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2 Combinatorial Applications

2.1 Trees

Types of trees I

• A free tree is a connected graph with no cycles.

• A rooted tree is a free tree with a distinguished node called the root.

• An ordered tree is a rooted tree where the order of subtrees is important.

• A binary tree is an ordered tree where every node has 0 or 2 children.

• A labelled tree is a tree with n nodes such that each node is labelled by an
element of [n] and all labels are distinct.

Synonyms in literature: plane = ordered; oriented = rooted.

Types of trees II

• Binary tree: an external node, or an internal node n connected to an
ordered pair Ln, Rn of binary trees.

• Ordered tree: a node connected to a sequence of ordered trees.

• Binary search tree: a binary tree with each internal node having a key,
such that the key of each node is ≤ all keys in right subtree and ≥ all keys
in left subtree.

• Heap-ordered tree: a binary tree such that the key of each node is ≥ the
key of anything in its subtree.

• Trie:

Degree-restricted trees

• Let 0 ∈ Ω ⊆ N. We consider the combinatorial class TΩ of ordered plane
trees with the outdegree of each node restricted to belong to Ω.

• Examples: Ω = {0, 1} gives paths; Ω = {0, 2} gives binary trees; Ω = {0, t}
gives t-ary trees; Ω = N gives general ordered trees.



• Let TΩ(z) be the enumerating GF of this class. The symbolic method
immediately gives the equation

TΩ(z) = zφ(TΩ(z))

where φ(x) =
∑

ω∈Ω xω.

• Lagrange inversion is tailor-made for this situation.

Ternary tree example

• Let T be the set of ordered ternary trees (similar definition to binary trees
with 3 instead of 2). Then the counting (by external nodes) OGF T (z)
satisfies T (z) = z(1 + T (z)3).

• By Lagrange inversion we get

an = [zn]T (z) =
1
n

[un−1]
(
1 + u3

)n
.

• By lookup we obtain

an =

{
1
n

(
n
k

)
if n = 3k + 1

0 otherwise.

Path length in trees

• The bivariate generating function F (z, u) enumerating binary trees by
number of nodes and internal path length satisfies the equation

F (z, u) = 1 + zF (zu, u)2.

• The mean and variance are given by a standard computation. Note that

Fu(z, u) = 2zF (zu, u)[Fu(zu, u) + zFz(zu, u)]

and so Fu(z, 1) = 2zF (z, 1)[Fu(z, 1) + zFz(z, 1)]. Thus

µn :=
[zn] zFz(z,1)

1−2zF (z,1)

[zn]F (z, 1)

• The mean µn is asymptotic to
√

πn3/2, so the mean level of a node is of
order

√
n. The variance is also of order n3/2.
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Labelled trees

• A properly labelled (unordered) tree is a connected acyclic graph with n
vertices, each with one of the numbers 1, . . . , n.

• By symbolic method, the set T of rooted labelled unordered trees satisfies
T = {•} × set(T ) and so T (z) = z exp(T (z)).

• Lagrange inversion gives

an =
n!
n

[yn−1] exp(ny) =
n!
n

[yn−1]
∑

k

(ny)k/k! = nn−1.

• Hence the number of labelled trees is nn−2.

Binary search trees

• Suppose we insert n distinct keys into an initially empty BST. The uni-
form distribution on permutations of size n does not induce the uniform
distribution on binary trees.

• The mean and variance (for a binary tree of size n taken uniformly at
random) can be obtained by standard methods. Analysis is the same as
for quicksort. The mean is of order 2n log n and the variance of order
0.4203n2. So these trees tend to be shorter and fatter than general binary
trees.

• The internal path length equals the construction cost of a binary search
tree of size n; dividing by n gives the expected cost of a successful search.

Heap-ordered trees

• A heap-ordered tree (HOT) is a binary tree whose nodes are labelled in
such a way that the labels along each path from the root are strictly
increasing.

• There is a 1-1 correspondence between HOT’s and permutations.

2.2 Strings

Hidden pattern occurrence

• The set of occurrences of a subsequence (hidden pattern) −a− b− c− d−
in an English text of length n corresponds to A∗aA∗bA∗cA∗dA∗.

• The counting OGF of A∗ is 1/(1−26z) so OGF for all pattern occurrences
is P (z) = z4/(1− 26z)5.
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• Expected number of occurrences in random “word” of length n is [zn]P (z)/(26n) =
(26)−4

(
n
4

)
.

