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Organizational matters

Lecturer: Dr Mark Wilson.

Email mcw@cs.auckland.ac.nz. Phone extn 86643.

Office: City 303.588.

Lectures: will stick mostly to textbook, but there may be
some extra material. Please ask questions.

Tutorial: please register immediately - they are compulsory.

Other resources: course webpages, my handouts directory,
lecturers, tutorials, class forum, library (books on reserve).
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How to multiply two positive integers?

The well-known algorithm taught at primary school uses the
decimal representation, and requires a lookup table for 1-digit
numbers.

Russian peasants apparently used a different algorithm, which
requires only addition and multiplication/division by 2. It is
well suited to computers.

How to compare these two algorithms?

We define the size of an integer x to be the number of its
binary digits, b(x) := 1 + !log2 |x|".
How do the resource requirements grow as a function of the
problem size?

What is an elementary operation (basic unit of running time)?
Addition of very large integers is probably not one.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

How to multiply two positive integers?

The well-known algorithm taught at primary school uses the
decimal representation, and requires a lookup table for 1-digit
numbers.

Russian peasants apparently used a different algorithm, which
requires only addition and multiplication/division by 2. It is
well suited to computers.

How to compare these two algorithms?

We define the size of an integer x to be the number of its
binary digits, b(x) := 1 + !log2 |x|".
How do the resource requirements grow as a function of the
problem size?

What is an elementary operation (basic unit of running time)?
Addition of very large integers is probably not one.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

How to multiply two positive integers?

The well-known algorithm taught at primary school uses the
decimal representation, and requires a lookup table for 1-digit
numbers.

Russian peasants apparently used a different algorithm, which
requires only addition and multiplication/division by 2. It is
well suited to computers.

How to compare these two algorithms?

We define the size of an integer x to be the number of its
binary digits, b(x) := 1 + !log2 |x|".
How do the resource requirements grow as a function of the
problem size?

What is an elementary operation (basic unit of running time)?
Addition of very large integers is probably not one.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

How to multiply two positive integers?

The well-known algorithm taught at primary school uses the
decimal representation, and requires a lookup table for 1-digit
numbers.

Russian peasants apparently used a different algorithm, which
requires only addition and multiplication/division by 2. It is
well suited to computers.

How to compare these two algorithms?

We define the size of an integer x to be the number of its
binary digits, b(x) := 1 + !log2 |x|".

How do the resource requirements grow as a function of the
problem size?

What is an elementary operation (basic unit of running time)?
Addition of very large integers is probably not one.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

How to multiply two positive integers?

The well-known algorithm taught at primary school uses the
decimal representation, and requires a lookup table for 1-digit
numbers.

Russian peasants apparently used a different algorithm, which
requires only addition and multiplication/division by 2. It is
well suited to computers.

How to compare these two algorithms?

We define the size of an integer x to be the number of its
binary digits, b(x) := 1 + !log2 |x|".
How do the resource requirements grow as a function of the
problem size?

What is an elementary operation (basic unit of running time)?
Addition of very large integers is probably not one.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

How to multiply two positive integers?

The well-known algorithm taught at primary school uses the
decimal representation, and requires a lookup table for 1-digit
numbers.

Russian peasants apparently used a different algorithm, which
requires only addition and multiplication/division by 2. It is
well suited to computers.

How to compare these two algorithms?

We define the size of an integer x to be the number of its
binary digits, b(x) := 1 + !log2 |x|".
How do the resource requirements grow as a function of the
problem size?

What is an elementary operation (basic unit of running time)?
Addition of very large integers is probably not one.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

“Russian peasant” multiplication

algorithm russmult(int x, int y)
{ reduce to case of positive input }
s ← 1;
if (x < 0) then s ← −s; x ← −x;
if (y < 0) then s ← −s; y ← −y;
{ now multiply positive integers }
t ← 0;
while x > 0 do

if (x mod 2 = 1) then t ← t + y;
x ← x ÷ 2;
y ← 2 ∗ y;

return s ∗ t;
end
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Correctness of russmult

First note that the algorithm always terminates, by basic properties
of natural numbers.
It is easy to see that the algorithm is correct if and only if it is
correct for nonnegative integer input, so we assume x, y ≥ 0.
We use induction on x. If x = 0, the algorithm returns 0. Now
suppose that x ≥ 1. If x is even, x = 2x′, then t remains 0 after
first iteration. The algorithm now proceeds as though it were being
run on x′, 2y. By induction, it returns t = 2yx′ = xy on these
inputs, hence on the original inputs. On the other hand, if x is
odd, x = 2x′ + 1, then t has value y after one iteration. Let
T = t− y so T = 0 now. The algorithm now proceeds as though it
were run on input x′, 2y, with T in place of t. By induction it
returns T = 2x′y on this input. Hence the algorithm returns
t = 2x′y + y = xy on the original input.
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Analysis of russmult

If multiplying x, y > 0, problem size is measured by
max{b(x), b(y)} or b(x) + b(y) or just (b(x), b(y)). We can
assume b(x) ≤ b(y).

