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ABSTRACT

QUANTUM RANDOM WALKS ON THE INTEGER LATTICE VIA GENERATING

FUNCTIONS

Andrew Eric Bressler

Advisor: Robin Pemantle

We analyze several families of one and two-dimensional nearest neighbor Quantum Random

Walks. Using a multivariate generating function analysis we give a simplified proof of a known

phenomenon for two-chirality walks on the line, namely that the walk has linear speed rather than

the diffusive behavior observed in classical random walks. We also demonstrate Airy phenomena

between the regions of polynomial and exponential decay. For a three-chirality walk on the line

we demonstrate similar behavior, with the addition of a bound state, in which the probability of

finding the particle at the origin does not go to zero with time. For each of these walks on the line

we obtain exact formulae for the leading asymptotic term of the wave function and the location

probabilities. Analyzing two-dimensional walks we again find a region of polynomial decay which

grows linearly with time. The limiting shape of the feasible region is, however, quite different.

The limit region turns out to be an algebraic set, which we characterize as the rational image of a

compact algebraic variety. We also compute the probability profile within the limit region, which

is essentially a negative power of the Gaussian curvature of the same algebraic variety. We close

with preliminary work concerning walks in higher dimensions.
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1 Introduction

In this thesis we will study methods to determine the asymptotics of multivariate sequences as-

sociated with Quantum Random Walks. A multivariate sequence is an array of numbers of the

form:

{ar1,...,rd
: r1, . . . , rd,∈ Z}

which we will abbreviate as {ar : r ∈ Zd}, where d will denote the dimension of the array unless

otherwise stated. For d ≤ 3 we will let r, s and t denote r1, r2 and r3, respectively. The generating

function for this sequence is the power series:

F (z1, . . . , zd) :=
∑

zi∈Z ∀i

ar1,...,rd
zr11 . . . zrd

d

which we abbreviate F (z) =
∑

r∈Zd arzr. When we create a power series, we will often first deal

with it formally, without regard to its convergence. We will think of F (z) simply as an element

of C[[z]] or of C((z)) := C[[z]][1/z] if negative indices are required. For d ≤ 3 we let x, y and z

denote z1, z2 and z3, respectively.

Combinatorists have several methods for studying such arrays of numbers. These include,

but are not limited to, the determination of associated recurrence relations, generating functions,

asymptotics, and exact formulas for the elements of the array. While we will use each of these

techniques as the need arises, our ultimate goal will be the determination of asymptotics. To

establish asymptotics, the following notation will be important. If there exist M ∈ R+ and N ∈ N

such that n > N implies |an

bn
| ≤ M we say that an = O(bn). Alternatively if limn→∞

an

bn
= 0 we

write that an = o(bn). Lastly if limn→∞
a(n)
b(n) = 1, we say that a(n) ∼ b(n), while noting that this

is equivalent to “a(n) = (1 + o(1)) · b(n)”. In Chapter 2 we will see that asymptotics can often be

even more useful than the determination of an exact formula.

For each array we study, there will be some narrative that accompanies it. If the array counts

the elements of a sequence of sets, we will have ar ∈ Z+. If it is a sequence of probabilities, then
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each ar will be in the interval [0, 1] and for each fixed t0, we will have
∑

(r1,...,rd)∈Zd a(r1,...,rd,t0) = 1.

It is also possible that ar ∈ C, as will be the case with Quantum Random Walks.

Suppose the narrative is that a particle begins at the origin, moves to the right with prob-

ability p and stays still with probability 1 − p. Then if ar = ar,s designates the probability

that the particle is at position r at time s, then it is immediate that ar ∈ R and ar,s = 0 for

r /∈ {0, 1, · · · , s}. The recurrence relation for this sequence would be ar,s = (1−p)ar,s−1+par−1,s−1.

