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Scheduling Algorithms for Procrastinators
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Abstract

This paper presents scheduling algorithms for procrastinators, where the speed that a procrastinator
executes a job increases as the due date approaches. We give optimal off-line scheduling policies for
linearly increasing speed functions. We then explain the computational/numerical issues involved in
implementing this policy. We next explore the online setting, showing that there exist adversaries that
force any online scheduling policy to miss due dates. This impossibility result motivates the problem of
minimizing themaximum interval stretchof any job; the interval stretch of a job is the job’s flow time
divided by the job’s due date minus release time. We show thatseveral common scheduling strategies,
including the “hit-the-highest-nail” strategy beloved byprocrastinators, have arbitrarily large maximum
interval stretch. Then we give the “thrashing” scheduling policy and show that it is aΘ(1) approximation
algorithm for the maximum interval stretch.
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1 Introduction

We are writing this sentence two days before the deadline. Unfortunately that sentence (and this one) are
among the first that we have written. How could we have delayedso much when we have known about this
deadline for months? The purpose of this paper is to explain why we have waited until the last moment to
write this paper.

In our explanation we model procrastination as a schedulingproblem. We cannot use traditional schedul-
ing algorithms to model our behavior because such algorithms do not take into account our (and humanity’s)
tendency to procrastinate. The advantages of procrastination are well documented: the closer to a deadline
a task is executed, the less processing time the task appearsto require. Hence, it is common for a person to
delay executing some onerous job in order to spend as little time as possible working on it.

Regarding this paper, it will certainly be written quickly —it will have to be, since the deadline is near.
Perhaps we will write faster under pressure because we will expend less time overanalyzing each design
option. Other aspects of the paper may change because of thistime pressure. In any case, the writing will
proceed faster than if we had begun earlier.

Our scheduling problem for procrastinators is unorthodox in that the processing time of a job depends
on the times during which the job is run. We are given as input aset of jobsJ = {1, 2, . . . , n}. Each job
j has release timerj, due datedj, and workwj ; without loss of generality, we assume that the jobs are
indexed by increasing release times.Preemptionis allowed; that is, a running job can be interrupted and
resumed later. The speed at which jobj is run depends on the times thatj is executed; the closer to the
due datedj , the fasterj can be executed. Specifically,speed functionfj(t) indicates that at timet, job j is
executed with speedfj(t); thus, if j is executed during time interval[a, b], then

∫ b
t=a dt fj(t) units of work

of job j complete.
Throughout most of the paper we focus onlinear speed functions. We assume that when jobj first is

released, it is executed with speed0. In accordance with this last assumption, when the call for papers first
appeared, we snapped into action and accomplished nothing.

Despite our whimsical and self-referential style, we hope to emphasize that the scheduling problems
on streams with time-dependent processing times have mathematical subtlety as well as practical relevance.
The time-dependent processing models in this paper may be useful for industry and sociology because they
give better scheduling models of human behavior; no model can truly be accurate that does not account
for people’s ability to work faster under the temporary stress of deadlines. More generally, many common
scheduling problems in both daily life and industry have tasks whose processing times are time-dependent.
For example, an airplane that is late in arriving may have theboarding procedure expedited, a construction
project that is behind may have more workers assigned to it, and a shipment that is late may be delivered
faster. Indeed a major reason for the success of companies such as Fedex, UPS, and DHL is that the world
is filled with scheduling problems executed by procrastinators.

Related Work

A number of other optimization problems have well studied time-dependent variants, including work on
time-dependent shortest paths [24] and time-dependent flows [16, 15]. Some authors, typically in the
operations-research community, have also worked on scheduling with time-dependent processing times (see,
e.g., [2, 5, 17, 18]), but for the offline and nonpremptive case. Of course, preemptive and online models
are best for modeling the behavior of procrastinators, who tend to timeshare and thrash as the deadlines
approach. Moreover, our introduction of preemptive scheduling with time-dependent processing times re-
quires an entirely different model. Previous work has assumed that the processing timepj(t) for job j is
a function of the starting timet. We cannot have such a model in a preemptive case because the job may
be executed during many different time intervals. This issue motivates our need for processor speeds: job
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j is executed with speedfj(t) at timet; the processing time is the sum over all intervals during which job
j is executed, and the integral offj(t) over all times that the job is executed must equal the job’s work.
Curiously, if we analyze existing nonpreemptive models (e.g., linearly decreasing processing times) and an-
alyze what processor speeds and total work must be to generate these processing times, then we can create
instances where the processing speeds at times approach infinity; clearly such a model is unrealistic.

