⇔ f ∈ O(g) and f ∈ Ω(g).

In particular if limn→∞ f(n)/g(n) exists and equals L, then
f ∈ Θ(g) if 0 < L < ∞;

f ∈ Ω(f) if L = ∞;

f ∈ O(g) if L = 0.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Algorithm Analysis

Our basic framework

Let A be an algorithm for a given problem, and let I be the
set of legal inputs. The size of input ι ∈ I is denoted |ι|; we
let In be the set of inputs of size n. The running time of A
on input ι is the number of elementary operations T (ι).

Worst-case analysis studies W (n) := maxι∈In T (ι). Example:
for sorting integers, In is the set of all sequences of integers
of length n. For quicksort, W (n) ∈ Θ(n2) but for mergesort,
W (n) ∈ Θ(n log n).

Here we prefer to study the distribution of T (ι) over In, since
this is often more relevant in practice. This approach requires
some probability model on the inputs, and then T is a random
variable, whose mean, variance, etc, can be studied.

We concentrate on systematic and powerful mathematical
tools, avoiding special tricks.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Organizational matters

Lecturer: Dr Mark Wilson; office 303.588;
www.cs.auckland.ac.nz/˜mcw. Office hours Mon, Tue 9-10,
by appointment and whenever my door is open - email is
preferred.

Recommended reading:

Flajolet and Sedgewick, An Introduction to the Analysis of
Algorithms (on reserve in library);
Wilf, generatingfunctionology (in library, also freely available
online from my webpage);
Graham, Knuth, Patashnik, Concrete Mathematics (on
reserve).
Lecture slides available online, but are continually being
updated and corrected, so don’t rely on them until the end of
the course.

One assignment worth 20% of course marks will be given.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort algorithm

A recursive algorithm for sorting an array of n elements from
a totally ordered set.

If n = 0 or n = 1, do nothing. Otherwise, choose a pivot
element x and partition the array so that if y < x then y is to
the left of x and if z > x then z is to the right of x. Then call
the algorithm recursively on the left and right parts.

The partitioning step requires at least n− 1 comparisons, plus
some swaps.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence

Let C(F) be the number of comparisons done by quicksort on
an n-element file F of distinct elements. Then if n = 0,
C(F) = 0 and otherwise

C(F) = n− 1 + C(F1) + C(F2)

where F1, F2 are the subfiles consisting of elements less than,
greater than the pivot.

If the pivot is always the smallest element then F1 is empty,
so iterating this recursion gives W (n) ∈ Θ(n2). Quicksort has
a bad worst case. What about on average?
Suppose we choose an input file (permutation of {1, . . . , n})
uniformly at random. After pivoting, the pivot is equally likely
to be in any of the n positions and each subfile is uniformly
distributed. Thus we get (with an := E[Cn])

an = n− 1 +
1

n

∑
1≤p≤n

(ap−1 + an−p).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence

Let C(F) be the number of comparisons done by quicksort on
an n-element file F of distinct elements. Then if n = 0,
C(F) = 0 and otherwise

C(F) = n− 1 + C(F1) + C(F2)

where F1, F2 are the subfiles consisting of elements less than,
greater than the pivot.
If the pivot is always the smallest element then F1 is empty,
so iterating this recursion gives W (n) ∈ Θ(n2). Quicksort has
a bad worst case. What about on average?

Suppose we choose an input file (permutation of {1, . . . , n})
uniformly at random. After pivoting, the pivot is equally likely
to be in any of the n positions and each subfile is uniformly
distributed. Thus we get (with an := E[Cn])

an = n− 1 +
1

n

∑
1≤p≤n

(ap−1 + an−p).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence

Let C(F) be the number of comparisons done by quicksort on
an n-element file F of distinct elements. Then if n = 0,
C(F) = 0 and otherwise

C(F) = n− 1 + C(F1) + C(F2)

where F1, F2 are the subfiles consisting of elements less than,
greater than the pivot.
If the pivot is always the smallest element then F1 is empty,
so iterating this recursion gives W (n) ∈ Θ(n2). Quicksort has
a bad worst case. What about on average?
Suppose we choose an input file (permutation of {1, . . . , n})
uniformly at random. After pivoting, the pivot is equally likely
to be in any of the n positions and each subfile is uniformly
distributed. Thus we get (with an := E[Cn])

an = n− 1 +
1

n

∑
1≤p≤n

(ap−1 + an−p).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution

Recall an = n− 1 + 1
n

∑
1≤p≤n(ap−1 + an−p).Collect common

terms in the sums to obtain

an = n− 1 +
2

n

∑
0≤j<n

aj .

This full history recurrence can be solved by eliminating the
history, (a general form of telescoping).