Using this relation as well as the initial values above, we can derive the generating function

F (x, y) =
∑

(r,s)∈(Z+)2 ar,sx
rys = 1

1−(1−p+px)y . The algebraic variety associated to this gener-

ating function is the set of points where its denominator vanishes. This variety, known as the

singular variety, would thus be the set of points {(x, y) ∈ C2 : 1 − (1 − p + px)y = 0}. In many

of the examples of interest to us, the generating function and singular variety will be necessary to

derive formulas and asymptotics for the terms of the sequence. We will demonstrate a class of ex-

amples, including the Quantum Random Walk, in which the key contribution towards asymptotics

comes from the Gaussian curvature of the singular variety.

In the case above, we can equate ar,s with the probability of getting exactly r heads from s

coin flips. The binomial formula delivers ar,s =
(
s
r

)
pr(1 − p)s−r =

(
s
r

)
( p
1−p )

r(1 − p)s. Then using

Stirling’s Formula: n! ∼ (ne )n
√

2πn, we obtain the asymptotic approximation:

ar,s ∼
[
(1− p)

s

s− r

]s [
(

p

1− p
)(
s− r

r
)
]r√

s

2πr(s− r)

The narrative above describes a variant of the classical random walk on the line in which

the particle moves to the left and right with probabilities p and 1 − p, respectively. Variants

of the classical random walk are used as the basis for algorithms for counting, sampling, and

testing properties such as satisfiability of Boolean formulae or graph connectivity. The probability

distribution of a particle undergoing a classical random walk converges to a normal distribution

as time s increases. The particle’s expected location is at the origin, and its standard deviation is

1
2

√
s. As a result, Pr(x ∈ [−M

√
s,M

√
s]) → 1 uniformly in s as M →∞.
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In contrast, in the Quantum Random Walk, it is not the particle’s probability distribution

that is directly affected by the coin flip, but its amplitude distribution, where probability will be

the square of the norm of the amplitude. This fact will necessitate the introduction of an extra

degree of freedom, called chirality or spin which will in turn lead to the phenomenon of quantum

interference. This setup, detailed in Chapter 4, results in a walk on the line with linear speed,

rather than the diffusive behavior of the classical walk. While it is yet to be determined whether a

quantum computer can be constructed on a large enough scale, or whether such a computer could

leverage the quadratic speedup of the Quantum Random Walk, it is evident that these walks merit

study.

In Chapter 2 of this thesis we review known results concerning asymptotics of univariate and

then multivariate generating functions. We interpret these results and apply them to easy exam-

ples. In Chapter 3 we supply further mathematical prerequisites for our results and applications

in Chapters 4 and 5. In particular, we summarize results from Differential Geometry and Com-

mutative Algebra that will be needed and are not known to combinatorists. In Section 4.1 we

give an in depth introduction to Quantum Random Walks. We then demonstrate the application

of Chapter 2 and Chapter 3 to QRWs on the line in Sections 4.2 and 4.4. Section 4.3 applies a

method for demonstrating Airy behavior in the region between those of exponential decay and

relatively uniform distribution. Chapter 5 develops and applies new theorems for the asymptotics

of various QRWs on the plane and begins a discussion of QRWs in dimension greater than 2.
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2 Combinatorial and Asymptotic Background

2.1 Univariate Asymptotics and Methods

In the case of the univariate generating f(x) =
∑∞
n=0 anx

n, the concept of an asymptotic approxi-

mation is straightforward. One seeks a well known function b(n) such that limn→∞
a(n)
b(n) = 1, which

we have seen is denoted a(n) ∼ b(n). The rate of growth of the coefficients will be dictated by the

singularities of f that are closest to the origin. This will be most apparent in the rational case.