• The OGF for total occurrences of the substring abcd is z4/(1− 26z)2 and
a similar analysis applies.

• Note relevance to various conspiracy theories. Every sufficiently long ran-
dom text contains a given hidden message with high probability.

Pattern avoidance

• We have already counted total occurrences of a given substring or pattern.
Now we want to count number of words an not containing a given pattern
(harder problem).

• A nice trick: let T be the position of the end of the first occurrence of the
pattern, Xn the event that the first n bits of a random bitstring do not
contain the pattern. Then S(z) =

∑
n≥0 anzn implies that

S(1/2) =
∑
n≥0

an/2n =
∑
n≥0

Pr(Xn) =
∑
n≥0

Pr(T > n) = E[T ].

A simple pattern

• Given substring σ = 00 · · · 0 of length k, let S(z) be the counting OGF for
bitstrings without σ as substring.

• Recursion/symbolic method gives

S(z) =

(∑
i<k

zi

)
(1 + zS(z))

so

S(z) =
1 + z + z2 + · · ·+ zk−1

1− z − z2 − · · · − zk
=

1− zk

1− 2z + zk+1
.

• Asymptotics: an ≈ Cρ−n where ρ is smallest modulus root of denomina-
tor.

• Note that ρ = 1/2 + ρk+1/2 and 0 < ρ < 1. Thus 1/2 < ρ < 1/2 + 1/2k,
etc, and we can compute ρ quickly by iteration.

• Note S(1/2) = 2k+1 − 2.
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Substring patterns - autocorrelation polynomial

• Consider an arbitrary binary string σ = σ0σ1 · · ·σk−1 of length k.

• For 0 ≤ j ≤ 1, shift σ right j places. Define cj = 1 if the overlap matches
the tail σ(j) of σ, cj = 0 otherwise. The autocorrelation polynomial is
c(z) =

∑
j cjz

j .

• Let S, (resp. T ) be the set of bitstrings not containing p (resp. containing
it once at the end). Then

S ∪ T ∼= {ε} ∪ S × {0, 1}
S × {σ} ∼= T × ∪{j:cj 6=0}σ

(j)

and the symbolic method gives S(z) + T (z) = 1 + 2zS(z) and S(z)zk =
T (z)c(z).

• Thus

S(z) =
c(z)

zk + (1− 2z)c(z)
.

Regular languages

• Rational GFs always arise from the transfer matrix method.

• Special case: the counting GF of an unambiguous regular language is
rational (Chomsky-Schützenberger, 1963).

• Recall that every regular language can be defined by an unambiguous
regular expression.

• Thus if we construct a combinatorial class iteratively using only disjoint
union, cartesian product, and sequence, the counting GF is rational.

Regular expression example

• Consider language (over alphabet {a, b}) defined by (bb | a(bb)∗aa | a(bb)∗(ab |
ba)(bb)∗(ab | ba))∗ (number of b’s is even, number of a’s divisible by 3).

• The symbolic method gives

S(z) =
(1− z2)2

1− 3z2 − z3 + 3z4 − 3z5 + z6
.

Hence an ≈ CAn, A ∼= 1.7998.

• Need to check that the expression is unambiguous.
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Tries

• Each binary tree corresponds to a set of binary strings (0 encodes left
branch, 1 encodes right branch, string is given by labels on path to external
node). This set of strings is prefix-free.

• Conversely a finite prefix-free set of strings corresponds to a unique binary
tree, a full trie.

• More generally, we may stop branching as soon as the strings are all distin-
guished. This gives a trie, a binary tree such that all children of leaves are
nonempty. Each string is stored in an external node but not all external
nodes have strings. Can be described by symbolic method.

• A Patricia trie saves space, by collapsing one-way branches to a single
node.

• Relevant parameters: number of internal nodes In; external path length
Ln; height Hn.

Trie recurrences
We assume that a trie is built from n infinite random bitstrings. Each bit

of each string is independently either 0 or 1.

•
Ln = n +

1
2n

∑
k

(
n

k

)
(Lk + Ln−k) ,

L the mean external path length.

•
In = 1 +

1
2n

∑
k

(
n

k

)
(Ik + In−k) ,

I the number of internal nodes.

• Let L(z) =
∑

n Lnzn/n!, etc. Then

L(z) = 2L(z/2)ez/2 + zez − z

I(z) = 2I(z/2)ez/2 + ez − z − 1.