The most closely related work in the literature is on scheduling algorithms for minimizing power con-
sumption and, in particular, on “speed scaling.” See [6, 25,10, 7, 26, 1] for some recent results and [20] for
an excellent survey. The idea of speed scaling is that the processing speed of a job is variable, but faster
speeds consume more power. This ability to vary the speeds isreminiscent of the procrastinator who can run
at unsustainable rates near the deadline. However, unlike in the speed-scaling model, the procrastinator has
less freedom in choosing the processing speed; the processing speed is solely determined by the proximity
to the deadline.

We note that there exist other scheduling papers where processors have different speeds, both for “re-
lated” processors [12, 11, 9] and for “unrelated” processors [13, 23, 21]. However, neither situation models
procrastination scheduling (or speed scaling), where the processing speeds per job change over time.

There are other scheduling problems on how to schedule reluctant workers, such as the lazy bureaucrat
problem [3,19,4]. However, the lazy bureaucrats in the scheduling problem are trying to accomplish as few
of the jobs as possible, whereas the procrastinators in the current scheduling problem are trying to finish all
of the jobs.

Results

In this paper we present the following results.

• Optimal offline scheduling —We first giveoptimal offline scheduling policies for the case where a
scheduling instance has a feasible solution. We consider the case of linear speed functions,fj(t) =
mj(t − rj), for constantmj ≥ 0. (In the offline problem, the scheduler sees the entire problem
instance before it has to begin scheduling.) Specifically, the policy gives the feasible solution in
which the processors spend the minimum total time running. These results are consistent with a
procrastinator who, after missing crucial deadlines, muses “if I could do it all over again. . . .”

• Computational/numerical issues —We show that, curiously, despite a simple optimal scheduling
policy, actuallydetermining feasibilityof the resulting schedule is not even known to be in NP. In
particular, determining feasibility is hard because of thecomputational difficulties of summing square
roots. We know of few scheduling problems where this intriguing issue arises.

• Online scheduling —We next turn to online scheduling. Not surprisingly, the feasibility problem is
not achievable in an online setting. In particular, even if the online procrastinator has a feasible set of
jobs, he/she may be forced to miss an arbitrarily large number of due dates.

• Online maximum interval stretch —A procrastinator may be forced to execute jobs beyond their due
dates, that is, for some jobj, the completion timeCj may exceed the due datedj . Generally speaking,
if a procrastinator has a year to do a jobj, and completesj two weeks late, the situation is better than if
the procrastinator has only one day to doj, but completes two weeks late. This observation motivates
the notion ofinterval stretch, defined as the flow time (time the job spends in the system) divided by
the job’s interval. More formally, the interval stretch1 of job j is defined assj = (Cj − rj)/(dj − rj).

1This definition deviates from the standard notion of stretchwhere the flow time is divided by the total time the job has spent
working [8]. However, it is appropriate here as jobs have duedates which can be missed and job speed is time-dependent.
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We consider the optimization metricmaximum interval stretch(abbreviated tomax-stretch), to be
defined asmaxj sj.

We first explore traditional scheduling policies for the procrastinator, such as First-In-First-Out (FIFO),
Shortest-Remaining-Processing-Time (SRPT), and earliest-due-date (EDD). We show, not surpris-
ingly, that these policies do not perform well and can lead tounbounded max-stretch. A common
scheduling policy among many procrastinators is “hit-the-highest-nail”, that is, execute the task that
most crucially requires attention, formally, Largest-Stretch-So-Far (LSSF). In LSSF we execute the
job in the system thatcurrently has the largest interval stretch. We prove, perhaps surprisingly, that
LSSF can lead to arbitrarily large max-stretch. We concludeour exploration of max-stretch by ex-
hibiting an online algorithm for the procrastinator, THRASHING, that yieldsΘ(1) max-stretch even
when the maximum job speed is bounded.