2.1.1 Rational Functions

For any rational univariate generating function f(x) = g(x)
h(x) , with deg(g) = l and deg(h) = m,

by the fundamental theorem of algebra there will always exist unique A, rj ∈ C (with the rj in

order of ascending modulus) such that f(x) = Ag(x)∏m
j=1(1−x/rj)

. If the rj are distinct, then with

deg(p) = max{l −m, 0} and sj ∈ C, f(x) has the unique partial fraction decomposition f(x) =

p(x) +
∑m
j=1

sj

1−x/rj
which expands formally to p(x) +

∑m
j=1

∑∞
i=0 sj(x/rj)

i. Then for n > deg(p),

there is the exact formula an =
∑m
j=1 sjr

−n
j and the asymptotic estimate an ∼ s1r

−n
1 . If |r1| =

|r2| = . . . = |rp|, the asymptotic estimate would be an =
∑p
j=1 sjr

−n
j . Thus in this simplest case,

the poles closest to the origin dictate asymptotics.

An example will help one develop a feel for the preference between an explicit formula and

asymptotics. In the case of the famous fibonacci sequence, a0 = 0, a1 = 1 and an = an−1 + an−2

for n > 1. To solve for f(x) =
∑∞
n=0 anx

n we multiply each side of the recurrence relation by xn

and sum over n beginning with n = 2. The left hand side of the equation becomes
∑∞
n=2 anx

n =

f(x)−a1x−a0 = f(x)−x. The right hand side becomes
∑∞
n=2 an−1x

n+
∑∞
n=2 an−2x

n = x(f(x)−

a0) + x2f(x) = (x + x2)f(x). Equating the two sides and solving for f(x) gives f(x) = x
1−x−x2 .

In the form of the partial fraction decomposition above, r1 = −1+
√

5
2 , r2 = −1−

√
5

2 , s1 = 1√
5

and s2 = − 1√
5
, so for all n, an = 1√

5

[
( 2
−1+

√
5
)n − ( 2

−1−
√

5
)n
]

= 1√
5

[
( 1+

√
5

2 )n − ( 1−
√

5
2 )n

]
. At this

point one concerned with the number theoretic properties of the fibonacci numbers would want this
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formula. However, one concerned with the growth of the fibonacci numbers as n→∞ would prefer

the asymptotic estimate an ∼ 1√
5

[
1+
√

5
2

]n
. In this particular case, since for all n, 1√

5
( 1−

√
5

2 )n < 1,

one can determine the nth fibonacci number most efficiently by taking the asymptotic estimate

and rounding to the nearest integer.

Now we suppose that the rj are not distinct. In this case we show that asymptotics are dictated

by the pole of highest multiplicity among those closest to the origin. We will use the fact, proven

by induction and a simple substitution, that the coefficients of (1 − x/rj)−k are given by the

equation an =
(
n+k−1
k−1

)
r−nj . Again f(x) has a partial fraction decomposition, now of the form∑t

j=1

∑mj

i=1
sij

(1−x/rj)i where f has t distinct roots and rj has multiplicity mj . The coefficients

are then given by the formula: an =
∑t
j=1

∑mj

i=1 sij
(
n+i−1
i−1

)
r−nj . Now the leading terms are

those that minimize |rj | and among those, maximize i. If there is a unique root rj0 of minimal

modulus and then of maximal multiplicity mj0 , the coefficients have asymptotic approximation

an ∼ smj0 j0

(n+mj0−1
mj0−1

)
r−nj0

2.1.2 Analytic Methods

At first we assume f(x) is rational with distinct simple poles and adopt the notation from the

prior section. It is worth noting that if we were to expand f(x) in a Laurent series around the pole

x = rj , the coefficient of 1
x−rj

, also known as the residue of f at rj , denoted RES (f, rj), would

be −sjrj . RES (f, rj) can also be calculated as g(rj)
h′(rj)

. Thus when the rj are distinct, without

calculating the partial fraction decomposition we determine sj = −RES (f,rj)
rj

= − g(rj)
rjh′(rj)

.

If f(x) =
∑∞
n=1 anx

n is not rational we can still show that the singularities closest to the origin

play a pivotal role. If the closest singularity to the origin r1 has modulus R, then R will be the

radius of convergence of the power series. Since R can be written as 1
lim supn→∞ |an|1/n , we know

there exists N such that for all n > N , |an| < ( 1
R + ε)n while for infinitely many values of n,

|an| > ( 1
R − ε)n.

