arXiv:cs.DS/0606067 v1 14 Jun 2006

Scheduling Algorithms for Procrastinators

Michael A. Bender Raphaél Clifford Kostas Tsichlals

Abstract

This paper presents scheduling algorithms for procrastisawhere the speed that a procrastinator
executes a job increases as the due date approaches. Weptimal@ff-line scheduling policies for
linearly increasing speed functions. We then explain th@paational/numerical issues involved in
implementing this policy. We next explore the online seftishowing that there exist adversaries that
force any online scheduling policy to miss due dates. Thigoissibility result motivates the problem of
minimizing themaximum interval stretchf any job; the interval stretch of a job is the job’s flow time
divided by the job’s due date minus release time. We showsthatral common scheduling strategies,
including the “hit-the-highest-nail” strategy beloved pcrastinators, have arbitrarily large maximum
interval stretch. Then we give the “thrashing” schedulintigy and show that it is & (1) approximation
algorithm for the maximum interval stretch.

“Dept. of Computer Science, Stony Brook University, Stony odk; NY 11794-4400, USA; Email:
bender@cs.sunysb.edu . Phone: +1 631 632 7835. Fax: +1 631 632 7835. This researshsugported in part by
NSF Grants EIA-0112849 and CCR-0208670.

TDept. of Computer Science, University of Bristol, Merchafnturers Building, Woodland Road, Bristol BS8 1UB, UK.
clifford@cs.bris.ac.uk .

fComputer Engineering and Informatics Department, Uniters of Patras, 26500 Patras, Greece.
tsihlas@ceid.upatras.gr

1 Introduction

We are writing this sentence two days before the deadlindortimately that sentence (and this one) are
among the first that we have written. How could we have delagethuch when we have known about this
deadline for months? The purpose of this paper is to expléiywe have waited until the last moment to
write this paper.

In our explanation we model procrastination as a schedplioglem. We cannot use traditional schedul-
ing algorithms to model our behavior because such algosttionot take into account our (and humanity’s)
tendency to procrastinate. The advantages of procrastinate well documented: the closer to a deadline
a task is executed, the less processing time the task agpaaguire. Hence, it is common for a person to
delay executing some onerous job in order to spend as little &s possible working on it.

Regarding this paper, it will certainly be written quickly #will have to be, since the deadline is near.
Perhaps we will write faster under pressure because we xykra less time overanalyzing each design
option. Other aspects of the paper may change because tihtkipressure. In any case, the writing will
proceed faster than if we had begun earlier.

Our scheduling problem for procrastinators is unorthodothat the processing time of a job depends
on the times during which the job is run. We are given as inm#taf jobs7 = {1,2,...,n}. Each job
J has release time;, due dated;, and workw;; without loss of generality, we assume that the jobs are
indexed by increasing release timdaeemptionis allowed; that is, a running job can be interrupted and
resumed later. The speed at which jpis run depends on the times thats executed; the closer to the
due datel;, the fasterj can be executed. Specificalgpeed functiory;(t) indicates that at time, job j is
executed with speed;(¢); thus, if j is executed during time intervat, o], thenftb:a dt f;(t) units of work
of job j complete.

Throughout most of the paper we focus lorear speed functions. We assume that when jdirst is
released, it is executed with spe@din accordance with this last assumption, when the call &qeps first
appeared, we snapped into action and accomplished nothing.

Despite our whimsical and self-referential style, we hape@rnphasize that the scheduling problems
on streams with time-dependent processing times have matteal subtlety as well as practical relevance.
The time-dependent processing models in this paper maydel éigr industry and sociology because they
give better scheduling models of human behavior; no modeltiedy be accurate that does not account
for people’s ability to work faster under the temporary stref deadlines. More generally, many common
scheduling problems in both daily life and industry hav&sashose processing times are time-dependent.
For example, an airplane that is late in arriving may havebtterding procedure expedited, a construction
project that is behind may have more workers assigned todt,aashipment that is late may be delivered
faster. Indeed a major reason for the success of comparibsasu-edex, UPS, and DHL is that the world
is filled with scheduling problems executed by procrastirat