Number of additions is number of 1’s in binary representation
of x, b(x) in worst case. Number of doublings/halvings is
b(x).

Time is dominated by additions and doubling/halving. If
additions have unit cost then this gives a linear-time
multiplication algorithm!

More realistically, additions take time proportional to size of
addends. In the worst case we have to add numbers of size
b(y), b(y) + 1, . . . , b(y) + b(x)− 1; we end up with a total
time of order b(x)b(y), like the primary school algorithm.

What about average-case running time? It is still of the same
order. See Assignment 1.
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Review: asymptotic notation for f : N → R+

f ∈ O(g) means there is C > 0 and n0 ∈ N such that
f(n) ≤ Cg(n) for all n ≥ n0. “Eventually, f grows at most as
fast as g”.

f ∈ Ω(g) means g(n) ∈ O(f(n)):
f(n) ≥ Cg(n) for all n ≥ n0. “Eventually, f grows at least as
fast as g”.

f ∈ Θ(g) means f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)):
f(n) ≤ C1g(n) ≤ C2f(n) for all n ≥ n0. “Eventually, f
grows at the same rate as g”.

Note that if always g > 0, then in the definition of O, we can
remove n0 at the expense of a bigger C (why?). Thus f ∈ O(g) if
and only if there is C > 0 with f(n) ≤ Cg(n) for all n ∈ N, in
other words f/g is bounded above.
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Useful rules for asymptotics

Limit rule: if eventually g > 0 and L := lim f(n)/g(n) exists,

if L = 0 then f ∈ O(g) and f *∈ Ω(g);
if 0 < L < ∞ then f ∈ Θ(g);
if L = ∞ then f ∈ Ω(g) and f *∈ O(g).

Sum rule: if f1 ∈ O(g1), f2 ∈ O(g2), then
f1 + f2 ∈ O(max{g1, g2}).
Product rule: if f1 ∈ O(g1), f2 ∈ O(g2), then f1f2 ∈ O(g1g2).

Transitivity: if f ∈ O(g), g ∈ O(h), then f ∈ O(h).

When using the limit rule, L’Hôpital’s rule from calculus is often
useful.
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When using the limit rule, L’Hôpital’s rule from calculus is often
useful.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

Useful rules for asymptotics

Limit rule: if eventually g > 0 and L := lim f(n)/g(n) exists,
if L = 0 then f ∈ O(g) and f *∈ Ω(g);
if 0 < L < ∞ then f ∈ Θ(g);
if L = ∞ then f ∈ Ω(g) and f *∈ O(g).

Sum rule: if f1 ∈ O(g1), f2 ∈ O(g2), then
f1 + f2 ∈ O(max{g1, g2}).
Product rule: if f1 ∈ O(g1), f2 ∈ O(g2), then f1f2 ∈ O(g1g2).

Transitivity: if f ∈ O(g), g ∈ O(h), then f ∈ O(h).
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Examples of asymptotics

n lg n ∈ O(n2), by limit rule;

loga n ∈ Θ(lg n) for each fixed a > 1, by change of base
formula;

2n ∈ Ω(n10), by limit rule;

p(n) ∈ Θ(ndeg p) if p is a polynomial, by limit rule.

fix k ∈ R and let Sk(n) = 1k + 2k + · · · + nk. Then

{
Sk(n) ∈ Θ(nk+1) for k *= −1;

S−1(n) ∈ Θ(log n).

One proof uses approximation by an integral.
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Conditional asymptotics

Sometimes we have a statement like: f(n) ≤ Cg(n) for all
sufficiently large n such that n is a power of 2.

Without further assumptions we cannot say that f ∈ O(g)
unconditionally.

However, the smoothness rule does allow us to conclude that
f ∈ O(g). The hypotheses are:

g is eventually increasing: g(n + 1) ≥ g(n) for all sufficiently
large n;
g has subexponential growth: there is C > 0 such that
g(2n) ≤ Cg(n) for all sufficiently large n;
f is eventually increasing.

Similarly we can transfer a conditional f ∈ Ω(g) or f ∈ Θ(g)
into the unconditional version.
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Proofs by induction

“Induction is just recursion for proofs”.

The technique of proof by induction is equivalent to the
technique of the “minimal criminal”.

Suppose we have propositions P (n) such that P (0) is true and
whenever P (k) is true for all k < n then P (n) is necessarily
true. We want to show that P (n) is true for all n.
Suppose on the contrary that it is false for some n. Then there
must be a least such n, call it n0 (the minimal criminal), for
which it is false.
Now n > 0 by assumption and by minimality P (k) is true for
all k < n. Thus P (n) is true, contradicting our assumption.

This can be used to show correctness of many algorithms.
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Correctness proofs using induction

Quicksort, mergesort are correct provided the
partitioning/merge steps are correct (they work for size 1
input and reduce the problem to smaller instances, so there
can’t be a minimal criminal).

Any recursive algorithm can be treated in the same way.

Insertion sort reduces the number of inversions (pairs that are
out of order), and works when there are no inversions, so we
can use induction on the number of inversions.