As an example we consider the Catalan numbers. While this sequence is famous for having
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countless alternate definitions, we define an as the number of acceptable sequences of n left paren-

theses and n right parentheses such that for all 1 ≤ j ≤ n, the jth left parenthesis occurs before the

jth right parenthesis. In order to determine a recurrence relation, we let bn denote the number of

sequences of n left parenthesis and n right parenthesis such that for no 1 ≤ j ≤ n−1 can one cut off

the sequence after 2j parenthesis and have an acceptable sequence. In other words, one could say

that bn counts minimal acceptable sequence. It is important to note that every sequence counted

by bn begins with two left parenthesis and ends with two right parenthesis. If the second parenthe-

sis had been a right, then the first two parenthesis would have been an acceptable sequence, while

if the penultimate parenthesis had been a left, then the first 2n−2 parenthesis would have been an

acceptable sequence. Since every acceptable sequence has some j such that the first 2j parenthesis

is a minimal acceptable sequence, we can write an =
∑n
j=1 bj · an−j . Meanwhile, if a minimal ac-

ceptable sequence sheds its first and last parentheses, the result is some (not necessarily minimal)

acceptable sequence, so bn = an−1. Making this substitution in the recurrence relation above we

get an =
∑n
j=1 aj−1 · an−j as long as n > 0. In the language of generating functions, this implies

that f(x) = xf(x)2 + 1. (The 1 on the right hand side accounts for the n = 0 case and the extra

x takes into account the fact that the a indices on the right side of the recurrence relation only

sum to n − 1.) Solving for f(x) then gives f(x) = 1±
√

1−4x
2x , while the nonextraneous solution is

f(x) = 1−
√

1−4x
2x as it is analytic at the origin. One can confirm this by rationalizing the numerator:

1−
√

1−4x
2x = 2

1+
√

1−4x
. Using the binomial series expansion we get f(x) = − 1

2

∑∞
k=1

(
k−3/2
k

)
xk−14k

so an = − 1
2

(
n−1/2
n+1

)
4n+1. From a glance at the generating function, it is clear that R = 1/4, so we

would immediately know that an ∼ p(n)4n where p(n) is subexponential.

2.1.3 Saddle Point Methods

The coefficients of a generating function can be written in terms of the Cauchy integral as

an =
1

2πi

∫
γ

z−n−1F (z)dz
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where γ is a contour around the origin with winding number 1. Once the coefficients are expressed

as integrals, one can attempt to apply the saddle point method, consisting of the following steps,

enumerated in Section 3.2 of [Pem09]:

1. Rewrite the integrand as enφ.

2. Locate the (discrete) set of zeroes of φ′.

3. See if γ can be deformed so as to minimize <{φ} at such a point.

4. Estimate the integral by integrating a Taylor series development of the integrand term by

term.

If step 3 is successful, meaning that the modulus of the integrand falls steeply on either side of its

maximum, then multiplying this maximum by the length of the interval where the modulus is near

its maximum (or something slightly more fancy) will give a reasonable estimate for the integral.

While generically this cannot be done, this situation is analogous to one which we will explore in

several variables in Section 2.2, which is why we mention it here.

If step 3 cannot be achieved, but with the integrand rewritten as ψ(z) exp(−λf(z)) the function

<{f} is minimized at a point z0 in the interior of γ, then Hayman’s method [Hay56] can be

employed. If furthermore ψ and f are smooth, and ∂2f
∂z2 |z0 6= 0 then Hayman’s method gives the

estimate: ∫
γ

ψ(z) exp(−λf(z)) ∼ ψ(z0)

√
2π

f ′′(z0)
exp(−λf(z0))
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2.2 Established Multivariate Results and Terminology

The subject of our attention henceforth will be a multivariate sequence with rational generating

function F (z) = G(z)
H(z) . To discuss the asymptotics of such a multivariate sequence takes a bit of

terminology. In contrast to the univariate case in which the index can only approach infinity in a

single direction, there are infinitely many directions to approach infinity in the multivariate case.