The solution is an = 2(n + 1)Hn − 4n ≈ 2n log n, where

Hn :=
∑

1≤j≤n

1/j, the nth harmonic number.

Quicksort is of optimal order on average.

What about the variance?

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution

Recall an = n− 1 + 1
n

∑
1≤p≤n(ap−1 + an−p).Collect common

terms in the sums to obtain

an = n− 1 +
2

n

∑
0≤j<n

aj .

This full history recurrence can be solved by eliminating the
history, (a general form of telescoping).

The solution is an = 2(n + 1)Hn − 4n ≈ 2n log n, where

Hn :=
∑

1≤j≤n

1/j, the nth harmonic number.

Quicksort is of optimal order on average.

What about the variance?

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution

Recall an = n− 1 + 1
n

∑
1≤p≤n(ap−1 + an−p).Collect common

terms in the sums to obtain

an = n− 1 +
2

n

∑
0≤j<n

aj .

This full history recurrence can be solved by eliminating the
history, (a general form of telescoping).

The solution is an = 2(n + 1)Hn − 4n ≈ 2n log n, where

Hn :=
∑

1≤j≤n

1/j, the nth harmonic number.

Quicksort is of optimal order on average.

What about the variance?

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution

Recall an = n− 1 + 1
n

∑
1≤p≤n(ap−1 + an−p).Collect common

terms in the sums to obtain

an = n− 1 +
2

n

∑
0≤j<n

aj .

This full history recurrence can be solved by eliminating the
history, (a general form of telescoping).

The solution is an = 2(n + 1)Hn − 4n ≈ 2n log n, where

Hn :=
∑

1≤j≤n

1/j, the nth harmonic number.

Quicksort is of optimal order on average.

What about the variance?

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution

Recall an = n− 1 + 1
n

∑
1≤p≤n(ap−1 + an−p).Collect common

terms in the sums to obtain

an = n− 1 +
2

n

∑
0≤j<n

aj .

This full history recurrence can be solved by eliminating the
history, (a general form of telescoping).

The solution is an = 2(n + 1)Hn − 4n ≈ 2n log n, where

Hn :=
∑

1≤j≤n

1/j, the nth harmonic number.

Quicksort is of optimal order on average.

What about the variance?

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution details

We have for n > 1

nan − (n− 1)an−1 = n(n− 1) + 2
∑

0≤j<n

aj

− (n− 1)(n− 2)− 2
∑

0≤j<n−1

aj

= 2(n− 1) + 2an−1

Thus nan = 2(n− 1) + (n + 1)an−1, so that

an

n + 1
=

2(n− 1)

n(n + 1)
+

an−1

n
=

an−1

n
+ 2(n− 1).

We can iterate to obtain

an

n + 1
=

a1

2
+

n∑
j=2

2

j + 1
+

1

j
− 1

j + 1
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution details

We have for n > 1

nan − (n− 1)an−1 = n(n− 1) + 2
∑

0≤j<n

aj

− (n− 1)(n− 2)− 2
∑

0≤j<n−1

aj

= 2(n− 1) + 2an−1

Thus nan = 2(n− 1) + (n + 1)an−1, so that

an

n + 1
=

2(n− 1)

n(n + 1)
+

an−1

n
=

an−1

n
+ 2(n− 1).

We can iterate to obtain

an

n + 1
=

a1

2
+

n∑
j=2

2

j + 1
+

1

j
− 1

j + 1
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Quicksort recurrence solution details

We have for n > 1

nan − (n− 1)an−1 = n(n− 1) + 2
∑

0≤j<n

aj

− (n− 1)(n− 2)− 2
∑

0≤j<n−1

aj

= 2(n− 1) + 2an−1

Thus nan = 2(n− 1) + (n + 1)an−1, so that

an

n + 1
=

2(n− 1)

n(n + 1)
+

an−1

n
=

an−1

n
+ 2(n− 1).

We can iterate to obtain

an

n + 1
=

a1

2
+

n∑
j=2

2

j + 1
+

1

j
− 1

j + 1
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

First example - quicksort

Issues arising from our analysis

How do we analyse suggested improvements, such as using a
cutoff for small files, or median-of-3 pivoting, or different
partitioning method?

The method we used for solving the recurrences was
somewhat specialized. How to do it more generally?

How do we get more information about the full distribution of
the number of comparisons?

How to derive asymptotics for the sums occurring?

The above analysis relies on the fact that the subfiles are
themselves uniformly distributed. What to do if this is not the
case?

How to analyse input where keys can be equal?

We answer points 1–4 in this course.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Ordinary generating functions — OGFs

The OGF associated to a sequence a0, a1, . . . , is the formal
power series F (z) =

∑
n anzn. Examples: 1, 1, 1, . . . , has

OGF 1 + z + z2 + · · · = 1/(1− z). See handout for more
examples.

