
Here are corrected versions of Figures 5.7, 5.9, 5.10 of the textbook. There
was an error caused by cutting and pasting, and forgetting to edit. In fact
Figure 5.9 has not changed at all — in the case of BFS we can get away with
colouring all white neighbours grey in one step, but we clearly cannot in the
other cases.

An important issue not properly discussed in the book is: how do we check
whether a node u has a white neighbour v? It seems that in the worst case we
might need to scan all neighbours of u until we find a white one. This would
ruin the linear running time of DFS, for example. An easy way to fix this is,
each time we colour v grey, to delete v from the adjacency list of u.

1



algorithm dfs
Input: digraph G

begin
stack S
array colour[n], pred[n], seen[n], done[n]
for u ∈ V (G) do

colour[u]← WHITE; pred[u]← NULL
end for
time← 0
for s ∈ V (G) do

if colour[s] = WHITE then
dfsvisit(s)

end if
end for
return pred, seen, done

end

algorithm dfsvisit
Input: node s

begin
colour[s]← GREY
seen[u]← time; time← time + 1
S.insert(s)
while not S.isempty() do

u← S.get top()
if there is a neighbour v with colour[v] = WHITE then

colour[v]← GREY; pred[v]← u
seen[v]← time; time← time + 1
S.insert(v)

else
S.delete()
colour[u]← BLACK
done[u]← time; time← time + 1

end if
end while

end

Figure 1: Depth-first search algorithm.

2



algorithm bfs
Input: digraph G

begin
queue Q
array colour[n], pred[n], d[n]
for u ∈ V (G) do

colour[u]← WHITE; pred[u]← NULL
end for
for s ∈ V (G) do

if colour[s] = WHITE then
bfsvisit(s)

end if
end for
return pred, d

end

algorithm bfsvisit
Input: node s

begin
colour[s]← GREY; d[s]← 0
Q.insert(s)
while not Q.isempty() do

u← Q.get head()
for each v adjacent to u do

if colour[v] = WHITE then
colour[v]← GREY; pred[v]← u; d[v]← d[u] + 1
Q.insert(v)

end if
end for
Q.delete()
colour[u]← BLACK

end while
end

Figure 2: Breadth-first search algorithm.

3



algorithm pfs
Input: digraph G

begin
priority queue Q
array colour[n], pred[n]
for u ∈ V (G) do

colour[u]← WHITE; pred[u]← NULL
end for
for s ∈ V (G) do

if colour[s] = WHITE then
pfsvisit(s)

end if
end for
return pred

end

algorithm pfsvisit
Input: node s

begin
colour[s]← GREY
Q.insert(s, setkey (s))
while not Q.isempty() do

u← Q.get min()
if u has a neighbour v with colour[v] = WHITE then

colour[v]← GREY
Q.insert(v, setkey (v))

else
Q.delete min()
colour[u]← BLACK

end if
end while

end

Figure 3: Priority-first search algorithm (first kind).

4