We address this issue by letting the final coefficient rd go to infinity while keeping rj/rd roughly

fixed for each 1 ≤ j ≤ d−1. Thus when we refer to a direction in which we seek asymptotics, we refer

to the (d − 1)-tuple (r1/rd, . . . , rd−1/rd). In contrast to the readily determined and understood

results for univariate sequences, results in the multivariate case have proven significantly more

elusive. In his survey of asymptotic results, Bender [Ben74] wrote: “Practically nothing is known

about asymptotics for recursions in two variables even when a generating function is available.

Techniques for obtaining asymptotics from bivariate generating functions would be quite useful.”

The earliest set of results after the publishing of this statement can be referred to collectively as

GF-sequence methods. They involve dividing {ar} into a sequence of (d − 1)-dimensional arrays

indexed by rd. The other older results concern the algebraic extraction of individual diagonals and

are appropriately referred to as the diagonal method. We utilize this method in Section 4.4 when

our otherwise more powerful techniques fail us. Many of the more recent results involve the use

of contour integration, including those in [BM93], [PW02], [PW04] and [PW08]. The last three

of these serve as the launching off point for this thesis, and the remainder of this section draws

heavily from [PW02] in particular. As the subsection titles below imply, the plan of [PW02] (when

dealing with a d-variate generating function F ) is to:

1. Use the multidimensional Cauchy integral formula to represent ar as an integral over a d-

dimensional torus inside Cd

2. Expand the surface of integration across a point z (depending on the direction in which

asymptotics may be computed) where F is singular, and use the residue theorem to represent
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ar as a (d− 1)-dimensional integral of one-variable residues.

3. Put this in the form of an integral
∫

exp(λf(z))ψ(z)dz for which the large-λ asymptotics can

be read off from the theory of oscillating integrals.

2.2.1 Notation

Before moving on, we establish the terminology to be used throughout this section. Any notation

which is not explicitly overruled by a later one will persist throughout this thesis. We denote the

open domain of convergence of the power series as D. We assume that F = G/H converges in a

neighborhood of the origin and can be analytically continued everywhere except a set V of complex

dimension d− 1 called the singular variety. In the cases of interest to us, we will be able to define

V more simply as V = {z : H(z) = 0}. For z ∈ Cd we let T(z) denote the torus consisting of points

w with |wj | = |zj | for 1 ≤ j ≤ d and let D(z) denote the closed polydisk consisting of points w

with |wj | ≤ |zj | for 1 ≤ j ≤ d. It will be important that the domain D is a union of tori T(z)

and is logarithmically convex, meaning that the set logD := {x ∈ Rd : (ex1 , . . . , exd) ∈ D} is a

convex subset of Rd as well as a subset closed under ≤ in the coordinatewise partial order. In the

dimension two case we use (x, y) instead of (z1, z2) and (r, s) instead of (r1, r2). In dimension greater

than 2 we use ẑ to denote (z1, . . . , zd−1) in order to facilitate the decomposition Cd = Cd−1 × C.

Also we denote the partial derivative ∂H
∂zj

as Hj and in dimension 2 we use Hx and Hy. In

addition to the notation f ∼ g introduced earlier, Pemantle [PW02] adds the notion of a function

f being rapidly decreasing if f(x) = O(x−N ) for every N and the function f is exponentially

decreasing if f(x) = O(e−cx) for some c > 0. More generally, we write f ∼
∑
bngn to mean that

f =
∑N
n=0 bngn + o(gN ), where bn ∈ C and {gn} is a series of functions such that gn+1 = o(gn) for

each n.
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2.2.2 The Cauchy Integral

The first step in determination of multivariate asymptotics is the use of Cauchy’s integral formula:

ar =
(

1
2πi

)d ∫
T

w−r−1F (w)dw

where T is a torus surrounding the critical point z of F that is relevant for r. We then aim to

rewrite w−r−1F (w) as exp(rdf(w))ψ(w) where ψ will be a residue in rd of F/wd while f is such

that exp(rdf) = (z/w)r.