Related Work

A number of other optimization problems have well studiedetidependent variants, including work on
time-dependent shortest patfis1[24] and time-dependens flat[15]. Some authors, typically in the
operations-research community, have also worked on sthgduth time-dependent processing times (see,
e.g., [2[5[17,718]), but for the offline and nonpremptiveeca®f course, preemptive and online models
are best for modeling the behavior of procrastinators, vemal tto timeshare and thrash as the deadlines
approach. Moreover, our introduction of preemptive schiedwith time-dependent processing times re-
quires an entirely different model. Previous work has agslithat the processing timg (¢) for job j is

a function of the starting timeé We cannot have such a model in a preemptive case becausmthey

be executed during many different time intervals. Thisésswotivates our need for processor speeds: job

Jj is executed with speef;(¢) at timet; the processing time is the sum over all intervals duringcivijob

Jj is executed, and the integral ¢f(t) over all times that the job is executed must equal the job’skwo
Curiously, if we analyze existing nonpreemptive modelg.(dinearly decreasing processing times) and an-
alyze what processor speeds and total work must be to gerteeste processing times, then we can create
instances where the processing speeds at times approattyjrdiearly such a model is unrealistic.

The most closely related work in the literature is on schieduhlgorithms for minimizing power con-
sumption and, in particular, on “speed scaling.” Se€ T818%7 26 1] for some recent results ahd|[20] for
an excellent survey. The idea of speed scaling is that theepsing speed of a job is variable, but faster
speeds consume more power. This ability to vary the speedmisiscent of the procrastinator who can run
at unsustainable rates near the deadline. However, unlitesispeed-scaling model, the procrastinator has
less freedom in choosing the processing speed; the progesseed is solely determined by the proximity
to the deadline.

We note that there exist other scheduling papers where ggoce have different speeds, both for “re-
lated” processord [12. 1, 9] and for “unrelated” procesddg[23[21]. However, neither situation models
procrastination scheduling (or speed scaling), where thegssing speeds per job change over time.

There are other scheduling problems on how to scheduletaglueorkers, such as the lazy bureaucrat
problem [3[18.14]. However, the lazy bureaucrats in the daleg problem are trying to accomplish as few
of the jobs as possible, whereas the procrastinators inufiert scheduling problem are trying to finish all
of the jobs.

Results

In this paper we present the following results.

e Optimal offline scheduling -“We first giveoptimal offline scheduling policies for the case where a
scheduling instance has a feasible solution. We consi@ecdke of linear speed functiong(t) =
m;(t — rj), for constantm; > 0. (In the offline problem, the scheduler sees the entire probl
instance before it has to begin scheduling.) Specificaflg, golicy gives the feasible solution in
which the processors spend the minimum total time runningese€ results are consistent with a
procrastinator who, after missing crucial deadlines, rauge could do it all over again. . ..”

e Computational/numerical issues ¥e show that, curiously, despite a simple optimal schedulin
policy, actuallydetermining feasibilityof the resulting schedule is not even known to be in NP. In
particular, determining feasibility is hard because ofebmputational difficulties of summing square
roots. We know of few scheduling problems where this iningussue arises.

e Online scheduling —¥e next turn to online scheduling. Not surprisingly, thesfbdity problem is
not achievable in an online setting. In particular, eveihéf online procrastinator has a feasible set of
jobs, he/she may be forced to miss an arbitrarily large nurobgue dates.

e Online maximum interval stretch -A-procrastinator may be forced to execute jobs beyond their d
dates, that is, for some jol the completion tim&’; may exceed the due dafg. Generally speaking,
if a procrastinator has a year to do a joland completeg two weeks late, the situation is better than if
the procrastinator has only one day tojddut completes two weeks late. This observation motivates
the notion ofinterval stretch defined as the flow time (time the job spends in the systengetivby
the job’s interval. More formally, the interval strefcbf job j is defined as; = (C; —r;)/(d; —r;).

1This definition deviates from the standard notion of strettiere the flow time is divided by the total time the job has spen
working [8]. However, it is appropriate here as jobs have drtes which can be missed and job speed is time-dependent.

We consider the optimization metrimaximum interval stretcliabbreviated tanax-stretch, to be
defined asnax; s;.