2 Offline Procrastination Scheduling

In this section we consider theofflineprocrastination-scheduling problem. First, we give an optimal schedul-
ing policy based on a simple priority rule. Then we show that it is computationally difficult to determine
whether a scheduling instance is feasible, despite this priority rule. We focus on linear speed functions,
fj(t) = mj(t − rj).

Optimal Offline Scheduling Policy

We now give an optimal scheduling policy for the offline procrastination problem based on a simple priority
rule.

We first define terms. We say that a schedule isfeasibleif all jobs complete within their intervals; we
say that a feasible schedule isoptimal if the total processing time is minimized. Observe that if anoptimal
schedule has no idle time then all feasible schedules are also optimal.

The optimal algorithm starts at the latest due date and worksbackwards in time, prioritizing jobs by the
latest release time. Whenever a new job is encountered (at the job’s due date) or a job completes, then the
job in the system having the latest release time is serviced.Where two or more jobs have the same release
time the scheduler chooses between them in an arbitrary but fixed way. We call this scheduling algorithm
Latest Release Time Backwards (LRTB).

Observe that LRTB is the traditional Earliest Due Date (EDD)policy (see, e.g., [22]) when we reverse
the flow of time so that release dates become due dates and due dates become release dates. In traditional
scheduling, time can flow in either direction, so that both LRTB and EDD generate feasible schedules. In
contrast, in the procrastination problem, EDD performs poorly; see Section 3. Observe that the job priorities
depend only on the release times and not the slopes. This lackof dependence on the slopes should not be
surprising because we can transform any scheduling instance into an instance having all unit slopes by
setting the workload to bew′

i = wi/mi. The intuition of the algorithm is that it always tries to push the
work of a job as near to its due date as possible in order to maximize the processing speed.

In the following we prove that algorithm LRTB produces the optimal schedule.

Theorem 1 LRTB is an optimal algorithm for the procrastination scheduling problem.

Proof. The proof is by an exchange argument. We first assume that no two jobs have the same release time
and then relax that assumption at the end. Suppose for the sake of contradiction that there exists an optimal
scheduleA different from LRTB. Specifically, these schedules differ in the order of execution of two jobs
with different release times. We perform a single exchange of work to yield another feasible scheduleA∗

having smaller total processing time thanA, thus obtaining a contradiction.
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LRTB

LRTB

Figure 1: ScheduleA∗ results from the merge ofA′ and LRTB. ScheduleA′ results fromA by exchanging jobsj and
i. The small gap aftert1 indicates that this exchange is more time efficient.

We now define terms. Consider the latest instant in time whereLRTB differs fromA and call this time
t4. Consider an arbitrarily small interval[t3, t4], during which jobj runs in LRTB and jobi runs inA. See
Figure 1 for a depiction of the setting. By the definition of LRTB, i, j, andt4, ri < rj. Consider some
earlier time interval[t1, t2], i.e., t2 ≤ t3, during which jobj runs inA. Definet1, t2, andt3 so that the
amount of work that can be executed on jobj is the same, that is,

∫ t2

t=t1

dt fj(t) =

∫ t4

t=t3

dt fj(t).

Now we make a new scheduleA∗ from A by exchanging the work done during intervals[t1, t2] to [t3, t4].
Specifically inA∗, job j is run during[t3, t4] and jobi is run during[t1, t2]. We know that this exchange is
allowed becausedi > t4 anddj > t4 (from the LRTB andA schedules) and becauseri < rj ≤ t1 (from the
A schedule and becauseri < rj). By the definition of the intervals, exactly the same amountof work onj
can be done during both intervals. Computing the area of the trapezoids defined by thefj(t) we obtain

(t4 − t3)

(

t4 + t3
2

− rj

)

mj = (t2 − t1)

(

t2 + t1
2

− rj

)

mj,

meaning that
(t24 − t23)/2 − rj(t4 − t3) = (t22 − t21)/2 − rj(t2 − t1). (1)

Observe thatt4 − t3 < t2 − t1 because the speed thatj is executed during(t3, t4] is greater than during
[t1, t2).