Any iterative algorithm that systematically reduces some
nonnegative measure of badness can be treated in the same
way.
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The technique of constructive induction

You are familiar with the use of induction to prove inequalities,
such as “2n < n! for n ≥ 4”. However for asymptotics we
more usually have something like “show that the Fibonacci
numbers grow exponentially and determine their growth rate”.

So we try to prove: “for some C > 0, some n0 ≥ 0 and some
φ > 1, we have F (n) ≥ Cφn for all n ≥ n0”.

The induction step will have to use the recurrence defining
F (n). The inductive hypothesis will give
F (n) = F (n− 1) + F (n− 2) ≥ Cφn−1 + Cφn−2. Notice that
as long as φn−1 + φn−2 ≥ φn the inductive step will follow.

The largest φ for which this works is the root of
φ2 − φ− 1 = 0, namely (1 +

√
5)/2.

We can now prove the result using any C that works for two
consecutive base values. Can you find a good C and n0?
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Graphs, digraphs, trees

Definitions

A digraph is a finite set V of nodes together with a binary
relation E on V . The element (v, w) of E is the arc from v to
w.

A graph has the same definition as a digraph, except that the
arc relation is required to be symmetric. In this case we can
represent the edge between u and v as an unordered pair
{v, w}.
A (rooted, ordered) tree is a special type of graph (or
digraph) that can be defined directly in a recursive way.

(Di)graphs have enormously many applications in studying
transportation/communication/social networks, as well as
scheduling and other dependency relations. Trees arise in the
analysis of recursive algorithms as well as explicit data
structures.
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Graphs, digraphs, trees

Standard graph ADT operations

Create empty (di)graph.

Return the order (number of nodes) and size (number of arcs).

Is there an arc between u and v?

Add an arc between u and v.

Delete arc between u and v.

Add a node.

Delete node u (and all arcs involving it).
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Graphs, digraphs, trees

Standard implementations

Two main implementations for general digraphs: adjacency
matrix and adjacency lists representation.

A graph can be represented as a symmetric digraph or using
unordered pairs of nodes.

More specialized classes of (di)graphs can have more efficient
representations. Trees are an example.

We also need to deal with (arc)-weighted objects where a real
number is associated to each arc. Simple modifications of the
matrix and lists representations can be made.
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Graphs, digraphs, trees

Java graph implementation

In CS220 we saw a particular implementation in Java.

The files are available from the course website and a
description is in the CS220 textbook.

Please review them immediately and ask questions before the
week 3 lab.
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Graphs, digraphs, trees

Review of important algorithms I

Tree traversals: preorder, postorder, inorder (for binary tree).

Graph traversals: visit each node exactly once and explore
each arc exactly once. At each step scan the neighbours of a
frontier node and visit a new one.

Depth-first search: uses a stack to determine which node to
use next as the frontier node. Can be implemented recursively.
Breadth-first search: uses a queue to determine which node to
use next as the frontier node.
Priority-first search: uses a priority queue to determine which
node to use next as the frontier node. Includes depth-first and
breadth-first as special cases.

Applications of graph traversal: (strongly) connected
components, shortest cycle, 2-colouring, topological ordering.
Can all be done in linear time (Θ(n + e) where n is order, e is
size).
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Graphs, digraphs, trees

Review of important algorithms II

Weighted (d)graphs have a number attached to each arc.
Common question: find something (path, cycle, spanning
tree) of minimum total weight.

Distance from source: Dijkstra (fails when negative weights
allowed), Bellman-Ford.

Pairwise distances: Floyd.

Spanning tree: Prim, Kruskal.

The performance depends considerably on the data structures
used. Prim and Dijkstra are based on priority-first traversal,
and implementation of the priority queue is crucial.

Note for later: Prim, Kruskal, Dijkstra are greedy algorithms
and Bellman-Ford and Floyd are based on dynamic
programming.
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Note for later: Prim, Kruskal, Dijkstra are greedy algorithms
and Bellman-Ford and Floyd are based on dynamic
programming.
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Priority queue ADT

Priority queues

Recall: a priority queue is a container ADT where every
element has a data field called a key. The basic operations are
insert, getmin, deletemin.

Stack and queue can be considered as special cases (but the
usual implementations are more efficient).
Many uses: sorting (heapsort), optimization algorithms
(Dijkstra, Prim, branch-and-bound).
You have seen implementation by means of a binary
(min-)heap (a type of tree nicely representable in an array).
All basic operations take time in O(log n).
Some applications (such as Dijkstra/Prim) require an
additional decreasekey operation which dominates the
computation, so it is important that this operation be
efficient. In a binary heap, decreasing a key value is not very
efficient (how would you do it?)
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Priority queue ADT

Priority–first traversal

algorithm PFSv(node s, string alg)
colour[s] ← GREY ; seen[s] ← time
Q ← pqcreate()
insert(Q, s, key(s))
while not isempty(Q) do

u ← getmin(Q)
for v adjacent to u do

if colour[v] = WHITE then
time ← time + 1; seen[v] ← time
colour[v] ← GREY
insert(Q, v, key(v))

colour[u] ← BLACK; done[u] ← time
deletemin(Q)

time ← time + 1
end

subroutine key(node s, string alg)
if (alg = BFS) key ← time
else if (alg = DFS) key ← −time
else key ← priority[s]
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Priority queue ADT