We first explore traditional scheduling policies for thegastinator, such as First-In-First-Out (FIFO),
Shortest-Remaining-Processing-Time (SRPT), and etdissdate (EDD). We show, not surpris-
ingly, that these policies do not perform well and can leadribounded max-stretch. A common
scheduling policy among many procrastinators is “hitdighest-nail”, that is, execute the task that
most crucially requires attention, formally, Largestesth-So-Far (LSSF). In LSSF we execute the
job in the system thaturrently has the largest interval stretch. We prove, perhaps sumgiys that
LSSF can lead to arbitrarily large max-stretch. We conclodeexploration of max-stretch by ex-
hibiting an online algorithm for the procrastinatorHRASHING, that yieldsO(1) max-stretch even
when the maximum job speed is bounded.

2 Offline Procrastination Scheduling

In this section we consider tludfline procrastination-scheduling problem. First, we give ammoakschedul-
ing policy based on a simple priority rule. Then we show tha computationally difficult to determine
whether a scheduling instance is feasible, despite th@igrirule. We focus on linear speed functions,

fi(t) =m;(t —r;).

Optimal Offline Scheduling Policy

We now give an optimal scheduling policy for the offline pasiination problem based on a simple priority
rule.

We first define terms. We say that a schedulteasibleif all jobs complete within their intervals; we
say that a feasible scheduleggtimalif the total processing time is minimized. Observe that ioatimal
schedule has no idle time then all feasible schedules aveptimal.

The optimal algorithm starts at the latest due date and wmakkwards in time, prioritizing jobs by the
latest release time. Whenever a new job is encounteredggolfs due date) or a job completes, then the
job in the system having the latest release time is servidéakere two or more jobs have the same release
time the scheduler chooses between them in an arbitraryxXaa fay. We call this scheduling algorithm
Latest Release Time Backwards (LRTB)

Observe that LRTB is the traditional Earliest Due Date (EPDlicy (see, e.g.[122]) when we reverse
the flow of time so that release dates become due dates andhteselcome release dates. In traditional
scheduling, time can flow in either direction, so that bothfBRand EDD generate feasible schedules. In
contrast, in the procrastination problem, EDD performsrlypsee Sectiofl3. Observe that the job priorities
depend only on the release times and not the slopes. Thiofatdpendence on the slopes should not be
surprising because we can transform any scheduling irestanto an instance having all unit slopes by
setting the workload to be) = w;/m;. The intuition of the algorithm is that it always tries to puthe
work of a job as near to its due date as possible in order tommagithe processing speed.

In the following we prove that algorithm LRTB produces theiwgal schedule.

Theorem 1 LRTB is an optimal algorithm for the procrastination schialy problem.

Proof. The proof is by an exchange argument. We first assume thatmjphs have the same release time
and then relax that assumption at the end. Suppose for teeo$akntradiction that there exists an optimal
scheduleA different from LRTB. Specifically, these schedules diffieitihe order of execution of two jobs
with different release times. We perform a single excharfgeaok to yield another feasible schedule
having smaller total processing time thdanthus obtaining a contradiction.

4

fit) A i

-
\

LRTB

\

—_——— e]

\

~—— -
-

N

~~
)

~
)

~
N

A’ LRTB

Figure 1: Scheduled* results from the merge of’ and LRTB. Schedulel’ results fromA by exchanging jobg and
i. The small gap aftef; indicates that this exchange is more time efficient.

We now define terms. Consider the latest instant in time whBEB differs from A and call this time
t4. Consider an arbitrarily small intervith, ¢4], during which jobj runs in LRTB and job runs in A. See
Figure 1 for a depiction of the setting. By the definition of IR ¢, j, andt4, »; < r;. Consider some
earlier time intervalt, t5], i.e., to < t3, during which jobj runs in A. Definety, t5, andts so that the
amount of work that can be executed on jois the same, that is,

to tq

dt f;(t) = /t dt f;(t).

t=t1 =t3

Now we make a new schedul& from A by exchanging the work done during intervglg o] to [ts, t4].
Specifically inA*, job j is run during[ts, t4] and jobi is run during|t, t2]. We know that this exchange is
allowed becausé; > t, andd; > ¢4 (from the LRTB andA schedules) and because< r; < ¢; (from the
A schedule and becausg< ;). By the definition of the intervals, exactly the same amafwork on j
can be done during both intervals. Computing the area of#fperoids defined by thg(¢) we obtain

ty +t3 to + 11
(t4—t3)< 5 —Tj)mj=(t2—t1)(5 —Tj)myv

meaning that
(2= 13)/2 = rj(ta —t3) = (3 —])/2 — rj(ta —). (1)
Observe that, — t3 < to — t; because the speed thats executed durindts, 4] is greater than during
[t1,t2).
The amount of work on jobthat needs to be exchanged frém ¢,4] to [t1, o] is (3 —12) /2 — (ts—t3)7;.
But sincer; < rj andty —t3 <ty — ty,