The amount of work on jobi that needs to be exchanged from[t3, t4] to [t1, t2] is (t24−t23)/2−(t4−t3)ri.
But sinceri < rj andt4 − t3 < t2 − t1,

(t24 − t23)/2 − ri(t4 − t3) < (t22 − t21)/2 − ri(t2 − t1),

and therefore interval[t1, t2] is big enough to execute all of the work on jobi and still leave some idle
time. Hence, scheduleA∗ is feasible and spends a smaller amount of time working. Thisgives us our
contradiction.

We now explain the case where two jobs1 and2 have the same release time. Assume that job1 is
scheduled to execute some work in the time interval[t1, t2] and job2 is scheduled to execute some work in
the interval[t3, t4]. If we exchange the work for jobs1 and2, the relationship between the new time intervals
and the old is expressed by the simple equationt24 − t23 = t22 − t21. Therefore the total time to execute both
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jobs remains the same after exchange. As a result, the order in which these jobs are executed does not affect
the total processing time, and so LRTB is an optimal algorithm no matter what the tie-breaking rule is. This
completes the proof.

Determining Feasibility may not be in NP

One of the remarkable features of the procrastination problem is that, despite having the simple optimal
scheduling policy LRTB, it is unclear whether determining the feasibility of a scheduling instance is even in
NP, even for linear speed functions.

The difficulty is numerical. Calculating the actual processing time of the jobj given a starting or ending
time t and speed functionfj(t) = t − rj requires computing square roots. Determining the feasibility of
the schedule therefore requires computing sums of square roots and their relationship to an integer, and this
problem appears to be numerically difficult.

The basic sum-of-square-roots problem is to determine whether

n
∑

i=1

√
xi < I

for somexi, I ∈ Z (1 ≤ i ≤ n). Because this problem is not known to be in NP, basic computational-
geometry problems such as Euclidean TSP or Euclidean shortest paths are not known to be in NP. See the
Open Problems Project [14, Problem 33] for a nice discussionof the sum-of-square-roots problem.

We establish the difficulty of procrastination scheduling by providing a reduction from any instance of
the sum-of-square-roots problem. To derive the cleanest reduction, we allow the existence of non-lazy jobs,
i.e., jobs that are always executed at the same speed, i.e., having slope0. (It is likely that a reduction can be
made to work using no non-lazy jobs, but at the cost of additional complications.)

Theorem 2 The procrastination scheduling is not in NP unless the sum-of-square-roots problem is also in
NP.

Proof. We reduce the sum-of-square-roots problem to the procrastination scheduling problem. Given
numbersx1, . . . , xm and integerI, we will create a procrastination-scheduling problem withm + 1 jobs.
The procrastination scheduling problem will be feasible ifand only if

∑n
i=1

√
xi ≥ I.

We first give the structure of the scheduling instance and then determine the release times, deadlines, and
work for each job. In our scheduling instance, the firstm lazy jobs1 . . . m have non-overlapping intervals,
so thatr1 = 0, and the due date of one job is the release date of the next:ri+1 = di (i = 1, . . . ,m − 1).
The(m + 1)st job will be nonlazy. We place this job’s interval so that itoverlaps with the intervals of jobs
1, . . . ,m, i.e.,rm+1 = r1 anddm+1 = dn.

We now construct the lazy jobs1, . . . ,m. For jobi, we choose interval lengthℓi (= di − ri) and work
wi to be positive integers such thatℓ2

i − 2wi = xi; many choices ofℓi andwi will work. It will suffice
to choose positive integersℓi andwi such that0 < ℓ2

i − 2wi < ℓi. Lazy job i runs most efficiently when

pushed to the right side of its interval. Then it runs in timeℓi −
√

ℓ2
i − 2wi. The total time taken by allm

non-overlapping jobs when scheduled optimally is therefore

m
∑

i=1

ℓi −
m

∑

i=1

√

ℓ2
i − 2wi =

m
∑

i=1

ℓi −
m

∑

i=1

√
xi.