Dijkstra/Prim using priority queue

algorithm DijkPrim (weighted digraph (G, c), node v, string alg)
Q ← makepq()
for u ∈ V (G) do

insert(Q, u,∞); changekey(Q, v, 0)
while not isempty(Q) do

u ← getmin(Q); k ← getminkey(Q); deletemin(Q)
for x ∈ Q do

l ← getkey(Q, x)
if (alg = DIJK) n ← min{l, k + c[u, x]}
if (alg = PRIM) n ← min{l, c[u, x]}
changekey(Q, x, n)

If implemented properly, getkey/changekey are done e times;
getmin/getminkey/deletemin n times.
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Priority queue ADT

Priority queue implementations

In Dijkstra/Prim, decreasekey can dominate the
computation. A binary (min)-heap supports
getmin/getminkey in O(1) time and other operations in
O(log n). Much research has been done into improving this.

It is possible to do decreasekey in O(1) time without ruining
other operations, provided we consider amortized time
complexity. The first construction is called Fibonacci heap. A
more recent one (T. Takaoka, University of Canterbury) is
called 2-3 heap. See me for references.

What is amortized time complexity? Roughly, the idea is to
average over many consecutive operations of the same
operation. Each time the operation changes the data
structure and this affects the running time of the next time.
The worst case may be bad but occur infrequently.
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Priority queue ADT

Amortized time complexity

Suppose we have a function φi that measures the “messiness”
of the data structure after the ith call on a given operation.
Define the amortized time taken by the ith call as
t̂i = ti + (φi − φi−1), where ti is time for ith call.

Note that
∑n

i=1 t̂i =
∑n

i=1 ti + φn − φ0 by telescoping.
Provided φi is never less than φ0 (we don’t “over-clean”),
total time is bounded above by total amortized time. If we
choose φ cleverly, total amortized time can be easy to
compute.

Example: binary counter (BB p 115, detailed in class). Count
from 0 to n. Let φi be the number of bits equal to 1 after i
calls. Total amortized time is at most 2n. However, worst
case for single operation is lg n.

Example: stack implemented as array with doubling. Detailed
in class.
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Union-find ADT

An ADT for set partitions

Recall that a partition of a set S is a collection of disjoint
subsets of S whose union is S. There is a 1-1 correspondence
between partitions of S and equivalence relations on S.

There are 3 standard operations on the ADT that represents a
partition of S.

MakeUnionFind(S) creates a partition in which each element
x of S is in its own singleton set {x}.
Union(x, y) merges the subset containing x with the one
containing y;
Find(x) returns the unique subset containing x (we will label
this set by a fixed representative element).

We assume that the first operations performed after creating
an empty object will create n singleton subsets using MakeSet.

This ADT has applications whenever we have dynamically
changing equivalence relation on a set. We will see examples
soon.
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Union-find ADT

Array implementation

Maintain an array A indexed by elements of S, where A[x]
gives the representative of the set containing x. Thus Find
takes constant time.

The union operation takes time in Θ(n) in worst case because
we must update the values of A[x] for all x in the two sets.

There are some obvious speed improvements to be made (at
the cost of more space):

(Weighted union heuristic) Give the union the name of the
larger of the two sets being merged, so less updating is
required.
Of course this requires us to keep track of the size, and we can
use another array for that.
Maintain the list of elements in each set (how??) so we don’t
have to scan the whole array to find out what needs updating.

Could also use a linked list.
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Union-find ADT

Forest implementation

Maintain each subset in a tree, with one set element per
node, and choose the root as the representative.

Use the predecessor representation so that we only store the
parent of each node. Declare the parent of a root to be itself.

The Find operation takes time proportional to the depth of
the node.

The Union operation takes constant time: make the root of
one tree point to the root of the other.

We can show that the amortized time for Find is O(log n).
Can we do better?

(Path compression heuristic) after a Find operation, go back
along the path and reset all the pointers on that path to point
directly to the root.
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Union-find ADT

Analysis of Find

If we use weighted union, then every time the set containing x
has to change its name, its size must have at least doubled.

Since it starts at size 1 and does not exceed n = |S|, it can
change name at most lg n times. Thus Find runs in Θ(log n)
time in the worst case.

If we also use path compression, Find takes more work, but
never by more than a constant factor. The cleaning up done
by the compression more than compensates.

It can be shown that the amortized time for Find is O(α(n))
where α is the inverse Ackermann function. This function
grows so slowly that it can’t take a value more than 4 on any
practical problem. See book by Cormen et al. for details.
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Design paradigm 1: greedy algorithms

Build up a solution step-by-step, making the locally best
choice, with no regrets. Usually solution is a vector. We select
an element from a set of candidates, using a selection
criterion, and add to our partial solution. A candidate not
chosen may also be rejected. Once a candidate has been
rejected, it is never considered again. On termination, we
have a solution.

Usually we want an optimal solution. Greedy algorithms are
usually fast and sometimes give optimal solutions. Proving
that they do is usually hard.