2.2.3 Critical Points

As in the univariate case, the points of V closest to the origin will be the most important in the

determination of asymptotics. In that light, we define a point z ∈ V to be minimal if V ∩D(z) ⊂

T(z). In this case, we call the torus T(z) a minimal torus. If the above condition holds with V

replaced by a neighborhood of z in V, then we call z locally minimal. Furthermore, depending on

whether |V ∩D(z)| is 1, finite, or infinite, we call z strictly minimal, finitely minimal, or torally

minimal, respectively. While [PW02] deals strictly with the finitely minimal case, we generalize to

the torally minimal case by Chapter 3 of this thesis.

IfH vanishes to order 1 at z, we call z a simple pole of F . At such a pole, ∇H does not vanish, so

by reordering our indices if necessary, we guarantee that Hd 6= 0 at z. Thus by the implicit function

theorem there is a neighborhood of z where V may be parameterized by zd = g(z1, . . . , zd−1) for

some analytic function g. We reserve the notation g to refer to this parametrization for the

remainder of this chapter. Now on a neighborhood of ẑ we define

ψ(ŵ) = − lim
w→g(ŵ)

(w − g(ŵ))
F (ŵ, w)

w
.

Then for ŵ ∈ T(ẑ) we write wj = zje
iθj . For fixed r with rd 6= 0, we define a function f on a

neighborhood of ẑ in T(ẑ) by:

f(ŵ) = log
(
g(ŵ)
g(ẑ)

)
+ i

d−1∑
j=1

rj
rd
θj
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As our integrals will be parameterized by θ, we compose each of f , g, and ψ with the map

M(θ̂) = M(θ1, . . . , θd−1) = (z1eiθ1 , . . . , zd−1e
iθd−1). We then define g̃ := g ◦M , f̃ := f ◦M and

ψ̃ := ψ ◦M .

2.2.4 Oscillatory Integrals

Our first goal will be to show that the integrals we need to compute are in fact oscillatory, so that

we may use the stationary phase method to evaluate them. We do so by showing that to calculate

I =
∫
T

exp(−rdf̃(θ))ψ̃(θ))dθ (2.1)

we need only integrate over a neighborhood Ñ of 0 in Rd−1, then showing that f̃ is analytic, Re

f̃ ≥ 0, f̃(0) = 0 and ∇f̃(0) = 0. The function f̃ is referred to as the phase of the integral and the

plan is to show that asymptotics are dictated by the point where it is stationary when ∇f̃(0) = 0.

Our first goal is satisfied by the following lemma:

Lemma 2.1 (Lemma 4.1 of [PW02]). Let z be a strictly minimal simple pole of F = G/H. Assume

that zdHd 6= 0. For a neighborhood Ñ of 0 in Rd−1 define a quantity

Ξ := (2π)1−dz−r

∫
Ñ

exp(−rdf̃(θ̂))ψ̃(θ̂))dθ̂ (2.2)

Then the quantity |zr||ar − Ξ| decreases exponentially as Ñ remains fixed and r →∞

Proof: For ε ∈ (0, |zd|), let T be the torus T(z) shrunk in the last coordinate by ε, that is, the

set of w for which |wj | = |zj |, j < d and |wd| = |zd| − ε. Write Cauchy’s formula as an iterated

integral

ar =
(

1
2πi

)d ∫
T(ẑ)

ŵ−r̂−1

[∫
C1

w−rd

d F (w)
dwd
wd

]
dŵ (2.3)

Here C1 is the circle of radius |zd| − ε. Let K ⊂ T(ẑ) be a compact set not containing ẑ. For each

fixed ŵ ∈ K, the function F (ŵ, ·) has a radius of convergence greater than |zd|. Hence the inner

integral in Equation 2.3 is O(|zd|+δ)−rd for some δ > 0. By continuity of the radius of convergence,
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we may integrate over K to see that |zr|
∫
K×C1

w−r−1F (w)dw decreases exponentially. Thus if N

is any neighborhood of ẑ in T(ẑ), the quantity

|zr|

∣∣∣∣∣ar −
(

1
2πi

)d ∫
N

ŵ−r̂−1

[∫
C1

F (w)
wrd+1
d

dwd

]
dŵ

∣∣∣∣∣
decreases exponentially. Thus the problem is reduced to an integral over a neighborhood of ẑ.