We now construct the nonlazy jobm + 1. As described earlierrm+1 = 0 anddm+1 = dm. We set the
work wm+1 = I + dm+1 −

∑m
i=1 ℓi.
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(a) r1 r2 r3 d3 d2 d1

1
2

3

t

f(t)

(b) r1 r2 r4 d4d2 d1

1

2 4

f(t)

t

Figure 2: (a) Case 1: jobj1 is run atr2. Then job3 arrives. Either job2 or 3 is forced to miss its due date. (b) Case 2:
job j2 is run atr2. Then job4 arrives. Either job1, 2, or 4 is forced to miss its due date.

Now there is a feasible solution for this problem iffdm+1 ≥ wm+1 +
∑m

i=1 ℓi −
∑m

i=1

√
xi. This is

the case, as long asI ≤ ∑n
i=1

√
xi. Thus, an arbitrary instance of the sum-of-square-roots problem can

be reduced to an instance of procrastination scheduling, implying the numerical difficulty of procrastination
scheduling.

3 Online Algorithms

This section considers the online procrastination scheduling problem. In the online problem, jobs1 . . . n
arrive over time. Jobj is known to the scheduler only at the release timerj , at which point the scheduler
also learns the values ofwj anddj . We first show that it is difficult for an online scheduler to find feasible
schedules. Next we search for online algorithms that generate small, ideally constant, max-stretch. We then
examine traditional scheduling policies such as EDD, SRPT,and FIFO, and we show that these policies
have large, typically unbounded, max-stretch. We next consider the scheduling policy Largest-Stretch-So-
Far (LSSF), which executes the job in the system currently having the largest interval stretch. This policy
formalizes the “hit-the-highest-nail” scheduling policy, that is, execute the task in the system that most
crucially requires attention. More precisely, in the LSSF scheduling policy, we run the job in the system
that has incurred the largest interval stretch so far, that is, at timet we execute the jobj that maximizes
(t − rj)/(dj − rj). We show that, remarkably, LSSF also has unbounded max-stretch. We conclude this
section by exhibiting the scheduling algorithm THRASHING, whose max-stretch is within a constant factor
of optimal and then give a generalization to non-linear speed functions. It seems unrealistic in our procrasti-
nation model to assume that the procrastinator can work arbitrarily fast. One consequence of this last result
is that good online max-interval-stretch bounds are achievable even when the procrastinator’s maximum
processing speed is at most a constant factor faster than a nonprocrastinator’s speed.

Basic Results

We first show that any online algorithm can be forced to miss due dates, even when the scheduling instance
is feasible. A jobj hasslackif the work,wj , associated with it is less than the area betweenrj anddj .

Theorem 3 For any online algorithm, there is a feasible job stream on which that algorithm misses due
dates.

Proof. We show that regardless of the online scheduling decisions,the adversary can force the algorithm
to miss due dates by maliciously selecting future jobs. The adversary first sends jobs1 and2, wherer1 < r2

andd2 < d1. Both jobs1 and2 have some slack and the set{1, 2} is feasible. At timer2 there are two
cases:
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1. Job1 is serviced at timer2. Then the adversary places a job3 with r2 < r3 < d3 < d2. Job3 is
designed so that the entire interval[r2, d2] is required to complete jobs2 and3 by their due dates.
Since the online algorithm works partially on job1 during this interval, either job2 or 3 misses its
due date; see Figure 2(a).

2. Job2 is serviced at timer2. The adversary places a job4 with r4 > d2 andd4 < d1. Job4 is designed
so that all the time betweenr2 andd1 is required to complete jobs1, 2, and4 by their due dates.
However, as job2 has some slack we know that by Theorem 1 that the optimal strategy is to run1 at
time r2 and that this strategy is unique. Therefore, by running2 at timer2 the algorithm misses at
least one of the due dates; see Figure 2(b).

Note that by repeating this construction, the adversary canforce the algorithm to miss an arbitrarily large
number of due dates. Thus, Theorem 3 explains why procrastinators may have a harder time juggling online
tasks than non-procrastinators.

We now show that most traditional scheduling policies for non-procrastinators do not work well for
procrastinators. The following theorem gives the performance of First-In-First-Out (FIFO), Earliest-Due-
Date (EDD), and Shortest-Remaining-Processing-Time (SRPT).

Theorem 4 The max-stretch of the First-In-First-Out (FIFO) and Earliest-Due-Date (EDD) scheduling
policies can be made arbitrarily large, even for a constant number of jobs. For a set ofn jobs, the Shortest-
Remaining-Processing-Time (SRPT) scheduling policy can have a max-stretch ofΩ(

√
n).