A partial solution that can be extended to a solution is called
feasible (often easy to check), and one that extends to an
optimal solution is promising (usually hard).

Examples you (may) have seen: Dijkstra, Prim/Kruskal.
Other examples: scheduling, change-making, . . . .
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A scheduling problem

We have n jobs to schedule on a single resource. The ith job
has a requested start time s(i) and finish time f(i).

There may be conflicts that make it impossible to fulfil all
requests. We want to maximize the number of jobs scheduled.
Some greedy ideas:

Accept in increasing order of s (“earliest start time”);
Accept in increasing order of f − s (“shortest job time”);
Accept in increasing order of number of conflicts (“fewest
conflicts”);
Accept in increasing order of f (“earliest finish time”).

Only the last one always gives an optimal solution. They all
give feasible solutions. In formal greedy framework:
candidates: jobs; partial solution: list of compatible jobs;
selection rule: varies; reject if job causes a conflict with what
is already chosen; solution: list of jobs such that no more can
be added.
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Proof of optimality of EFT rule

Basic idea: the greedy algorithm stays ahead throughout.

Let O = [j1, , . . . , jm] be an optimal list of requests and let
A = [i1, . . . , ik] be the list created by the algorithm. We want
to show that k = m.

Assume the requests are ordered in time in the obvious way.

Prove by induction that f(ir) ≤ f(jr). Clear for r = 1 by
greedy property. Induction step is easy.

If A is not optimal, then m > k. But then f(ik) ≤ f(jk).
There is another feasible job to add after time f(jk). But the
greedy algorithm would not have stopped while there was a
compatible job left. Contradiction: so A is optimal.
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Graph algorithms in greedy framework

(minimum spanning tree) Prim’s algorithm: choose root and
grow tree by adding shortest edge possible. Candidates:
edges; partial solution: set of edges forming subtree; selection:
cheapest edge connected to tree; rejection: if cycle formed.

(minimum spanning tree) Kruskal’s algorithm: grow forest by
adding cheapest edge possible. Candidates: edges; partial
solution: edges forming forest; selection: cheapest edge;
rejection: if cycle formed.

(single source shortest path) Dijkstra’s algorithm: choose root
and grow tree by adding currently closest node to root;
update distances. Candidates: nodes (indices of distance
array); partial solution: set of indices; selection: smallest array
element; rejection: never.
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Another scheduling problem

We have a single resource and n jobs to schedule. Job i has
deadline d(i) and takes time t(i) to perform. We must specify
for each i the start time s(i). The finish time is
f(i) := s(i) + t(i).

Define the lateness l(i) to be max{f(i)− d(i), 0}. We aim to
minimize the maximum lateness maxi l(i).

Some greedy ideas:

(shortest job first) choose jobs in increasing order of t(i);
(greatest slack time) choose jobs in decreasing order of
d(i)− t(i);
(earliest deadline first) choose jobs in increasing order of d(i).

The last one, denoted EDF, works (proof coming up) and the
others do not (as seen by easy examples).
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Proof of optimality of EDF

Basic idea: exchange argument. Gradually transform an
optimal solution into the greedy solution without sacrificing
optimality.
Let O be an optimal schedule. We may assume that O has no
idle time.
Renumber the jobs so that d(1) ≤ d(2) · · · ≤ d(n) and let A
be the schedule 1, 2, . . . , n found by EDF.
We show that if i precedes j in O and d(i) > d(j), then
swapping i and j gives an optimal schedule. The only thing to
check is the new lateness of i:
l̃(i) = f(j)− d(i) < f(j)− d(j) so the maximum lateness has
not increased.
Iterating this we obtain a schedule with no idle time and no
inversions. Up to a permutation of jobs with identical
deadline, it is the same as A. In particular it has the same
objective value so that A is also optimal.
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Optimal caching

We have a set U of n data items in main memory. We have a
memory cache that holds k < n data items. A sequence D of
requests (elements of U) is given. We want to minimize the
number of cache misses (a requested element is not in the
cache).

When an item is added to a full cache, another item must be
evicted. We need to specify an eviction schedule.

Under real conditions we must solve the online version of this
problem because we don’t know D in advance. But studying
the offline version is important because it gives an upper
bound on performance of online algorithms.

FIF (Farthest-in-future) rule: evict the data item whose next
request is latest among all elements currently in the cache.
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Proof of optimality of FIF

Exchange argument: let S be an optimal eviction schedule
and A the one chosen by FIF.

Consider the first point where S deviates from A: element d is
brought in, S evicts e and A evicts f *= e. We transform to
an optimal S′ which agrees with A at this step also.

Specifically, S′ evicts e at this step. In future steps, it copies
S until one of the following things happens:

There is a request for g *=, e, f not in cache of S, and S evicts
e. Then g is not in cache of S′ so we make S′ evict f .
There is a request for f and S evicts e′. If e′ = e, S′ does not
need to evict and simply accesses f from cache. If e′ *= e, then
S′ evicts e′ and brings in e.
In each case S′ now now has the same cache as S and copies
S from now on. Under FIF, one of the cases above must occur
before e is requested. Thus S′ makes no more misses than S.
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Knapsack problem

We have a container with capacity W and must choose items
from a list of n items. The ith item has a weight wi and a
value vi. We aim to maximize the total value in our container.