(7 = 13)/2 = rilta — t3) < (13 — 11)/2 = ri(t2 — 1),

and therefore interval, t] is big enough to execute all of the work on joland still leave some idle
time. Hence, scheduld* is feasible and spends a smaller amount of time working. @hiss us our
contradiction.

We now explain the case where two jobsaind 2 have the same release time. Assume thatljad
scheduled to execute some work in the time inteftalt2] and job2 is scheduled to execute some work in
the interval[ts, t4]. If we exchange the work for jobisand2, the relationship between the new time intervals
and the old is expressed by the simple equation t3 = t3 — t2. Therefore the total time to execute both

5

jobs remains the same after exchange. As a result, the orddrich these jobs are executed does not affect
the total processing time, and so LRTB is an optimal algoritto matter what the tie-breaking rule is. This
completes the proof. L]

Determining Feasibility may not be in NP

One of the remarkable features of the procrastination prokik that, despite having the simple optimal
scheduling policy LRTB, it is unclear whether determinihg feasibility of a scheduling instance is even in
NP, even for linear speed functions.

The difficulty is numerical. Calculating the actual prodeggime of the jobj given a starting or ending
time ¢ and speed functiorf;(¢t) = ¢ — r; requires computing square roots. Determining the featyilof
the schedule therefore requires computing sums of squate aod their relationship to an integer, and this
problem appears to be numerically difficult.

The basic sum-of-square-roots problem is to determinelvenet

n
S Vai <1
=1

for somez;,I € Z (1 < i < n). Because this problem is not known to be in NP, basic computt
geometry problems such as Euclidean TSP or Euclidean shpdéhs are not known to be in NP. See the
Open Problems Projedi]ll4, Problem 33] for a nice discussiahe sum-of-square-roots problem.

We establish the difficulty of procrastination schedulinggooviding a reduction from any instance of
the sum-of-square-roots problem. To derive the cleandsict®n, we allow the existence of non-lazy jobs,
i.e., jobs that are always executed at the same speed avingrslope). (It is likely that a reduction can be
made to work using no non-lazy jobs, but at the cost of adtalicomplications.)

Theorem 2 The procrastination scheduling is not in NP unless the stisgoare-roots problem is also in
NP.

Proof. We reduce the sum-of-square-roots problem to the prooed&in scheduling problem. Given
numberszy, .. ., z,, and integerl, we will create a procrastination-scheduling problem witht 1 jobs.
The procrastination scheduling problem will be feasiblenél only if> ", \/z; > 1.

We first give the structure of the scheduling instance andl de¢ermine the release times, deadlines, and
work for each job. In our scheduling instance, the firstazy jobs1 ... m have non-overlapping intervals,
so thatr; = 0, and the due date of one job is the release date of the ngxt:=d; (i = 1,...,m — 1).
The (m + 1)st job will be nonlazy. We place this job’s interval so thabverlaps with the intervals of jobs
1,...,m, i.e.,rm+1 =" anddm+1 =d,.

We now construct the lazy jolds. .., m. For jobi, we choose interval length (= d; — r;) and work
w; to be positive integers such th@’t— 2w; = x;; many choices of; andw; will work. It will suffice
to choose positive integers andw; such tha) < ¢? — 2w; < ¢;. Lazy jobi runs most efficiently when

pushed to the right side of its interval. Then it runs in tifpe- |/¢? — 2w,. The total time taken by ath
non-overlapping jobs when scheduled optimally is therfor

m m m m

ST SHCECTES ST S

1=1 i=1 i=1 i=1

We now construct the nonlazy joh + 1. As described earliet,, 1 = 0 andd,, 1 = d,,. We set the
WOrk w41 = I + dpmt1 — Doimeq Ui

f(t) A f(t)A

1 1
2

t >t

(a) ri rz rz dz dz d17 (b) o r d>ry dsdy

Figure 2: (a) Case 1: job; is run atr,. Then job3 arrives. Either jok2 or 3 is forced to miss its due date. (b) Case 2:
job 72 is run atr,. Then job4 arrives. Either jol, 2, or 4 is forced to miss its due date.