Near z there is a parametrization wd = g(ŵ) of V. Let C2 be the circle of radius |zd|+ ε. Then

when N is sufficiently small compared to ε, the image of N under g is disjoint from C2. Fix such

a neighborhood N . For any ŵ ∈ N , the function F (ŵ, ·) has a single simple pole in the annulus

bounded by C1 and C2, occurring at g(ŵ). The residue in the last variable of F at g(ŵ) is equal to

R(ŵ) := −ψ(ŵ)g(ŵ)−rd (2.4)

where ψ is define in the Critical Point section above. Therefore, for each fixed ŵ ∈ N ,∫
C1

F (ŵ)
wrd+1
d

dwd =
∫
C2

F (ŵ)
wrd+1
d

dwd − 2πiR(ŵ).

But |zr
∫
C2
F (w)dwd/wr+1| is bounded by a constant multiple of (1 + ε/|zd|)−rd (the constant

depending on the maximum of F on C2) and hence |zr||ar −X| is exponentially decreasing where

X = (2πi)1−d
∫
N

ŵ−r̂−1g(ŵ)−rdψ(ŵ)dŵ (2.5)

= (2πi)1−dz−r

∫
N

ŵ−r̂

ẑ−r̂

dŵ∏d−1
j=1 wj

(
g(ŵ)
g(ẑ)

)−rd

ψ(ŵ) (2.6)

Changing variables to wj = zje
iθj and thus dwj = iwjdθj turns the quantity X into

(2π)1−dz−r

∫
Ñ

d−1∏
j=1

e−irjθj ψ̃(θ̂)
(
g(ŵ)
g(ẑ)

)−rd

dθ̂

and plugging in the definitions of f and f̃ above yields

(2π)1−dz−r

∫
Ñ

exp(−rdf̃(θ̂)ψ̃(θ̂)dθ̂

which is none other than Ξ. �

Now to use results for oscillating integrals, we need only show that ∇f̃(0) = 0 and <(f̃) ≥ 0,

as it is immediate that f̃ is analytic and f̃(0) = 0. To facilitate this, for a given z ∈ V with all
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nonzero coordinates, we define dir (z) to be the equivalence class of (complex) scalar multiples of

the vector (z1H1, . . . , zdHd). Given a direction r we will choose z so that r ∈ dir (z) and refer to

the set of all such z as crit(r) or Ξ(r).

Given this choice of z, we cite two results of [PW02], reproducing the proof of the second.

Lemma 2.2 (Lemma 2.1 of [PW02]). Let z be a simple pole of F and suppose that zdHd does

not vanish there. If z is locally minimal then for all j < d, the quantity zjHj/(zdHd) is real and

nonnegative. �

As a result, when z is a minimal pole of F with nonzero coordinates, dir (z) can be considered

as a well defined element of RPd−1.

Lemma 2.3 (Lemma 4.2 of [PW02]). The quantity f̃(0) always vanishes. If r ∈ dir (z), then

∇f̃(0) = 0 and the real part of f̃ has a strict minimum at 0.

Proof: As mentioned above, the first part is immediate. To prove the second, we first note that

if r ∈ dir (z), then for each 1 ≤ j ≤ d, zjHj

zdHd
= rj

rd
. Taking the partial derivative of the statement

H(z1, . . . , zd−1, g(z1, . . . , zd−1)) = 0 with respect to zk, we get Hk + ∂g
∂zk

Hd = 0 so ∂g
∂zk

= −Hk

Hd
.