Basic operations on sequences (sum, convolution, . . .)
correspond to those on OGFs (sum, product, . . .). See
handout for more operations.

The equality
∑

n zn = 1/(1− z) is purely formal at this stage
but also makes sense for |z| < 1. So far OGFs are just a
convenient short way to describe sequences, but soon they will
be a powerful machine.

Given an OGF, how to extract its sequence if not available
from above list? Taylor series definition always works, but is
usually not computationally useful. We mainly use table
lookup here.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Formal power series

A sequence is a function f : N → C. We sometimes write
(f(0), f(1), . . . ,) instead of just f . The special sequences
1 := (1, 0, 0, . . . ,) and z := (0, 1, 0, 0 . . .) will be useful.

The set of all sequences we call A. We define operations +
and · on A as follows.

The sum f + g of sequences is the sequence h such that
h(n) = f(n) + g(n) for each n ∈ N.
The product f · g is the sequence h such that for each n,
h(n) =

∑n
k=0 f(k)g(n− k).

With these operations and the obvious multiplication by
complex numbers, A becomes a commutative associative
algebra. It contains a subalgebra B (consisting of all
sequences with finitely many nonzero terms) isomorphic to the
algebra of polynomials in one indeterminate.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Operations in the power series algebra

We can define the derivative of f as the sequence h such that
h(n) = (n + 1)f(n + 1).

The antiderivative of f is the sequence h such that
h(n) = f(n− 1)/n for n > 0, and h(0) = 0.

The composition of f and g is the sequence h given by
h(n) =

∑n
k=0 f(k)gk. This is only valid when g(0) = 0.

The inverse of f is the series h such that f · h = 1; this exists
if and only if f(0) 6= 0.

All operations take place in B; that is, computing h(n) always
involves only finite algebra.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Analytic functions and power series

Some facts from a course in complex analysis (not proved here):

For each f ∈ A there is a largest R ≤ ∞, such that for
|z| < R, the infinite series

∑
n f(n)zn converges absolutely

and uniformly to a limit F (z).
If R > 0, then F is analytic (has derivatives of all orders) for
|z| < R, and can be integrated and differentiated
term-by-term.
Conversely, if R > 0 and F is an analytic function for |z| < R,
then there is a unique sequence f so that F (z) =

∑
n f(n)zn.

Here f is essentially the sequence of Taylor coefficients of F
at 0,

f(n) =
1

n!

(
d

dz

)n

F (z)|z=0

and can also be computed by Cauchy’s integral formula

f(n) =
1

2πi

∫
C

F (z)

zn+1
dz.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Summary - power series

Basic principle: if an identity between power series is true at
the level of analytic functions, then it is true for formal series,
provided all operations concerned are formally valid
(computation of each coefficient can be carried out in B).

Thus we may freely use all our algebra and calculus
knowledge, with appropriate caution about composition.

An example of what is not allowed formally:∑
n(z + 1)n/n! = e

∑
n zn/n!. This is true at the function

level for every z ∈ C and says exp(z + 1) = exp(1) exp(z), but
the constant term of the left side can’t be computed in B.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Exponential generating functions — EGFs

The EGF associated to a sequence a0, a1, . . . , is the formal
power series F (z) =

∑
n anzn/n!. Examples: 1, 1, 1, . . . , has

EGF 1 + z + z2/2! + · · · = exp(z). See handout.

The EGF of sequence {an} is the OGF of {an/n!}.
EGFs are often used for labelled constructions and for
permutations (perhaps more later).

Basic operations on sequences (sum, convolution, . . .)
correspond to those on EGFs (sum, product, . . .). See
handout.

Sometimes OGFs are better for computation, sometimes
EGFs.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Probability generating functions — PGFs

The PGF associated to a random variable X taking values in
N is G(z) =

∑
n Pr(X = n)zn.

The mean of X is just G′(1) and the variance is
G′′(1) + G′(1)−G′(1)2.

The PGF of the sum of independent RVs X and Y is the
product of the individual PGFs.

The PGF of the sequence Pr(X > n) of tail probabilities is
(1−G(z))/(1− z).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GF definitions

Multivariate generating functions — MGFs

Occur naturally in many contexts. An important one for probability
is as follows. Let ank be the number of objects of some type with
size n and another parameter χ equal to k. Let
F (z, u) =

∑
ankz

nuk, the bivariate GF. Then

cn := [zn]F (z, 1) =
∑

k ank is the number of objects of size n;

µn := (1/cn)[zn]Fu(z, 1) = (1/cn)
∑

k kank is the mean of χ
on a uniformly chosen object of size n;

σ2
n := (1/cn)[zn]Fuu(z, 1) + µn − µ2

n is the variance of χ on a
uniformly chosen object of size n.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and recurrences

GFs solve recurrences

Main idea: recurrence gives an equation involving the GF. Try
to solve this, then extract the coefficients.