Now there is a feasible solution for this problemdff, 1 > w41 + D200 4 — > 212 /@i Thisis
the case, as long @s< > ", \/z;. Thus, an arbitrary instance of the sum-of-square-roadblpm can
be reduced to an instance of procrastination schedulinglying the numerical difficulty of procrastination
scheduling. L]

3 Online Algorithms

This section considers the online procrastination scliglydroblem. In the online problem, jolds ..n
arrive over time. Job is known to the scheduler only at the release timeat which point the scheduler
also learns the values af; andd;. We first show that it is difficult for an online scheduler todifeasible
schedules. Next we search for online algorithms that gémeraall, ideally constant, max-stretch. We then
examine traditional scheduling policies such as EDD, SR#id, FIFO, and we show that these policies
have large, typically unbounded, max-stretch. We nextidenthe scheduling policy Largest-Stretch-So-
Far (LSSF), which executes the job in the system currentynigethe largest interval stretch. This policy
formalizes the "hit-the-highest-nail” scheduling polidhat is, execute the task in the system that most
crucially requires attention. More precisely, in the LS$Rexluling policy, we run the job in the system
that has incurred the largest interval stretch so far, thaati timet we execute the jobj that maximizes

(t —rj)/(d; —rj). We show that, remarkably, LSSF also has unbounded matetstréVe conclude this
section by exhibiting the scheduling algorithnmRASHING, whose max-stretch is within a constant factor
of optimal and then give a generalization to non-linear dgaactions. It seems unrealistic in our procrasti-
nation model to assume that the procrastinator can workrarity fast. One consequence of this last result
is that good online max-interval-stretch bounds are aelhleveven when the procrastinator's maximum
processing speed is at most a constant factor faster thampaowastinator's speed.

Basic Results

We first show that any online algorithm can be forced to missdhtes, even when the scheduling instance
is feasible. A jobj hasslackif the work,w;, associated with it is less than the area betwgeandd;.

Theorem 3 For any online algorithm, there is a feasible job stream orichithat algorithm misses due
dates.

Proof. We show that regardless of the online scheduling decistbesadversary can force the algorithm
to miss due dates by maliciously selecting future jobs. Theesary first sends joldsand2, wherer; < ro
andds < d;. Both jobs1 and2 have some slack and the dgt 2} is feasible. At timer, there are two
cases:

1. Jobl is serviced at time,. Then the adversary places a jBlwith o < r3 < ds < dy. Job3 is
designed so that the entire interJa}, d-| is required to complete job and 3 by their due dates.
Since the online algorithm works partially on jabduring this interval, either joR or 3 misses its
due date; see Figuké 2(a).

2. Job2 is serviced at time,. The adversary places a jalwith r, > d andd, < dy. Job4 is designed
so that all the time betweery andd; is required to complete jobk 2, and4 by their due dates.
However, as jol2 has some slack we know that by Theorldm 1 that the optimakgiras to runl at
time r, and that this strategy is unique. Therefore, by runriiregg timery the algorithm misses at
least one of the due dates; see Fidure 2(b). L]

Note that by repeating this construction, the adversaryaae the algorithm to miss an arbitrarily large
number of due dates. Thus, Theordm 3 explains why procedstsimay have a harder time juggling online
tasks than non-procrastinators.

We now show that most traditional scheduling policies fon4poocrastinators do not work well for
procrastinators. The following theorem gives the perfaroeaof First-In-First-Out (FIFO), Earliest-Due-
Date (EDD), and Shortest-Remaining-Processing-Time {SRP

Theorem 4 The max-stretch of the First-In-First-Out (FIFO) and Eadit-Due-Date (EDD) scheduling
policies can be made arbitrarily large, even for a constamtniver of jobs. For a set of jobs, the Shortest-
Remaining-Processing-Time (SRPT) scheduling policy eae max-stretch dk(y/n).

