
1

Contents

1 Outline 1

2 Combinatorial and Algorithmic Applications 1
2.1 Trees . 1
2.2 Strings . 3
2.3 Tries . 5

2 Combinatorial and Algorithmic Applications

2.1 Trees

Types of trees I

• A free tree is a connected graph with no cycles.

• A rooted tree is a free tree with a distinguished node called the root.

• An ordered tree is a rooted tree where the order of subtrees is important;
recursively, a root connected to a sequence of ordered trees.

• A m-ary tree is an ordered tree where every node has 0 or m children.

• A labelled tree is a tree with n nodes such that each node is labelled by an
element of [n] and all labels are distinct.

Synonyms in literature: plane = ordered; oriented = rooted.

Some trees in analysis of algorithms

• Binary search tree: a binary tree with each internal node having a key,
such that the key of each node n is ≤ all keys in Rn and ≥ all keys in Ln.
Applications: database for comparable data, model for quicksort.

• Heap-ordered tree: a binary tree such that the key of each node is ≥ the
key of anything in its subtree. Applications: priority queue.

• Trie: an m-ary tree where each external node may contain data; children
of leaves must be nonempty. Applications: database for string data, model
for radix exchange sort, leader election in distributed computing.

• Rooted tree: a root connected to a set of rooted trees. Used in the union-
find problem (for example in Kruskal’s algorithm for minimum spanning
tree).

Tree attributes

• The size is the number of (external, internal, or just plain) nodes.

• The depth of a node in a rooted tree is the distance to the root.

• The maximum depth is the height. The sum of all depths of internal
(external) nodes is the internal (external) path length.

Path length in binary trees (uniform model)

• The bivariate generating function F (z, u) enumerating binary trees by
number of nodes and internal path length satisfies the equation

F (z, u) = 1 + zF (zu, u)2.

• The mean and variance are given by a standard computation. Note that

Fu(z, u) = 2zF (zu, u)[Fu(zu, u) + zFz(zu, u)]

and so Fu(z, 1) = 2zF (z, 1)[Fu(z, 1) + zFz(z, 1)]. Thus

µn :=
[zn] zFz(z,1)

1−2zF (z,1)

[zn]F (z, 1)

• The mean µn is asymptotic to
√

πn3/2, so the mean level of a node is of
order

√
n. The variance is also of order n3/2.

Path length in binary search trees

• Suppose we insert n distinct keys into an initially empty BST. The uniform
distribution on permutations of size n induces the quicksort distribution
on BSTs of size n.

• The internal path length equals the construction cost of a binary search
tree of size n; dividing by n gives the expected cost of a successful search.

• Let F (z, u) =
∑

z|π|

|π|! u
`(π) be the BGF of BSTs by size and internal path

length. Note that [zn]F (z, u) is the PGF of internal path length on BSTs
with n nodes.

Then
Fz(z, u) = F (zu, u)2 F (0, u) = 1.

• Moments of the distribution are easily obtained as for the uniform model.
The mean is ∼ 2n log n and variance is in Θ(n2). Quite a different shape.

2

2.2 Strings

String basics

• Let A be a finite set called the alphabet. A string over A is a finite sequence
of elements of A. The set of all strings over A is written A∗.

• A subset of A∗ is a language.

• If A = {0, 1} the strings are called bitstrings.

• Basic algorithmic questions: string matching (find a pattern in a given
string); search for a word in a dictionary; compress a string. Many appli-
cations in computational biology, computer security, etc.

Hidden pattern occurrences

• The set of occurrences of the subsequence (hidden pattern) −a1−a2−· · ·−
ak− in a string of length n corresponds to A∗a1A∗a2A∗a3 . . .A∗akA∗.

• The counting OGF of A∗ is 1/(1−mz) so the OGF for all pattern occur-
rences is P (z) = zk/(1−mz)k+1 where m = |A|.

• The expected number of occurrences in a random “word” of length n is
[zn]P (z)/(mn) = m−k

(
n
k

)
.

• The OGF for total occurrences of the substring a1a2 . . . ak is zk/(1−mz)2

and a similar analysis applies.

• Note relevance to various conspiracy theories. We should expect a suffi-
ciently long random text to contain any given hidden message.

Pattern avoidance

• We have already counted total occurrences of a given substring or pattern.
Now we want to count number of words an not containing a given pattern
(a harder problem).

• A nice trick: let T be the position of the end of the first occurrence of the
pattern, Xn the event that the first n bits of a random bitstring do not
contain the pattern. Then S(z) =

∑
n≥0 anzn implies that

S(1/2) =
∑
n≥0

an/2n =
∑
n≥0

Pr(Xn) =
∑
n≥0

Pr(T > n) = E[T].

3

Pattern avoidance - simple example

• Given substring σ = 00 · · · 0 of length k, let S(z) be the counting OGF for
bitstrings without σ as substring.

• Recursion/symbolic method gives

S(z) =

(∑
i<k

zi

)
(1 + zS(z))

so

S(z) =
1 + z + z2 + · · ·+ zk−1

1− z − z2 − · · · − zk
=

1− zk

1− 2z + zk+1
.

• Asymptotics: an ≈ Cρ−n where ρ is smallest modulus root of denomina-
tor.

• Note that ρ = 1/2 + ρk+1/2 and 0 < ρ < 1. Thus 1/2 < ρ < 1/2 + 1/2k,
etc, and we can compute ρ quickly by iteration.