Solving the trie recurrences, I

• If φ(z) = 2ez/2φ(z/2) + a(z), then by iteration we obtain

φ(z) =
∑
j≥0

2jez(1−2−j)a(2−jz).

6



• Thus we obtain

Ln = n
∑
j≥0

(
1−

(
1− 2−j

)n−1
)

In =
∑
j≥0

2j
[
1−

(
1− 2−j

)n − n

2j

(
1− 2−j

)n−1
]
.

• How to derive an asymptotic approximation? See Flaj-Sedg p211, p402 for
elementary arguments. Answers: Ln ∼ n lg n, In ∼ n/ lg 2. More precise
answers are obtained by complex methods (Mellin transform).

Solving the trie recurrences, II

• Define φ̂(z) = e−zφ(z), etc (this is the Poisson transform). Then we have

φ̂(z) = 2φ̂(z/2) + â(z).

• Iteration yields
φ̂(z) =

∑
j≥0

2j â(2−jz).

• This gives, on inverting the transform,

Ln =
∑
k≥2

(−1)k

(
n

k

)
k2k−1

2k−1 − 1
.

• Asymptotics for such alternating sums can be obtained by Rice’s method.

Summary: tries

• A useful data structure for dictionary and pattern matching. Also a math-
ematical model for many algorithms.

• Asymptotically optimal (lg n) expected search cost.

• Space wastage: about 44% extra nodes (1/ lg 2− 1).

• Recurrences under the infinite random bitstring model yield GF equations
that are tricky. Solution involves infinite sums of functions.

• Explicit formulae for solutions are infinite sums. Mellin transforms or
Rice’s integrals give precise asymptotics; elementary methods can also be
used.
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2.3 Permutations

Basic definitions

• A permutation is a bijection π : [n] → [n] for some n ∈ N. We write
n = |π|. We can think of a permutation as a labelled sequence of atoms,
so the counting EGF is 1/(1− z).

• Let Π be the set of all permutations, Πn := {π ∈ Π | |π| = n}, Π =
⋃

n πn.

• For n ≥ 0, adding the element n+1 in all possible places gives a bijection
between Πn × [n + 1] and Πn+1.

• An inversion in π is a pair i < j with π(i) > π(j). Let ι(p) be the number
of inversions of π. Relevant to inversion sort performance.

• A left-to-right minimum in π is an index i with π(j) > π(i) for all j < i.
Let λ(π) be the number of left-to-right minima in π. Relevant to selection
sort performance.

Left-to-right minima

• Let F (z, u) =
∑

π∈Π
z|π|

|π|! u
λ(π). We obtain the recurrence

F (z, u) = u +
∑
π′∈Π

u1+λ(π′) z|π
′|+1

(|π′|+ 1)!

+
∑

π′∈Π,1<k≤n(π′)+1

|π′|uλ(π′) z|π
′|+1

(|π′|+ 1)!

= u + u

∫
F +

∫
zFz

where integration is with respect to z. Thus Fz(z, u) = uF (z, u) +
zFz(z, u).

• Solve this first order differential equation to get F (z, u) = (1 − z)−u. It
follows that the expected number of left-to-right minima in a uniformly
chosen permutation of size n is Hn ≈ log n. The variance is also of order
log n.

Inversions

8



• Let F (z, u) =
∑

π uι(π)z|π|/|π|!. We obtain the recurrence

F (z, u) = 1 +
∑

π

∑
0≤k≤|π|

uι(π)+|π|−k z|π|+1

(|π|+ 1)!

= 1 +
∑

π

1− u|π|+1

1− u
uι(π) z|π|+1

(|π|+ 1)!

= 1 +
A(z, u)−A(zu, u)

1− u

where A is a z-antiderivative of F .

• Differentiate with respect to u, take limit as u → 1 by L’Hopital. Get

Fu(z, 1) =
z2

2(1− z)3

so mean number of involutions is n(n− 1)/4. Similarly, the variance is of
order n3.

Random generation of permutations

• Given n, construct a permutation of [n] uniformly at random.

• Standard method: Fisher-Yates (1938). Start with identity permutation.
Iterate i from n down to 2; at each step choose j uniformly at random
from [i] and exchange the elements in positions i and j. Closely related
to the *** method for enumeration.

• Example:

• It is easily shown that this works.
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