Hitting the Highest Nail Does Not Work

A common scheduling strategy among procrastinators isthditHighest Nail,” that is, execute the job that
is farthest behind. Since the objective is to minimize thexsiaetch, “hitting-the-highest-nail” translates
to running the job that has the largest interval stretch. ¥etlsis strategyargest-Stretch-So-Far (LSSF)
More precisely, in the LSSF scheduling policy, we run theijolbhe system that has incurred the largest
interval stretch so far, that is, at timave execute the job that maximizest — r;)/(d; — r;). Thus, the
algorithm might execute a joh but switch to a smaller job that arrived aftei, oncej’s interval stretch so
far surpasses that o.

Remarkably, LSSF also leads to jobs having unbounded mewvaitstretch. The overall strategy of our
malicious adversary is as follows. First arrange three gambthat one of them is not started by LSSF until
it reaches its due date. This can be achieved by choosingljabd2 so thatr, > r1 anddy < d. LSSF
scheduled to work uninterrupted until some point in the interval D&t which point it starts work oA.
Assuming2 has no slack, it complete its work after its due date. We canplace job3 so thatr; = d» and
setds to be the completion time of job. Job3 will not start until its due datejs, and assuming it works
uninterrupted and has no slack, completes with an intetxetich of/2. See Figur&l3(a).

Let = be the finishing time of jol3. Our malicious adversary now schedules a stream of jobsmwath
slack starting atl3, as follows. See Figuid 3(b).

1. Place a joly with release datés so that its stretch is exactly2 atx. This requires setting the length
of the job appropriately. This new job does not start worklunand so finishes at some further point
z'. The stretch off is now greater thar/2. Call this new stretch value.

2. Place a second jof starting at the due date ¢fso that its stretch is exactly at timez’. ;' has the
due date ofj as its release date. Noj#does not start work untit’ and finishes at some later daté
with an extended stretch af > a.

3. lterate.

ftt) & flt &

(@) o s O x

Figure 3: (a) Job 2 starts work atand completes after its due date. Job 3 starts work at its alieeathd finishes with
a stretch ofy/2 (b) A stream of jobs with increasing stretch. The stretctobf4 is v/2 when it starts work at time
and+/3 when it finishes.

Theorem 5 Using the LSSF scheduling policy, the max-stretch for alimset ofn jobs isQ(y/n).

Proof. We analyze the LSSF scheduling policy by considering in &&oh job that the malicious adver-
sary places using the procedure above and we calculate ttedeupule for the max-stretch. Because we
only consider one job at a time, we can assume that the rediedésés). We use three variables, the current
stretche;, the timef at which the current job can start work, and the timat which the current job finishes
working. The due date for the current job is thereféfe for jobs;j > 4. By equating areas we have

o p P 2 ’ 2
r-lr=—=1"=—5+/
« «
The update rule for stretch is
, TQ 9 202
o = 7 = o = €2
Therefore
o =V1+ a2

Recasting as the recurrence relatiom] = /1 + a[n — 1]? and setting the boundary condition to be
a[l] = 1 we have
afn] = V/n.

Therefore, the max-stretch §&,/n) as required.

It remains to be proven that a feasible schedule for the geraent of jobs described exists. In particular,
as jobl is the only job with any slack, we must show that it is possibleompletel by its due date without
performing any of its work in the interval of another job.di5ufficient to prove that the amount of time taken
by all the other jobs is bounded above by a constant. The rengaivork of job1 can then be completed in
the interval between the due date of jpland the due date of joh

Following the same line of reasoning as above, the updaggfoul is ¢’ = x — ¢/a. Therefore

vt (1 1 >
o " al Vita?
gives us the length of the next job inserted into the schedhdsume, w.l.0.g. that the length of j8ls 1.
The size of jobn > 4 is therefore[["—*(1 — 1/1/i + 1) which is©(e~V™). The total time taken by all the
jobs4...n is therefore®(x_e~V™), which isO(1).
By setting the sizes of jolisand3 to be constant, we have the required constant bound for thiesine
of all jobsj > 1. L]

©(1)-Competitive Online Algorithm for Max-Stretch

We now exhibit the strategyHRASHING, which bounds the interval stretch of each jobdbyrhe THRASH-
ING strategy models the extreme case of a procrastinator whemmevork on any job until it has already
passed its due date. More formally, in the this strategy bhagexecuted until it has a stretch of at le2st
Among all such jobs, the procrastinator executes the joettived latest.