Example (Fibonacci): a0 = 0, a1 = 1; an = an−1 + an−2 for
n ≥ 2. Multiply each side by zn, then sum on n. Let
F (z) =

∑
n anzn. Then we get F (z)− z = zF (z) + z2F (z).

This gives F (z) = z/(1− z − z2).

To convert back to a sequence, we can use partial fractions.
Get F (z) = A/(1− φz) + B/(1 + φ−1z) where φ = 1.618 · · · ,
the golden ratio, A = 1/

√
5, B = −1/

√
5.

Thus an = (φn + (−1)nφ−n)/
√

5 ∈ Θ(φn).

Note: this can be done automatically by a computer algebra
system!

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and recurrences

Quicksort recurrence with GFs

From nan = n(n− 1) + 2
∑

j<n aj , a0 = 0, we obtain

zF ′(z) = 2z2/(1− z)3 + 2zF (z)/(1− z).

This is a standard first order linear inhomogeneous differential
equation that can be solved (how?) to obtain

F (z) =
2

(1− z)2

(
log

1

1− z
− z

)
.

Thus by lookup we have an = 2(n + 1)Hn − 4n.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and recurrences

GFs also yield recurrences

Example: for fixed r ≥ 1, consider

F (z) = (1− z)/(1− 2z + zr+1) =
∑

n

anzn.

Thus (
∑

n anzn)(1− 2z + zr+1) = 1− z. Compare
coefficients to see that a0 = 1, a1 − 2a0 = −1, and

an − 2an−1 + an−r−1 = 0 for n ≥ 2.

This allows linear time computation of an.

Every rational OGF gives a linear constant coefficient
recurrence in this way, and vice versa.

In the same way, linear recurrences with polynomial
coefficients correspond to linear differential equations for the
OGF.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and recurrences

GFs sometimes yield better recurrences

The counting GF of binary trees by internal nodes satisfies
T (z) = 1 + zT (z)2 (later). This is equivalent to the quadratic
recurrence a0 = 1, an =

∑
k<n akan−1−k for the number an

of binary trees with n nodes.
There is an algorithm (Comtet 1964) which finds a linear
differential equation with polynomial coefficients for each
algebraic GF.
In this case the answer turns out to be

(4z2 − z)T ′(z) + (2z − 1)T (z) + 1 = 0

which is equivalent to the recurrence

(n + 1)an = (4n− 2)an−1 a0 = 1.

This allows for much faster computation and makes it plain
that an involves a quotient of factorials (in fact
an = 1

n+1

(2n
n

)
, the nth Catalan number).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and recurrences

Comtet’s algorithm outline

Suppose P (z, F (z)) = 0 where P (z, y) ∈ C[z, y] is
irreducible. Differentiate and solve for F ′ to obtain

F ′(z) =
A(z, y)

B(z, y)
for relatively prime polynomials A,B ∈ C[z, y].

Note that B and P are relatively prime.

The extended Euclidean algorithm yields polynomials
u(z, y), v(z, y), g(z) such that uB + vP = g. Define C = Au
mod P to get F ′(z) = C(y, z)/g(z). Repeat as required.

In above binary tree example,
P = zy2 − y + 1, B = 1− 2zy, A = y2, u =
(2zy−1)/(4z−1), C = (2zy−y−z)/(z−4z2), g = 1/(4z−1).
Algorithm terminates in one step.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

OGFs and counting I

Can often set up a recursion and solve as above. Example:
how many binary trees Tn with n (internal) nodes? Binary
tree is a recursive object: either a single external node, or an
internal node connected to an ordered pair of binary trees.
Thus T0 = 1 and for n > 0,

Tn =
∑

1≤k≤n

Tk−1Tn−k =
∑

0≤k≤n−1

TkTn−1−k.

Hence OGF satisfies T (z) = zT (z)2 + 1. Thus
T (z) = (1−

√
1− 4z)/2z (how to choose square root?).

Can extract coefficients using binomial theorem: get

Tn =
1

n + 1

(
2n

n

)
(Catalan number).

Asymptotics can be derived (later) and we will get
Tn ∼ 4n/

√
πn3.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

OGFs and counting II

A nicer way to get the OGF is as follows. Let T be the set of
all binary trees, |t| the size of tree t, Tn = {t ∈ T : |t| = n}.
Then

T (z) =
∑

n

∑
t∈Tn

zn =
∑
t∈T

z|t| = 1 +
∑

t∈T \T0

z|tl|+|tr|+1

= 1 +
∑
tl∈T

∑
tr∈T

z|tl|+|tr|+1 = 1 +
∑
tl∈T

z|tl|
∑
tr∈T

z|tr|

= 1 + zT (z)2

where tr, tl are the right and left subtrees of t.

