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1 Introduction

A knight’s tour is a series of moves made by a knight visiting every square of an n x n
chessboard exactly once. The knight’s tour problem is the problem of constructing such a
tour, given n. A knight’s tour is called closed if the last square visited is also reachable
from the first square by a knight’s move, and open otherwise. Define the knight’s graph for
an n X n chessboard to be the graph GG = (V| F), where: V = {(¢,7) |1 <1,7 <n}, and
E=A{((,7),(k,0) | {lt = k|, — €|} ={1,2}}. That is, there is a vertex for every square
of the board and an edge between two vertices exactly when there is a knight’s move from
one to the other. Then, more formally, an open knight’s tour is defined to be a Hamiltonian
path, and a closed knight’s tour is defined to be a Hamiltonian cycle on a knight’s graph. A
knight’s graph has n? vertices and 4n? — 12n + 8 edges.

The formal study of the knight’s tour problem is said to have begun with Euler [10] in
1759, who considered the standard 8 x 8 chessboard. Rouse Ball and Coxeter [1] give an
interesting bibliography of the history of the problem from this point. Dudeney [8, 9] contains
a description of exactly which rectangular chessboards have knight’s tours; in particular,
an n x n chessboard has a closed knight’s tour iff n > 6 is even', and an open knight’s
tour iff n > 5. It is not clear who first proved this fact, but it appears to be part of
the folklore of the subject (see, for example, Cole [2]). There exist several independently
conceived linear time (i.e. O(n?)) algorithms for constructing knight’s tours (see, for example,
Cull [5] and Schwenk [19]). Takefuji and Lee [22, 23] recently proposed a neural network
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Tt is easy to see that there is no closed knight’s tour when n is odd since such a board has one more
white square than black, or vice-versa, and since the colours of the squares visited on a knight’s tour must
alternate.



solution to the knight’s tour problem, although it appears to be of little use in practice (see
Parberry [17, 18]). We will describe in this paper a new, simple, and fast algorithm for
constructing knight’s tours on square boards.

Rouse Ball and Coxeter [1] describe a variant of the knight’s tour problem in which the
board is divided horizontally into two rectangular compartments. The tour must visit all
of the squares in one compartment before proceeding to the second one. We will call this
the bisected knight’s tour problem. They give a solution to the 8 x 8 case due to Euler, and
another due to Roget. Dudeney [8, 9] describes a further refinement of this problem in which
the board is divided into four rectangular compartments. We will call this the quadrisected
knight’s tour problem. Dudeney sets the problem of constructing a quadrisected knight’s tour
on an 8 x 8 board as an exercise that “is not difficult, but will be found very entertaining
and not uninstructive”. We will describe a linear time algorithm for generating quadrisected
knight’s tours on n x n boards for all even n > 10.

Domoryad [7] describes a quadrisected open tour on an 8 x 8 board, and also a closed
tour on a 7 x 7 board that is missing the centre square. Hurd and Trautman [12] note that
there exists an open knight’s tour on a 4 x 4 board that is missing one of its corners. We
will also present an algorithm for constructing closed knight’s tours on n x n boards that
are missing a corner square, for all odd n > 5.

Gardner [11, Chapter 14] gives a bisected tour on an 8 x 8 board due to Euler. He also
notes that this tour is invariant under a rotation of 180 degrees (that is, the transformation
(z,y) > (n—z+ 1,n—y+1)). We will see a linear time algorithm for generating such
rotation-invariant knight’s tours on an n x n board for all even n > 10. In contrast, Dejter [6]
has shown that an n xn has a closed knight’s tour that is invariant under a 90 degree rotation
(that is, the transformation (z,y) — (y,n — 2z 4+ 1)) iff n > 6 is divisible by 2 but not by 4.
We will give a linear time algorithm for all such n > 10.

Conrad, Hindrichs, Morsy, and Wegener [3, 4] give a linear time sequential algorithm for
the more difficult problem of constructing open knight’s tours (with arbitrary endpoints)
that can also be adapted to give a parallel algorithm that runs in O(1) time on O(n?)
processors. We will give a new algorithm for closed knight’s tours with the same resource
bounds. The new algorithm has the following advantages: the sequential algorithm is easy
to describe, and easy to implement, and the parallel version is easy to describe and analyze.
In addition, both the sequential and parallel versions extend to the special cases described
above: quadrisected tours, tours symmetric under 180 degree rotations, tours symmetric
under 90 degree rotations, and tours on odd-sided boards that are missing a single square.

The remainder of this paper is divided into two sections. Section 2 describes a new divide-
and-conquer algorithm for constructing regular knight’s tours, quadrisected knight’s tours,
and tours that are invariant under rotations. Section 3 presents variants of the new divide-
and-conquer algorithm for several popular parallel machine architectures. Throughout this
paper, IN denotes the set of natural numbers (including zero). Unless otherwise qualified, a
“knight’s tour” will mean a closed knight’s tour.
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Figure 1: Required moves for a structured knight’s tour.
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Figure 2: Structured knight’s tours for (in row-major order) 6 x 6, 6 x 8, 8 x 8, 8 x 10,

10 x 10, and 10 x 12 boards.