Hitting the Highest Nail Does Not Work

A common scheduling strategy among procrastinators is “Hitthe Highest Nail,” that is, execute the job that
is farthest behind. Since the objective is to minimize the max-stretch, “hitting-the-highest-nail” translates
to running the job that has the largest interval stretch. We call this strategyLargest-Stretch-So-Far (LSSF).
More precisely, in the LSSF scheduling policy, we run the jobin the system that has incurred the largest
interval stretch so far, that is, at timet we execute the jobj that maximizes(t − rj)/(dj − rj). Thus, the
algorithm might execute a jobi, but switch to a smaller jobj that arrived afteri, oncej’s interval stretch so
far surpasses that ofi’s.

Remarkably, LSSF also leads to jobs having unbounded max interval stretch. The overall strategy of our
malicious adversary is as follows. First arrange three jobsso that one of them is not started by LSSF until
it reaches its due date. This can be achieved by choosing jobs1 and2 so thatr2 > r1 andd2 < d1. LSSF
schedules1 to work uninterrupted until some point in the interval of2 at which point it starts work on2.
Assuming2 has no slack, it complete its work after its due date. We can now place job3 so thatr3 = d2 and
setd3 to be the completion time of job2. Job3 will not start until its due date,d3, and assuming it works
uninterrupted and has no slack, completes with an interval stretch of

√
2. See Figure 3(a).

Let x be the finishing time of job3. Our malicious adversary now schedules a stream of jobs withno
slack starting atd3, as follows. See Figure 3(b).

1. Place a jobj with release dated3 so that its stretch is exactly
√

2 atx. This requires setting the length
of the job appropriately. This new job does not start work until x and so finishes at some further point
x′. The stretch ofj is now greater than

√
2. Call this new stretch valueα.

2. Place a second jobj′ starting at the due date ofj so that its stretch is exactlyα at timex′. j′ has the
due date ofj as its release date. Nowj′ does not start work untilx′ and finishes at some later datex′′

with an extended stretch ofα′ > α.

3. Iterate.
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1

2
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(b)

f(t)

3

4
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Figure 3: (a) Job 2 starts work ats and completes after its due date. Job 3 starts work at its due date and finishes with
a stretch of

√
2 (b) A stream of jobs with increasing stretch. The stretch of job 4 is

√
2 when it starts work at timex

and
√

3 when it finishes.

Theorem 5 Using the LSSF scheduling policy, the max-stretch for a feasible set ofn jobs isΩ(
√

n).

Proof. We analyze the LSSF scheduling policy by considering in turneach job that the malicious adver-
sary places using the procedure above and we calculate the update rule for the max-stretch. Because we
only consider one job at a time, we can assume that the releasedate is0. We use three variables, the current
stretchα, the timeℓ at which the current job can start work, and the timex at which the current job finishes
working. The due date for the current job is thereforeℓ/α for jobsj ≥ 4. By equating areas we have

x2 − ℓ2 =
ℓ2

α2
⇒ x2 =

ℓ2

α2
+ ℓ2

The update rule for stretch is

α′ =
xα

ℓ
⇒ α′2 =

x2α2

ℓ2
.

Therefore
α′ =

√

1 + α2.

Recasting as the recurrence relationα[n] =
√

1 + α[n − 1]2 and setting the boundary condition to be
α[1] = 1 we have

α[n] =
√

n.

Therefore, the max-stretch isΩ(
√

n) as required.
It remains to be proven that a feasible schedule for the arrangement of jobs described exists. In particular,

as job1 is the only job with any slack, we must show that it is possibleto complete1 by its due date without
performing any of its work in the interval of another job. It is sufficient to prove that the amount of time taken
by all the other jobs is bounded above by a constant. The remaining work of job1 can then be completed in
the interval between the due date of jobn and the due date of job1.