We begin by proving the following simple lemma:

Lemma 6 Consider a feasible set of jolds...,m and consider times and d, where allr; > r and
d; < d. Leta-DLY be any scheduling policy that only schedules work frolos jhaving stretch at least,
wherea > 1. The total amount of time required to run all jobs usimgPLY is at mostd — r) /.

Proof. Because the set of jobs is feasible, there is some way to sighedch job within its interval and
the total time spent working is at mast- . Now consider running--DLY. For any given jobyj, the slowest
that 7 runs ina-DLY is at leasta times faster than runs in the feasible schedule. The lemma follows
immediately. L]

Theorem 7 For any feasible set of job§,HRASHING bounds the interval stretch of every job 4y

Proof. The proof is by contradiction. Define tlextended due dat@- of job j to be the time thaj must
complete by to guarantee an interval stretchi afhat is,ch = 4(d; — r;) + r;. Consider some job that
does not meet its extended due date. For simplicity and witloss of generality, we normalize time so that
r; = 0 andd; = 1. Jobj cannot begin until tim@ and by assumption completes at some tjfne 4.

By Lemmd®, the total amount of time spent working on all joli®®e intervals are entirely contained
within [0, 4] is at most4/2 = 2 units of time. Moreover, there can be no gaps in the scheduiaegithe
interval 2, f] because otherwisgwould work during the gaps and finish earlier than tigheFinally, by
the definition of THRASHING, there can be no work scheduled durigf] on jobs having release dates
before0 becauseg has higher priority. Thusf cannot be greater thahand we obtain a contradiction. [

It may, of course, be unrealistically optimistic to give thdine procrastinator the power to run arbitrar-
ily fast. However, it follows from Theoreld 7 thatiRASHING never runs any job faster thantf;(d;). In
fact, the proof of Theorerl 7 indicates that we can reduceuier bound still further t@f;(d;) without
increasing the max-stretch; we need only modify the speectifins so that the maximum job speed for job
Jj is limited to2 f;(d;).

4 Conclusions

The first sentence of the conclusion, which summarizes therp& being written just a few hours before
the deadline. As we were writing this paper, we were struckhieywealth of open problems in this area.
For example, what is the right way to resolve the computatiand numerical issues associated with linear
and other speed functions? The scheduling problem becormaswore complex with speed functions that
may be nonzero at jobs release times. For our online algontie did not try to optimize the constant in
the online competitive ratio fully; what is the smallestttixee can make this constant, especially where the
speed functions are sub-linear?

We have also considered piecewise constant speed funetiohisave linear programming solutions for
a number of different variants of the original problem. Toestraints of the LP correspond to the constant
speed intervals of each job and depend on the optimizatiagnan®ne important question is whether there
are combinatorial algorithms that can be found for thesmfbations.

10

Finally, what about other metrics, especially in models iglgome jobs may be left unexecuted? What
about settings where job streams are executed on paralieggsors?

It is now several hours later, just minutes before the deadliWe were searching for the ideal way to
end the paper and circumstances have unfortunately pitaeanswer. A campus-wide power failure at
Stony Brook has cut two hours from our last-minute workimgeiand highlights the difficulties of online
scheduling for procrastinators.

Acknowledgments

We are grateful to Esther Arkin, Nikhil Bansal, and Josepltch®ll for many helpful discussions. We thank Nikhil
Bansal for the LP solution for piecewise constant speedtions.

A boss had a quirky young worker
Whose performance was starting to irk her
But by procrastination
He met the occasion
Starting late and just working berserker.

References

[1] S. Albers and H. Fujiwara. Energy-efficient algorithnts flow time minimization. InProc. 23rd Annual Symposium on
Theoretical Aspects of Computer Science (STAZ@Y)me 3884 ofLecture Notes in Computer Sciengeges 621-633,
2006.

[2] B. Alidaee and K. Womer. Scheduling with time dependenicpssing times: Review and extensiodsurnal of Operational
Research Societ0:711-720, 1999.

[3] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and S. S. Ska&n The lazy bureaucrat scheduling problem. Pitoc. 6th
Workshop on Discrete Algorithms WADSages 122-133, 1999.