Linear programming formulation: maximize
∑

j ajvj subject
to

∑
j ajwj ≤ W and 0 ≤ aj ≤ 1.

Greedy idea: take items in decreasing order of value density
vi/wi.

This is optimal if we can take arbitrary amounts of each type
(aj are real). But it is not if we cannot subdivide objects (aj

must be integer). Example: W = 3,
v1 = 1, v2 = 2, w1 = 1, w2 = 3.

Implementation: sort items in order of decreasing vi/wi, or
build a priority and extract repeatedly.
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Proof of optimality of greedy algorithm

Proof of optimality: let j be the first place where an optimal
solution O = [b1, . . . , bn] deviates from the greedy solution
A = [a1, . . . , an]. Then bj < aj , for all i < j we have
ai = 1 = bi, and ai = 0 for all i > j.

Since O is optimal there must be some k > i with bk > 0.
But then we can change bj to bj + bkwk/wj and maintain the
weight constraint while not decreasing the objective. This
gives an optimal solution agreeing with A till step j + 1. Now
use induction on j.

This is an exchange argument, and also shows that the greedy
algorithm stays ahead. For each k, it gives the optimum to
the restricted problem where only objects 1..k can be chosen.



Introduction, Background and Review Asymptotics Some data structures Greedy algorithms Divide and conquer

Yet another scheduling problem

We have n jobs to execute each taking one time unit, and
exactly one job can be done at each time step. The ith job
earns us profit gi if and only if executed before the deadline,
time step di. We want to maximize total profit.

Greedy approach: choose jobs in order of decreasing profit,
provided we maintain feasibility (there is some way to
permute current vector and schedule all jobs in it). How to
check feasibility efficiently?

Fact: a list I is feasible if and only if the permutation that has
jobs in increasing deadline order is feasible. Proof: fairly
obvious. So only need to check one order for a subset. There
is a better method (only check the schedule built by
considering jobs in order, putting each job as late as possible).
See later.

We always obtain an optimal solution this way. Proof follows.
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Proof of optimality

Exchange argument. Let I be job list chosen by greedy, and J
an optimal one. Claim: we can feasibly reorder so each job
a ∈ I ∩ J occurs at same time in each schedule.

Assuming this, suppose that

a ∈ I is opposite a gap in J . Then can feasibly insert a in J ,
yielding more profit than J , contradiction.
b ∈ J is opposite a gap in I. Then can feasibly insert b in I, so
greedy would have chosen b already, contradiction.
a in I \ J is opposite b in J \ I. If ga *= gb, can replace one by
the other and get contradiction, so ga = gb, and hence I is
also optimal.

Proof of claim: if a ∈ I ∩ J , order them feasibly with a
occurring at times tI , tJ . If tI = tJ , done. If tI < tJ , move a
in I to time tJ , swapping with anything that may be there.
Still feasible. Similarly if tI > tJ . Once a is moved, it is never
moved again. Hence eventually all such a match up.
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Analysis of the algorithm

Using first feasibility criterion, and array implementation, it
takes total time in Θ(n2) in worst case to do all feasibility
checks. At each stage need to find place to insert latest job,
and check that moving others doesn’t violate deadline.

Using second criterion, we can do better using the data
structure (disjoint sets ADT). At each stage find latest time
available (corresponds to finding which set deadline belongs
to) and merge two sets. Can be done in ALMOST linear time.
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Dijkstra’s algorithm

algorithm Dijkstra(weighted digraph (G, c), node v)
for u ∈ V (G) do

dist[u] ← c[v, u]
S ← {v}
while S *= V (G) do

find u ∈ V (G) \ S so that dist[u] is minimum
S ← S ∪ {u}
for x ∈ V (G) \ S do

dist[x] ← min{dist[x], dist[u] + c[u, x]}

At top of while loop, this property holds:

P : if w ∈ S, dist[w] is the minimum weight of a path to w.
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Dijkstra’s algorithm stays ahead

Proof by induction on m that P holds after m iterations of
the while loop. Call the corresponding statement P (m).

When m = 0, S0 = {v} and clearly P (0) holds.

Suppose P (m) holds and that at iteration m + 1, the newest
special node is u (so Sm+1 = Sm ∪ {u}), and the last arc
used is (v, u).

Let w ∈ Sm+1. Note distm+1[w] = distm[w]. If w *= u then
since P (m) holds, so does P (m + 1).

If w = u, then by choice of u, any Sm+1-path to u of weight
less than dist[u] must go straight to u on exiting Sm. But the
algorithm rejected this choice when it chose the arc (v, u).
Thus P (m + 1) holds.

By induction P (m) is true for all m.
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Minimum spanning tree problem

Given a connected weighted graph, find a spanning tree
(subgraph containing all vertices that is a tree) of minimum
total weight. Many obvious applications.