2 A Divide-and-Conquer Algorithm

This section is devoted to describing a new, particularly simple, linear time divide-and-
conquer algorithm for knight’s tours of various types. A knight’s tour is said to be structured
if it includes the knight’s moves shown in Figure 1.

Theorem 2.1 For all even n > 6 there exists a structured knight’s tour on an n X n and an
n X (n +2) board. Such a tour can be constructed in time O(n?).

PROOF: The proof is by induction on n. The claim is easily seen to be true for 6 <n <10
by inspecting Figure 2 (the knight’s tours in this figure were obtained using the random walk
algorithm described in Section 1).

Now suppose that n > 12 is even and that structured knight’s tours exist on m x m and
m X (m +2) boards for all 6 < m < n. Divide the n x n board into four quadrants as evenly
as possible. More precisely, each side of length n = 4k for some & € IN is divided into two
parts of length 2k, and each side of length 4k + 2 for some k € IN is divided into a part of
length 2k and a part of length 2(k + 1). In the construction of an n x n board in which
n = 4k for some k € IN, the four quadrants are each 2k x 2k. Alternatively, if n = 4k + 2
for some k& € N, then the four quadrants are either 2k x 2k, 2k x 2(k + 1), 2(k + 1) x 2k, or
2(k+1) x2(k +1). In the construction of an n x (n 4 2) board in which n = 4k for some
kE € N, the four quadrants are either 2k x 2k, 2k x 2(k + 1), or 2(k + 1) x 2k. Alternatively,
if n = 4k + 2 for some k € N, then the four quadrants are either 2k x 2k, 2k x 2(k + 1),
2(k +1) x 2k, or 2(k + 1) x 2(k 4+ 1). Since n > 12 implies that 2k > 6, knight’s tours in
each quadrant exist (by the induction hypothesis) in all of the above cases.

The moves at the inside corners of the quadrants are illustrated in Figure 3(a). (Although
the moves from the corner square were not specified in Figure 1, note that there are no other
choices for knight’s moves out of a corner square). The four tours are combined by deleting
the edges A, B, C, D shown in Figure 3(b) and replacing them with the four edges F, F, G, H
shown in Figure 3(c). Clearly, the result is a structured knight’s tour. Figure 4 illustrates
the technique on a 16 x 16 board, constructed from four copies of the knight’s tour on an
8 x 8 board in Figure 2.

The technique described above can easily be implemented as a recursive algorithm with
the tour represented in graph form using an adjacency matrix representation. The running
time T'(n) required for the construction of a knight’s tour on an n x n board is given by the
following recurrence: T'(8) = O(1), and for n > 16 a power of 2, T'(n) = 4T (n/2) + O(1).
This recurrence has solution T'(r) = O(n?). Therefore (using the standard argument), the
running time for all even n > 6 is O(r?). O

The algorithm of Theorem 2.1 is particularly easy to implement, and can be used to construct
knight’s tours of size up to 1000 x 1000 in under 11 seconds on a SUN SPARC 2.

The construction described in the proof of Theorem 2.1 can also be used to obtain some
knight’s tours with interesting properties. It should be clear that we have already solved
the quadrisected knight’s tour problem. The only even values of n for which we have not
constructed quadrisected knight’s tours are n = 8,10. A quadrisected knight’s tour is known
for an 8 x 8 board (see Dudeney [8, 9] and Domoryad [7]), leaving n = 10 open.
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Figure 3: How to combine four structured knight’s tours into one: (a) the moves at the inside

corners, (b) the edges A, B,C, D to be deleted, and (c¢) the replacement edges F, F, G, H.
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Figure 4: A 16 x 16 knight’s tour constructed from the 8 x 8 knight’s tour in Figure 2 using
the technique of Theorem 2.1.
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Figure 5: 16 x 16, and 20 x 20 knight’s tours that are symmetric under a 180 degree rotation,
constructed using the technique of Theorem 2.2.

Another minor modification to our algorithm also delivers symmetric knight’s tours.

Theorem 2.2 For all n x n boards where n > 12 is divisible by 4, there exists a quadrisected
knight’s tour that is symmetric under a 180 degree rotation. Such a tour can be constructed
in time O(n?).

Proor: If n > 12 is divisible by 4, the construction of Theorem 2.1 breaks the board into
quadrants of equal size and uses the same initial tour within each quadrant. Instead, after
constructing a tour in the first quadrant, rotate it three times through successive increments
of 90 degrees, once for each of the remaining quadrants in cyclic order. Complete the tour as

before. The constructed tour will be symmetric under a 180 degree rotation. For example,
Figure 5 shows such a tour for a 16 x 16 and a 20 x 20 board. O

Dejter [6] has shown that there exists a knight’s tour that is symmetric under a 90
degree rotation iff n > 6 is even but not divisible by 4. We will now give an algorithm for
constructing such a tour for all such n > 10. First, we need some straightforward variations
on Theorem 2.1:

Lemma 2.3 For all n > 6 there exists a structured knight’s tour on an n x (n + 1) board.
Such a tour can be constructed in time O(nZ).