[4] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and S. S. Ski&nThe lazy bureaucrat scheduling probleimformation and
Computation 184(1):129-146, 2003.

[5] A.Bachman, A. Janiak, and M. Y. Kovalyov. Minimizing thetal weighted completion time of deteriorating jobsormation
Processing Letters81(2):81-84, 2002.

[6] N.Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scptimmanage energy and temperaturePtac. 45th Symposium
on Foundations of Computer Science (FOGf)ges 520-529, 2004.

[7] N.Bansal and K. Pruhs. Speed scaling to manage temperdituProc. 22nd Annual Symposium on Theoretical Aspects of
Computer Science (STACSdlume 3404 ot ecture Notes in Computer Scienpages 460—471, 2005.

[8] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Fkmd stretch metrics for scheduling continuous job streaims.
Proceedings of the 9th Annual ACM-SIAM Symposium on Diséxigtorithms (SODA)pages 270-279, 1998.

[9] M. A. Bender and M. O. Rabin. Online scheduling of paraieograms on heterogeneous systems with applicationslito Ci
Theory of Computing Systems Special Issue on SPAS0289—-304, 2002.

[10] D. P. Bunde. Power-aware scheduling for makespan amad floProc. 18th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA2006. To appear.

[11] C. Chekuriand M. A. Bender. An efficient approximatidgaithm for minimizing makespan on uniformly related mas.
Journal of Algorithms41:212—-224, 2001.

[12] F. A. Chudak and D. B. Shmoys. Approximation algorithfos precedence-constrained scheduling problems on phrall
machines that run at different speedsAlgorithms 30(2):323—-343, 1999. An earlier version appears in SODA '9

[13] E. Davis and J. M. Jaffe. Algorithms for scheduling task unrelated processors.ACM 28(4):721-736, 1981.

[14] E. D. Demaine, J. S. B. Mitchel, and J. O'Rourke. The mpeproblems project.
http://maven.smith.edu/ orourke/ TOPP/ , viewed February 13, 2005.

11

http://maven.smith.edu/~orourke/TOPP/

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

L. Fleischer and M. Skutella. The quickest multicomntp@low problem. InProc. 9th Integer Programming and Combina-
torial Optimization (IPCO) Conferengeolume 2337 of_ecture Notes in Computer Scienpages 36-53, 2002.

L. Fleischer and M. Skutella. Minimum cost flows over &iwithout intermediate storage. Rroc. 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SOD@gges 6675, 2003.

S. Gawiejnowicz, W. Kurc, and L. Pankowska. A greedyrapph for a time-dependent scheduling probl&MCS 2328:79—
86, 2002.

S. Gawiejnowicz and L. Pankowska. Scheduling jobs willnying processing times.Information Processing Letters
54(3):175-178, 12 May 1995.

C. Hepner and C. Stein. Minimizing makespan for the laayeaucrat problem. IRroc. 8th Scandinavian Workshop on
Algorithm Theory (SWATYolume 2368 ot ecture Notes in Computer Scienpages 40-50, 2002.

S. Irani and K. R. Pruhs. Algorithmic problems in poweamagementSIGACT News36(2):63-76, 2005.

K. Jansen and L. Porkolab. Improved approximation swe for scheduling unrelated parallel machines.Ptac. 31st
Annual ACM Symposium on Theory of Computjmages 408—417, 1999.

D. Karger, C. Stein, and J. Wein. Scheduling algorithrirs M. J. Atallah, editorHandbook of Algorithms and Theory of
Computation CRC Press, 1998.

E. L. Lawler and J. Labetoulle. On preemptive schedubifiunrelated parallel processors by linear programmihgpCM
25(4):612-619, 1978.

A. Orda and R. Rom. Shortest-path and minimum-delapritlyms in networks with time-dependent edge-lengthACM
37(3):607-625, 1990.

K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scafitapks with precedence constraints. Aroc. 3rd Workshop on
Approximation and Online Algorithms (WAQA)rges 307—319, 2005.

E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal. Emeefficient packet transmission over a wireless lilkEE/ACM
Trans. Netw.10(4):487-499, 2002.

12

	Introduction
	Offline Procrastination Scheduling
	Online Algorithms
	Conclusions