Two efficient greedy algorithms presented here: Prim’s and
Kruskal’s. This problem has more greedy algorithms that
work.

Each selects edges in order of increasing weight, subject to
not obviously creating a cycle.

Prim maintains a tree at each stage that grows to span;
Kruskal maintains a forest whose trees coalesce into one
spanning tree.

Prim implementation very similar to Dijkstra, get
O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).
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O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).
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Prim’s algorithm

algorithm Prim(weighted digraph (G, c), node v)
for u ∈ V (G) do

d[u] ←∞
d(v) ← 0
S ← ∅
while S *= V (G) do

find u ∈ V (G) \ S so that d[u] is minimum
S ← S ∪ {u}
for x ∈ V (G) \ S do

d[x] ← min{d[x], c[u, x]}

Very similar to Dijkstra - uses a priority queue to hold elements of
d. Most time taken by EXTRACT-MIN and DECREASE-KEY
operations.
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Kruskal’s algorithm

algorithm Kruskal(weighted digraph (G, c))
T ← ∅
sort E(G) by increasing order of cost
for e = {u, v} ∈ E(G) do

if u and v are not in the same tree then
T ← T ∪ {e}
merge the trees of u and v

Keep track of the trees using disjoint sets ADT, with standard
operations FIND and UNION. They can be implemented efficiently
so that the main time taken is the sorting step.
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Proof of optimality of Prim and Kruskal

Basic idea is an exchange argument.

Claim: let B ⊂ V and let T ⊆ E be promising, and no edge
in T leaves B. Let e be minimum weight edge leaving B.
Then T ∪ {e} is promising.

Assuming claim, proof follows by taking B = nodes of
component including endpoint of next edge e (Kruskal) or
B = nodes of current tree (Prim).

Proof of claim: let U be MST containing T . If e ∈ U , done.
Else there is another edge e′ leaving B (to close the cycle).
Then removing e′ and adding e to U gives MST containing T .
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Design paradigm 2: divide and conquer

Basic idea: decompose a problem instance into smaller
instances (“divide”); solve these instances (recursively);
combine their solutions to give solution for original
instance(“conquer”). We can also solve very small instances
nonrecursively if that is more efficient.

Often most work is in the “divide” step or most work is in the
“conquer” step.

Examples you (should) have already seen: mergesort
(“conquer” type), quicksort (“divide” type”), quickselect,
binary search (simplest case).

New examples: multiplication, median-finding, . . . .

Running time analysis leads to a certain type of recurrence
relation.
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Divide and conquer recurrences

If the subinstances for a size n instance have sizes p1, . . . , pk,
the overhead cost for dividing and combining is f(n), and n0

is the threshold below which we use another algorithm for
small instances, then the cost T (n) for this instance is
(roughly) given by

T (n) =
∑

i

T (pi) + f(n) for n ≥ n0.

Examples (cost = number of comparisons):

binary search: k = 1, p1 = 2n/23 or !n/2", f(n) ∈ Θ(1)
mergesort: k = 2, p1 = 2n/23, p2 = !n/2", f(n) ∈ Θ(n)
quicksort: k = 2, p1 = l, p2 = n− l − 1 (where 0 ≤ l ≤ n− 1
can have any value), f(n) ∈ Θ(n).

Need a general method for solving such recurrences, at least
asymptotically. Restrict to the case where k is independent of
n and the instance.
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Solution of divide and conquer recurrences

Fix a > 0, b > 1 and consider

T (n) = aT (n/b) + f(n) (when n > n0), T (n0) = c.

First solve this when n/n0 is a power of b: put U(i) = T (n0bi)
and g(i) = f(n0bi). Get

U(i) = aU(i− 1) + g(i) (when i > 0), U(0) = c.

Iterate to obtain

U(i) = aic +
i−1∑

k=0

akg(i− k).

Important special case: f(n) = np for some fixed p. Write B = bp.
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Then by above (sum a geometric series) we obtain

U(i) =

{
cai + np

0B(ai −Bi)/(a−B) if a *= B;

cai + inp
0B

i if a = B.

Let e = logb a. Then we have, for n/n0 a power of b,

T (n) =

{
(n0)−e

(
c +

np
0 bp

a−bp

)
ne − bp

a−bp np if e *= p;

ne logb n +
(
cn−e

0 − logb n0
)
ne if e = p.

So (conditional on n/n0 = bi) we have

T (n) ∈






Θ(f(n)) if e < p;

Θ(ne) if e > p;

Θ(f(n) log n) if e = p.

Is this result true unconditionally? For general f(n)? What about
O,Ω?
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Solution of divide and conquer recurrences

Exact solution when n/n0 not an exact power is complicated.
Example: mergesort T (n) = T (2n/23) + T (!n/2") + n has
solution T (n) = n lg n + nθ(n) where θ(n) = 0 if n is a power
of 2 and 0 < θ(n) < 0.086 otherwise.

We only consider asymptotic results from now on. The main
idea is as for exact powers, but there are several technical
details.

The smoothness rule plays a big part.

Often we have a recurrence inequality; we can analyse by
relating to analogous recurrence equation.