PROOF: The construction is very similar to that of Theorem 2.1 and is left to the interested
reader. The base of the recursive construction must be augmented with the structured
knight’s tours shown in Figure 6. O
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Figure 6: Structured knight’s tours for (in row-major order) 6 x 7, 7 x 8, 8 x 9, 9 x 10,

10 x 11, and 11 x 12 boards.
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Figure 7: Structured knight’s tours for (from left to right) 5 x5, 7 x 7, 9 x 9, and 11 x 11

boards that are missing the upper left corner square.
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Figure 8: A knight’s tour on a 27 x 27 board that is missing one square.

Lemma 2.4 For all odd n > 5 there exists a structured knight’s tour on an n X n board that
is missing one of ils corner squares. Such a tour can be constructed in time O(n?).

PROOF: The recursive construction is very similar to that of Theorem 2.1 and is left to the
interested reader. The constructions of both Theorem 2.1 and Lemma 2.3 must be used as
subroutines. The base of the recursive construction consists of the base cases from both of
those results, plus the structured knight’s tours shown in Figure 7. Figure 8 illustrates the
construction when n = 27. O

Theorem 2.5 For all n x n boards where n > 10 is divisible by 2 but not by 4, there exists
a knight’s tour that is symmetric under a 90 degree rotation. Such a tour can be constructed
in time O(n?).

PROOF: The algorithm is similar to that of Theorem 2.5, but instead of breaking the board
into four quadrants using the construction of Theorem 2.1 (which, since n is even but not
divisible by 4, would not result in quadrants of equal size), it is to be broken evenly into four
square quadrants of dimension n/2 x n/2. Noting that n/2 is odd, we take a knight’s tour
on this board with a hole in one corner (constructed using Lemma 2.4), and place a copy in
each quadrant, rotating by 90 degrees each time so that the holes are at the center of the
board (see Figure 9(a)). Finally, we remove the edges A, B,C, D shown in Figure 9(b) and
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Figure 9: How to combine four knight’s tours into one: (a) the moves at the inside corners

(the holes are shaded), (b) the edges A, B, C, D to be deleted, and (c) the replacement edges.
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Figure 10: 10 x 10, 14 x 14, and 18 x 18 knight’s tours that are symmetric under a 90 degree
rotation, constructed using the technique of Theorem 2.5.

replace them with the eight edges shown in Figure 9(c). Figure 10 illustrates the technique
for n =10,14,18. O

Corollary 2.6 For all n x n boards where n > 8 is even, there exists a knight’s tour that is
symmelric under a 180 degree rotation. Such a tour can be constructed in time O(n?).

PROOF: The result follows for n > 10 by Theorem 2.2 and Theorem 2.5. Gardner [11,
Chapter 14] gives an 8 x 8 tour (attributed to FEuler) invariant under a rotation of 180
degrees. O

3 Knight’s Tours in Parallel

Our algorithms for constructing structured knight’s tours can readily be implemented in
parallel. We will consider four different architectures: bounded degree networks, CREW
PRAMs, mesh-connected computers, and meshes with CREW row and column buses. We
will content ourselves with simply stating the results here, since the proofs use mostly stan-
dard techniques. More details are available in Parberry [17].

A bounded degree network is a parallel machine in which the processors can communicate
with at most a small constant number of neighbours. (See, for example, Leighton [15]
or Parberry [16].) Our algorithms can be implemented in time O(n?/p) on a p-processor
bounded degree network, for all p = O(r*/logn). A CREW PRAM is a parallel machine in
which the processors can read and write into a shared memory. Concurrent reads of a single
cell of shared memory are permitted but concurrent writes are not. (See, for example, Karp
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and Ramachandran [13] or Parberry [16].) Our algorithms can be implemented in time O(1)
on an n’-processor CREW PRAM.

A mesh-connected computer, or mesh for short, is a bounded degree network with a
particularly simple interconnection pattern. An n x n mesh has n? processors, and for
0 <1,7 < n, processor in + j is connected to processors (1 —)n+j, (t+1)n+j4, in+75—1,
in + j + 1, provided these values are in the range 0 through n? — 1. Our algorithms can be
implemented in time O(n?/p?) on a p-processor mesh, for all p < n?/3. A mesh with CREW
buses is a mesh-connected computer with a bus for each row and each column. In addition
to the standard mesh instructions, each processor may also write to or read from either its
row bus or its column bus. Only one processor may write to each bus in any given step but
concurrent reads from a bus are allowed. (Similar models were studied by Stout [20, 21].)
Our algorithms can be implemented in time O(1) on a n*-processor mesh with CREW buses.

4 Conclusion

We have seen a new algorithm for constructing closed knight’s tours on square boards. In
addition to being simple to describe, implement, and analyze, the new algorithm can be used
to find highly structured knight’s tours (specifically, quadrisected tours and tours that are
symmetric under rotations), and is amenable to implementation as efficient parallel algo-
rithms under various architectures. A similar construction can be used to prove exponential
lower bounds on the number of closed knight’s tours (Kyek, Wegener, and Parberry [14]).
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