Study this example carefully - it leads to the symbolic method
for enumeration.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

The symbolic method I

Avoids explicit recurrences, goes straight from recursive
description of structure to the counting GF. A great
time-saver, and also more amenable to computer algebra
implementation.

A combinatorial class is a set X which is the disjoint union of
finite sets Xn. The size |x| of an element x is the value of n
for which x ∈ Xn.

Let A be a combinatorial class, with |An| = an. The counting
OGF for A is A(z) =

∑
n anzn =

∑
a∈A z|a|.

Set operations such as disjoint union, cartesian product,
sequence correspond to GF operations sum, product,
quasi-inverse.

Main examples: plane trees, compositions, regular languages.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

The symbolic method II

Let A,B be combinatorial classes with counting OGFs
A(z), B(z). The size of an ordered pair of objects (α, β) is
defined to be |α|+ |β|.
The counting OGF of A× B is then∑

γ∈A×B
z|γ| =

∑
α∈A

∑
β∈B

z|α|+|β| = A(z)B(z).

Also the counting OGF for A∪B is A(z) + B(z) if the classes
are disjoint. Thus the OGF for the set of sequences of
elements of A is 1 + A(z) + A(z)2 + · · · = (1−A(z))−1.

If a combinatorial class is constructed from atoms using only
disjoint union, product and sequence constructions, then its
counting OGF is rational.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

The symbolic method for EGFs

EGFS are often used for labelled constructions. A labelled
combinatorial object is one where each atom carries a positive
integer label and all labels are distinct. The labelling is proper
if the label set is {1, . . . , n}.
Example: a permutation is a properly labelled sequence of
atoms.
When forming the sum or product of labelled classes, we need
to relabel so that a proper labelling is obtained and the
structure of the components is preserved. If a has size k and b
size n− k, then the number of ways to properly label the
ordered pair (a, b) is

(
n
k

)
.

Thus it makes sense to consider EGFs since(∑
n

anzn/n!

)(∑
n

bnzn/n!

)
=
∑

n

(∑
k

(
n

k

)
akbn−k

)
zn/n!.

Similarly the EGF for sets (sequences where order does not
matter) is 1 + A(z)/1! + A(z)2/2! + · · · = exp(A(z)).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

The symbolic method - binary tree example

A binary tree is either a single external node or an internal
node connected to a pair of binary trees. Let T be the class
of binary trees:

T = {ext} ∪ {int} × T × T .

In terms of a formal grammar

< tree >=< ext > + < int > × < tree > × < tree > .

Give < ext > weight a and < int > weight b to obtain
T (z) = za + zbT (z)2. Special cases: a = 0, b = 1 counts trees
by internal nodes; a = 1, b = 0 by external nodes; a = b = 1
by total nodes.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

The symbolic method - composition examples

An integer composition is a sequence of positive integers. The
size is the sum of the sequence. The counting OGF for the
positive integers is I(z) = z/(1− z), so the counting OGF for
compositions by size is (1− z/(1− z))−1 = (1− z)/(1− 2z)
and there are 2n−1 compositions of n.

Let S be any subset of positive integers and let
I(z) =

∑
n∈S zn be its counting OGF. Then (1− I(z))−1

enumerates compositions with parts restricted to S. Example:
S = {1, 2, . . . , r} gives (1− z)/(1− 2z + zr+1).

Similarly we can count the number of terms in the sequence
with another variable. The bivariate GF for compositions is

1

1− uz/(1− z)
=

1− z

1− z − uz
=

1− z

1− (1 + u)z
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

GFs and enumeration

The symbolic method - labelled tree example

A properly labelled (unordered) tree is a connected acyclic
graph with n vertices, each with one of the numbers 1, . . . , n.

By symbolic method, the set T of rooted labelled unordered
trees satisfies T = {•} × set(T) and so T (z) = z exp(T (z)).

Lagrange inversion gives

an =
n!

n
[yn−1] exp(ny) =

n!

n
[yn−1]

∑
k

(ny)k/k! = nn−1.

Hence the number of labelled trees is nn−2.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Coefficient extraction from GFs

Coefficient extraction formulae (no proof)

Some basic results:

n! ≈
√

2πn(n/e)n (Stirling).

Hence
1

n + 1

(
2n

n

)
≈ 4n

√
πn

.

Suppose F (z) =
∑

n anzn = G(z)/H(z) is rational and H
has a unique root ρ of smallest modulus. Then

an ≈ Cρ−nnp−1

where p is the order of ρ and C is easily computable.
If F (z) = zφ(F (z)) with φ(0) 6= 0, then

[zn]F (z) =
1

n
[un−1]φ(u)n (Lagrange inversion formula).