Following the same line of reasoning as above, the update rule for ℓ is ℓ′ = x − ℓ/α. Therefore

ℓ′

α′ =
ℓ

α

(

1 − 1√
1 + α2

)

gives us the length of the next job inserted into the schedule. Assume, w.l.o.g. that the length of job3 is 1.
The size of jobn ≥ 4 is therefore

∏n−3
i=1

(1 − 1/
√

i + 1) which isΘ(e−
√

n). The total time taken by all the
jobs4 . . . n is thereforeΘ(Σn

i=1e
−
√

n), which isΘ(1).
By setting the sizes of jobs2 and3 to be constant, we have the required constant bound for the total size

of all jobsj > 1.

9



Θ(1)-Competitive Online Algorithm for Max-Stretch

We now exhibit the strategy THRASHING, which bounds the interval stretch of each job by4. The THRASH-
ING strategy models the extreme case of a procrastinator who does not work on any job until it has already
passed its due date. More formally, in the this strategy no job is executed until it has a stretch of at least2.
Among all such jobs, the procrastinator executes the job that arrived latest.

We begin by proving the following simple lemma:

Lemma 6 Consider a feasible set of jobs1, . . . ,m and consider timesr and d, where allrj ≥ r and
dj ≤ d. Letα-DLY be any scheduling policy that only schedules work from jobs having stretch at leastα,
whereα ≥ 1. The total amount of time required to run all jobs usingα-DLY is at most(d − r)/α.

Proof. Because the set of jobs is feasible, there is some way to schedule each job within its interval and
the total time spent working is at mostd−r. Now consider runningα-DLY. For any given jobj, the slowest
that j runs inα-DLY is at leastα times faster thanj runs in the feasible schedule. The lemma follows
immediately.

Theorem 7 For any feasible set of jobs,THRASHING bounds the interval stretch of every job by4.

Proof. The proof is by contradiction. Define theextended due datẽdj of job j to be the time thatj must
complete by to guarantee an interval stretch of4, that is,d̃j = 4(dj − rj) + rj. Consider some jobj that
does not meet its extended due date. For simplicity and without loss of generality, we normalize time so that
rj = 0 anddj = 1. Jobj cannot begin until time2 and by assumption completes at some timef > 4.

By Lemma 6, the total amount of time spent working on all jobs whose intervals are entirely contained
within [0, 4] is at most4/2 = 2 units of time. Moreover, there can be no gaps in the schedule during the
interval [2, f ] because otherwisej would work during the gaps and finish earlier than timef . Finally, by
the definition of THRASHING, there can be no work scheduled during[2, f ] on jobs having release dates
before0 becausej has higher priority. Thus,f cannot be greater than4 and we obtain a contradiction.

It may, of course, be unrealistically optimistic to give theonline procrastinator the power to run arbitrar-
ily fast. However, it follows from Theorem 7 that THRASHING never runs any jobj faster than4fj(dj). In
fact, the proof of Theorem 7 indicates that we can reduce thisupper bound still further to2fj(dj) without
increasing the max-stretch; we need only modify the speed functions so that the maximum job speed for job
j is limited to2fj(dj).

4 Conclusions

The first sentence of the conclusion, which summarizes the paper, is being written just a few hours before
the deadline. As we were writing this paper, we were struck bythe wealth of open problems in this area.
For example, what is the right way to resolve the computational and numerical issues associated with linear
and other speed functions? The scheduling problem becomes even more complex with speed functions that
may be nonzero at jobs release times. For our online algorithm we did not try to optimize the constant in
the online competitive ratio fully; what is the smallest that we can make this constant, especially where the
speed functions are sub-linear?

We have also considered piecewise constant speed functionsand have linear programming solutions for
a number of different variants of the original problem. The constraints of the LP correspond to the constant
speed intervals of each job and depend on the optimization metric. One important question is whether there
are combinatorial algorithms that can be found for these formulations.
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Finally, what about other metrics, especially in models where some jobs may be left unexecuted? What
about settings where job streams are executed on parallel processors?

It is now several hours later, just minutes before the deadline. We were searching for the ideal way to
end the paper and circumstances have unfortunately provided the answer. A campus-wide power failure at
Stony Brook has cut two hours from our last-minute working time and highlights the difficulties of online
scheduling for procrastinators.
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A boss had a quirky young worker
Whose performance was starting to irk her

But by procrastination
He met the occasion

Starting late and just working berserker.
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