Previous result with f(n) = np does generalize to case where
subproblem sizes are almost equal and f(n) ∈ Θ(np(log n)q).
This is often called the “Master Theorem”. See me for proof.
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Details for example of mergesort

T (n) = T (2n/23) + T (!n/2") + f(n) with f(n) ∈ Θ(n).

Prove by induction that T is increasing.

Observe that 2T (!n/2") + f(n) ≤ T (n) ≤ 2T (2n/23) + f(n).

Define Ť (n) = 2Ť (!n/2") + f(n), T̂ (n) = 2T̂ (2n/23) + f(n).
Show that Ť (n) ≤ T (n) ≤ T̂ (n).

Show that T̂ (n) ∈ O(n lg n) and Ť (n) ∈ Ω(n lg n) conditional
on n = 2k.

Apply the smoothness rule to conclude that T (n) ∈ Θ(n lg n).
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Show that Ť (n) ≤ T (n) ≤ T̂ (n).

Show that T̂ (n) ∈ O(n lg n) and Ť (n) ∈ Ω(n lg n) conditional
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Issues arising from analysis

The relation between subproblem sizes and the number of
subproblems is crucial.

Reducing a and increasing b are equally important.

Fine-tuning: how to determine the threshold n0? Note order
of asymptotics don’t depend on n0. Need to consider lower
order terms, and the implied constants can’t be ignored.

One way to determine threshold; choose n0 to be minimal
such that on size n0 input, the direct algorithm is no faster
than applying recursion once and then using the direct
algorithm.
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than applying recursion once and then using the direct
algorithm.
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D & C polynomial multiplication I

Given (integer) polynomials p(x), q(x) of degree n, m,
compute the product r(x) = p(x)q(x) efficiently. Integer
multiplication is a special case!

Divide and conquer: suppose first that n = m is exact power
of 2. Write
p(x) = p0(x) + xn/2p1(x), q(x) = q0(x) + xn/2q1(x) where
deg pi, deg qi ≤ n/2. So r(x) = a0(x) + xn/2a1(x) + xna2(x)
where a0 = p0q0, a1 = p0q1 + p1q0, a2 = p1q1.

Using distributive rule naively gives 4 multiplications of half
the size plus linear overhead, no improvement. Key idea:
reduce to 3 multiplications of half size at cost of more (still
linear) overhead. How??
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D & C polynomial multiplication II

The trick: we only need p0q1 + p1q0, not p0q1 and p1q0. Note
that p0q1 + p1q0 = (p0 + p1)(q0 + q1)− p0q0 − p1q1. So we
only need 3 multiplications of half size polynomials!

Recurrence looks like T (n) ≤ 3T (n/2) + g(n), with
g(n) ∈ Θ(n). Solution T (n) ∈ O(nlg 3), lg 3 = 1.59 . . . ,
provided we can deal with odd length numbers!

Note that if we replace xn/2 by a variable t, then
r = a0 + a1t + a2t2. We can determine r by evaluating at any
3 points, (interpolation). This generalizes (see assignment).

If m < n, use distributivity to break q into blocks of degree m
and multiply each by p as above, give O(nmlg 3/2) running
time.

Note: the Fast Fourier Transform does multiplication in
O(n log n) time. It is also a D & C algorithm.
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D & C for order statistics

Given an array T of size n and integer s ∈ 1 . . . n, find the
s-th smallest element. If s = 2n/23, this is the median.

Use quicksort approach: pivot around element p, partitioning
T into elements that are ≤ p, = p, ≥ p. Desired element lies
in one of these; it is trivial to find which one (as for binary
search).

Problem: if we use a fixed choice for pivot, then worst case,
as with quicksort, is quadratic, as subproblems can be very
unbalanced. How to choose pivot? Need good approximation
to median.

One idea: divide T into subarrays Z[i], 1 ≤ i ≤ z := 2n/53 of
fixed size, say 5. Form the median of each sample, and then
the median of these. This is the median.
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Analysis of order statistics algorithm

Time required to find pivot is t(!n/5") + O(n). Pivoting step
also in O(n).

At least 3 elements of each Z[i] are ≤ its median. At least
2z/23 of these medians are ≤ p. So at least 3z/2 elements of
T are ≤ p.

So subproblem sizes are somewhat balanced. In worst case we
get, for example, t(n) ≤ dn + t(2n/53) + t(7n/10). Can
prove by constructive induction that t(n) ∈ O(n).
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Modular exponentiation

We wish to compute an mod z, where a ≥ 0, z ≥ 1 are fixed
integers and n is large. Obvious iterative method is too slow.

Divide and conquer: an = (an/2)2. Let N(n) be the number
of multiplications. For n even get N(n) = N(n/2) + 1.
Otherwise N(n) = N(n− 1) + 1 so
N(!n/2") + 1 ≤ N(n) ≤ N(!n/2") + 2. Smoothness rule
yields N(n) ∈ Θ(log(n)).

Useful for public key cryptography: send message c := an

mod z, eavesdropper knows z, n, c, but no known fast
algorithm for finding a (“finding nth root”).
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The Fast Fourier Transform