All are best proved using the Cauchy integral formula (complex
analysis).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Coefficient extraction from GFs

Lagrange inversion example: degree-restricted trees

Let 0 ∈ Ω ⊆ N. We consider the class TΩ of all ordered plane
trees such that the outdegree of each node is restricted to
belong to Ω.

Examples: Ω = {0, 1} gives paths; Ω = {0, 2} gives binary
trees; Ω = {0, t} gives t-ary trees; Ω = N gives general
ordered trees.

Let TΩ(z) be the enumerating GF of this class. The symbolic
method immediately gives the equation

TΩ(z) = zφ(TΩ(z))

where φ(x) =
∑

ω∈Ω xω.

Lagrange inversion is tailor-made for this situation. We have

[zn]TΩ(z) =
1

n
[un−1]φ(u)n.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Coefficient extraction from GFs

Lagrange inversion example II - ternary trees

Let Ω = {0, 3}. Then the counting (by external nodes) OGF
T (z) satisfies T (z) = z(1 + T (z)3).

By Lagrange inversion we get

an = [zn]T (z) =
1

n
[un−1]

(
1 + u3

)n
.

By lookup we obtain

an =

{
1
n

(
n
k

)
if n = 3k + 1

0 otherwise.

Asymptotics are easily derived using Stirling’s approximation.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Trees

Types of trees I

A free tree is a connected graph with no cycles.

A rooted tree is a free tree with a distinguished node called
the root.

An ordered tree is a rooted tree where the order of subtrees is
important; recursively, a root connected to a sequence of
ordered trees.

A m-ary tree is an ordered tree where every node has 0 or m
children.

A labelled tree is a tree with n nodes such that each node is
labelled by an element of [n] and all labels are distinct.

Synonyms in literature: plane = ordered; oriented = rooted.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Trees

Some trees in analysis of algorithms

Binary search tree: a binary tree with each internal node
having a key, such that the key of each node n is ≤ all keys in
Rn and ≥ all keys in Ln. Applications: database for
comparable data, model for quicksort.

Heap-ordered tree: a binary tree such that the key of each
node is ≥ the key of anything in its subtree. Applications:
priority queue.

Trie: an m-ary tree where each external node may contain
data; children of leaves must be nonempty. Applications:
database for string data, model for radix exchange sort, leader
election in distributed computing.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Trees

Tree attributes

The size is the number of (external, internal, or just plain)
nodes.

The depth of a node in a rooted tree is the distance to the
root.

The maximum depth is the height. The sum of all depths of
internal (external) nodes is the internal (external) path length.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Trees

Path length in binary trees (uniform model)

The bivariate generating function F (z, u) enumerating binary
trees by number of nodes and internal path length satisfies the
equation

F (z, u) = 1 + zF (zu, u)2.

The mean and variance are given by a standard computation.
Note that

Fu(z, u) = 2zF (zu, u)[Fu(zu, u) + zFz(zu, u)]

and so Fu(z, 1) = 2zF (z, 1)[Fu(z, 1) + zFz(z, 1)]. Thus

µn :=
[zn] zFz(z,1)

1−2zF (z,1)

[zn]F (z, 1)

The mean µn is asymptotic to
√

πn3/2, so the mean level of a
node is of order

√
n. The variance is also of order n3/2.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Trees

Path length in binary search trees

Suppose we insert n distinct keys into an initially empty BST.
The uniform distribution on permutations of size n induces
the quicksort distribution on BSTs of size n.

The internal path length equals the construction cost of a
binary search tree of size n; dividing by n gives the expected
cost of a successful search.

Let F (z, u) =
∑ z|π|

|π|! u
`(π) be the BGF of BSTs by size and

internal path length. Note that [zn]F (z, u) is the PGF of
internal path length on BSTs with n nodes.
Then

Fz(z, u) = F (zu, u)2 F (0, u) = 1.

Moments of the distribution are easily obtained as for the
uniform model. The mean is ∼ 2n log n and variance is in
Θ(n2). Quite a different shape.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

String basics

Let A be a finite set called the alphabet. A string over A is a
finite sequence of elements of A. The set of all strings over A
is written A∗.

A subset of A∗ is a language.

If A = {0, 1} the strings are called bitstrings.

Basic algorithmic questions: string matching (find a pattern in
a given string); search for a word in a dictionary; compress a
string. Many applications in computational biology, computer
security, etc.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Hidden pattern occurrences

The set of occurrences of the subsequence (hidden pattern)
−a1 − a2 − · · · − ak− in a string of length n corresponds to
A∗a1A∗a2A∗a3 . . .A∗akA∗.