• Note S(1/2) = 2k+1 − 2.

Substring patterns - autocorrelation polynomial

• Consider an arbitrary binary string σ = σ0σ1 · · ·σk−1 of length k.

• For 0 ≤ j ≤ 1, shift σ right j places. Define cj = 1 if the overlap matches
the tail σ(j) of σ, cj = 0 otherwise. The autocorrelation polynomial is
c(z) =

∑
j cjz

j .

• Let S, (resp. T) be the set of bitstrings not containing p (resp. containing
it once at the end). Then

S ∪ T ∼= {ε} ∪ S × {0, 1}
S × {σ} ∼= T × ∪{j:cj 6=0}σ

(j)

and the symbolic method gives S(z) + T (z) = 1 + 2zS(z) and S(z)zk =
T (z)c(z).

• Thus

S(z) =
c(z)

zk + (1− 2z)c(z)
.

• Note [zn]S(z/2) = Pr(Xn). Looking at the poles of S(z/2) we see that
Pr(Xn) → 1 exponentially fast as n → ∞: every fixed substring is con-
tained with high probability in a sufficiently long string.

4

Regular languages

• Rational GFs always arise from the transfer matrix method.

• Special case: the counting GF of an unambiguous regular language is
rational (Chomsky-Schützenberger, 1963).

• Recall that every regular language can be defined by an unambiguous
regular expression.

• Thus if we construct a combinatorial class iteratively using only disjoint
union, cartesian product, and sequence, the counting GF is rational.

Regular expression example

• Consider language (over alphabet {a, b}) defined by (bb | a(bb)∗aa | a(bb)∗(ab |
ba)(bb)∗(ab | ba))∗ (number of b’s is even, number of a’s divisible by 3).

• The symbolic method gives

S(z) =
(1− z2)2

1− 3z2 − z3 + 3z4 − 3z5 + z6
.

Hence an ≈ CAn, A ∼= 1.7998.

• Need to check that the expression is unambiguous.

Patterns in strings: summary

• The generating function for any regular expression is a rational function
and can be computed algorithmically.

• In certain special cases more efficient methods (such as autocorrelation
polynomial) exist.

• We have really only considered the case where all letters appear indepen-
dently and with equal probability. In real applications, letter probabilities
vary and letters are not independent. The methods above can be extended
to cope with this.

2.3 Tries

Tries

• Each binary tree corresponds to a set of binary strings (0 encodes left
branch, 1 encodes right branch, string is given by labels on path to external
node). This set of strings is prefix-free.

• Conversely a finite prefix-free set of strings corresponds to a unique binary
tree, a full trie.

5

• More generally, we may stop branching as soon as the strings are all distin-
guished. This gives a trie, a binary tree such that all children of leaves are
nonempty. Each string is stored in an external node but not all external
nodes have strings. Can be described by symbolic method.

• A Patricia trie saves space, by collapsing one-way branches to a single
node.

• Relevant parameters: number of internal nodes In; external path length
Ln; height Hn.

Trie recurrences
We assume that a trie is built from n infinite random bitstrings. Each bit

of each string is independently either 0 or 1.

•
Ln = n +

1
2n

∑
k

(
n

k

)
(Lk + Ln−k) ,

L the mean external path length.

•
In = 1 +

1
2n

∑
k

(
n

k

)
(Ik + In−k) ,

I the number of internal nodes.

• Let L(z) =
∑

n Lnzn/n!, etc. Then

L(z) = 2L(z/2)ez/2 + zez − z

I(z) = 2I(z/2)ez/2 + ez − z − 1.

Solving the trie recurrences, I

• If φ(z) = 2ez/2φ(z/2) + a(z), then by iteration we obtain

φ(z) =
∑
j≥0

2jez(1−2−j)a(2−jz).

• Thus we obtain

Ln = n
∑
j≥0

(
1−

(
1− 2−j

)n−1
)

In =
∑
j≥0

2j
[
1−

(
1− 2−j

)n − n

2j

(
1− 2−j

)n−1
]
.

• How to derive an asymptotic approximation? See Flaj-Sedg p211, p402 for
elementary arguments. Answers: Ln ∼ n lg n, In ∼ n/ lg 2. More precise
answers are obtained by complex methods (Mellin transform).

6

Solving the trie recurrences, II

• Define φ̂(z) = e−zφ(z), etc (this is the Poisson transform). Then we have

φ̂(z) = 2φ̂(z/2) + â(z).

• Iteration yields
φ̂(z) =

∑
j≥0

2j â(2−jz).

• This gives, on inverting the transform,

Ln =
∑
k≥2

(−1)k

(
n

k

)
k2k−1

2k−1 − 1
.

• Asymptotics for such alternating sums can be obtained by Rice’s method.

Summary: tries

• A useful data structure for dictionary and pattern matching. Also a math-
ematical model for many algorithms.

• Asymptotically optimal (lg n) expected search cost.

• Space wastage: about 44% extra nodes (1/ lg 2− 1).

• Recurrences under the infinite random bitstring model yield GF equations
that are tricky. Solution involves infinite sums of functions.

• Explicit formulae for solutions are infinite sums. Mellin transforms or
Rice’s integrals give precise asymptotics; elementary methods can also be
used.

7