The counting OGF of A∗ is 1/(1−mz) so the OGF for all
pattern occurrences is P (z) = zk/(1−mz)k+1 where
m = |A|.
The expected number of occurrences in a random “word” of
length n is [zn]P (z)/(mn) = m−k

(
n
k

)
.

The OGF for total occurrences of the substring a1a2 . . . ak is
zk/(1−mz)2 and a similar analysis applies.

Note relevance to various conspiracy theories. We should
expect a sufficiently long random text to contain any given
hidden message.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Pattern avoidance

We have already counted total occurrences of a given
substring or pattern. Now we want to count number of words
an not containing a given pattern (a harder problem).

A nice trick: let T be the position of the end of the first
occurrence of the pattern, Xn the event that the first n bits
of a random bitstring do not contain the pattern. Then
S(z) =

∑
n≥0 anzn implies that

S(1/2) =
∑
n≥0

an/2n =
∑
n≥0

Pr(Xn) =
∑
n≥0

Pr(T > n) = E[T].

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Pattern avoidance - simple example

Given substring σ = 00 · · · 0 of length k, let S(z) be the
counting OGF for bitstrings without σ as substring.
Recursion/symbolic method gives

S(z) =

(∑
i<k

zi

)
(1 + zS(z))

so

S(z) =
1 + z + z2 + · · ·+ zk−1

1− z − z2 − · · · − zk
=

1− zk

1− 2z + zk+1
.

Asymptotics: an ≈ Cρ−n where ρ is smallest modulus root of
denominator.
Note that ρ = 1/2 + ρk+1/2 and 0 < ρ < 1. Thus
1/2 < ρ < 1/2 + 1/2k, etc, and we can compute ρ quickly by
iteration.
Note S(1/2) = 2k+1 − 2.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Substring patterns - autocorrelation polynomial

Consider an arbitrary binary string σ = σ0σ1 · · ·σk−1 of length
k.

For 0 ≤ j ≤ 1, shift σ right j places. Define cj = 1 if the
overlap matches the tail σ(j) of σ, cj = 0 otherwise. The
autocorrelation polynomial is c(z) =

∑
j cjz

j .
Let S, (resp. T) be the set of bitstrings not containing p
(resp. containing it once at the end). Then

S ∪ T ∼= {ε} ∪ S × {0, 1}
S × {σ} ∼= T × ∪{j:cj 6=0}σ

(j)

and the symbolic method gives S(z) + T (z) = 1 + 2zS(z)
and S(z)zk = T (z)c(z).
Thus

S(z) =
c(z)

zk + (1− 2z)c(z)
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Substring patterns - autocorrelation polynomial

Consider an arbitrary binary string σ = σ0σ1 · · ·σk−1 of length
k.
For 0 ≤ j ≤ 1, shift σ right j places. Define cj = 1 if the
overlap matches the tail σ(j) of σ, cj = 0 otherwise. The
autocorrelation polynomial is c(z) =

∑
j cjz

j .

Let S, (resp. T) be the set of bitstrings not containing p
(resp. containing it once at the end). Then

S ∪ T ∼= {ε} ∪ S × {0, 1}
S × {σ} ∼= T × ∪{j:cj 6=0}σ

(j)

and the symbolic method gives S(z) + T (z) = 1 + 2zS(z)
and S(z)zk = T (z)c(z).
Thus

S(z) =
c(z)

zk + (1− 2z)c(z)
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Substring patterns - autocorrelation polynomial

Consider an arbitrary binary string σ = σ0σ1 · · ·σk−1 of length
k.
For 0 ≤ j ≤ 1, shift σ right j places. Define cj = 1 if the
overlap matches the tail σ(j) of σ, cj = 0 otherwise. The
autocorrelation polynomial is c(z) =

∑
j cjz

j .
Let S, (resp. T) be the set of bitstrings not containing p
(resp. containing it once at the end). Then

S ∪ T ∼= {ε} ∪ S × {0, 1}
S × {σ} ∼= T × ∪{j:cj 6=0}σ

(j)

and the symbolic method gives S(z) + T (z) = 1 + 2zS(z)
and S(z)zk = T (z)c(z).

Thus

S(z) =
c(z)

zk + (1− 2z)c(z)
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Substring patterns - autocorrelation polynomial

Consider an arbitrary binary string σ = σ0σ1 · · ·σk−1 of length
k.
For 0 ≤ j ≤ 1, shift σ right j places. Define cj = 1 if the
overlap matches the tail σ(j) of σ, cj = 0 otherwise. The
autocorrelation polynomial is c(z) =

∑
j cjz

j .
Let S, (resp. T) be the set of bitstrings not containing p
(resp. containing it once at the end). Then

S ∪ T ∼= {ε} ∪ S × {0, 1}
S × {σ} ∼= T × ∪{j:cj 6=0}σ

(j)

and the symbolic method gives S(z) + T (z) = 1 + 2zS(z)
and S(z)zk = T (z)c(z).
Thus

S(z) =
c(z)

zk + (1− 2z)c(z)
.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Regular languages

Rational GFs always arise from the transfer matrix method.

Special case: the counting GF of an unambiguous regular
language is rational (Chomsky-Schützenberger, 1963).

Recall that every regular language can be defined by an
unambiguous regular expression.

Thus if we construct a combinatorial class iteratively using
only disjoint union, cartesian product, and sequence, the
counting GF is rational.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Regular expression example

Consider language (over alphabet {a, b}) defined by
(bb | a(bb)∗aa | a(bb)∗(ab | ba)(bb)∗(ab | ba))∗ (number of b’s
is even, number of a’s divisible by 3).

The symbolic method gives

S(z) =
(1− z2)2

1− 3z2 − z3 + 3z4 − 3z5 + z6
.

Hence an ≈ CAn, A ∼= 1.7998.

Need to check that the expression is unambiguous.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Strings

Patterns in strings: summary

The generating function for any regular expression is a
rational function and can be computed algorithmically.

In certain special cases more efficient methods (such as
autocorrelation polynomial) exist.

We have really only considered the case where all letters
appear independently and with equal probability. In real
applications, letter probabilities vary and letters are not
independent. The methods above can be extended to cope
with this.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Tries

Tries

Each binary tree corresponds to a set of binary strings (0
encodes left branch, 1 encodes right branch, string is given by
labels on path to external node). This set of strings is
prefix-free.

Conversely a finite prefix-free set of strings corresponds to a
unique binary tree, a full trie.

More generally, we may stop branching as soon as the strings
are all distinguished. This gives a trie, a binary tree such that
all children of leaves are nonempty. Each string is stored in an
external node but not all external nodes have strings. Can be
described by symbolic method.

A Patricia trie saves space, by collapsing one-way branches to
a single node.

Relevant parameters: number of internal nodes In; external
path length Ln; height Hn.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Tries

Trie recurrences

We assume that a trie is built from n infinite random bitstrings.
Each bit of each string is independently either 0 or 1.

Ln = n +
1

2n

∑
k

(
n

k

)
(Lk + Ln−k) ,

L the mean external path length.

In = 1 +
1

2n

∑
k

(
n

k

)
(Ik + In−k) ,

I the number of internal nodes.

Let L(z) =
∑

n Lnzn/n!, etc. Then

L(z) = 2L(z/2)ez/2 + zez − z

I(z) = 2I(z/2)ez/2 + ez − z − 1.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Tries

Solving the trie recurrences, I

If φ(z) = 2ez/2φ(z/2) + a(z), then by iteration we obtain

φ(z) =
∑
j≥0

2jez(1−2−j)a(2−jz).

Thus we obtain

Ln = n
∑
j≥0

(
1−

(
1− 2−j

)n−1
)

In =
∑
j≥0

2j
[
1−

(
1− 2−j

)n − n

2j

(
1− 2−j

)n−1
]
.

How to derive an asymptotic approximation? See Flaj-Sedg
p211, p402 for elementary arguments. Answers:
Ln ∼ n lg n, In ∼ n/ lg 2. More precise answers are obtained
by complex methods (Mellin transform).

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Tries

Solving the trie recurrences, II

Define φ̂(z) = e−zφ(z), etc (this is the Poisson transform).
Then we have

φ̂(z) = 2φ̂(z/2) + â(z).

Iteration yields

φ̂(z) =
∑
j≥0

2j â(2−jz).

This gives, on inverting the transform,

Ln =
∑
k≥2

(−1)k

(
n

k

)
k2k−1

2k−1 − 1
.

Asymptotics for such alternating sums can be obtained by
Rice’s method.

Outline Background Introduction Generating Functions Combinatorial and Algorithmic Applications

Tries

Summary: tries

A useful data structure for dictionary and pattern matching.
Also a mathematical model for many algorithms.

Asymptotically optimal (lg n) expected search cost.

Space wastage: about 44% extra nodes (1/ lg 2− 1).

Recurrences under the infinite random bitstring model yield
GF equations that are tricky. Solution involves infinite sums of
functions.

Explicit formulae for solutions are infinite sums. Mellin
transforms or Rice’s integrals give precise asymptotics;
elementary methods can also be used.

	Outline
	Background
	Probability
	Algorithm Analysis

	Introduction
	First example - quicksort

	Generating Functions
	GF definitions
	GFs and recurrences
	GFs and enumeration
	Coefficient extraction from GFs

	Combinatorial and Algorithmic Applications
	Trees
	Strings
	Tries