Then with f(ŵ) = log
(
g(ŵ)
g(ẑ)

)
+ i

∑d−1
j=1

rj

rd
θj , we have ∂f

∂θk
= 1

g
∂g
∂θk

+ i rk

rd
= 1

g
∂g
∂zk

∂zk

∂θk
+ i rk

rd
=

−i zkHk

zdHd
+ i rk

rd
= 0. Lastly, we observe that <{f̃(θ̂)} = − log |g̃(θ̂)/zd|. By the strict minimality of

z, the modulus of g(ŵ) = g̃(θ̂) is greater than |zd| for any ŵ ∈ T(ẑ). �

From Lemma 2.3 above, 0 is a stationary point for the function f̃ as long as r ∈ dir (z), so we

can apply the theorem below from [PW02].

Theorem 2.4 (Theorem 5.4 of [PW02]). Let f be a smooth complex-valued function on a neigh-

borhood of 0 in Rd such that <{f} ≥ 0 with equality only at 0. Suppose further that ∇f(0) = 0,

and that the Hessian (matrix of second partials) of f has eigenvalues with positive real parts. Let

H denote the Hessian determinant at 0. Then for ψ ∈ C∞0 , there is an asymptotic expansion∫
exp(−λf(x))ψ(x)dx ∼

∑
j≥l

Cjλ
−(j+d)/2
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where l is the degree of vanishing of ψ at 0. If l = 0 then C0 = ψ(0)(2π)d/2H−1/2. The choice of

square root is determined by H−1/2 =
∏d
j=1 µ

−1/2
j where µj are the eigenvalues of the Hessian and

the principal square root is taken in each case.

Proof: While we refer the reader to [PW02] for a full proof, we outline the proof here. First

let Q =
∑d
i,j=1 qi,jzizj be the quadratic form determined by the Hessian at the origin. Then

change coordinates to make f exactly equal to Q, followed by a change of variables y(x) so that

Q(x) =
∑d
j=1 y

2
j , which is to say, normalize by H. Next expand ψ̃ into monomials, before moving

the region of integration to the real d-space. Evaluating the integral using further results for

oscillatory integrals (see Chapter 2 of [Won89] for these) then yields the desired result. �

We note that the bulk of the results on the stationary phase method concern cases in which f

is either real or purely imaginary. Using the strict minimality of <{f} at 0, Pemantle and Wilson

adjust for this discrepancy, creating an asymptotic expansion, necessary for some of the upcoming

results.

Theorem 2.5 (Theorem 5.2 of [PW02]). Let f be analytic and complex-valued on an interval

[0, B] and suppose that k ≥ 2 is minimal such that f (k)(0) 6= 0 (so in particular f(0) = f ′(0) = 0).

Assume that f ′ 6= 0 on (0, B], and that <{f} has a strict minimum at 0.

Let m be minimal so that the real part of f (m)(0) does not vanish. Let ψ ∈ C∞0 , let l be minimal

such that ψ(l)(0) 6= 0, and denote cj := f (j)(0)/j!, bj := ψ(j)(0)/j! and b∗j := ψ∗(j)(0)/j! where

ψ∗ = (ψ ◦ η) · η′ and η inverts the map y(x) = f(x)1/k.

Then there is an asymptotic development

∫ B

0

exp(−λf(x))ψ(x)dx ∼
∞∑
j=l

A+(k, j)b∗jλ
−(j+1)/k. (2.7)

A+(k, l) is defined as 1
kΓ( l+1

k ). The constant in the O
(
λ−(N+1)/k

)
term depends continuously

(only) on the derivatives of f and ψ up to (N + 1)m/k − 1.

�
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2.2.5 Established Results

The established result of highest relevance to this thesis is Theorem 2.6 below. Many of our

results will involve generalizing, reinterpreting and applying this result. Its proof follows from

Theorem 2.4, once one identifies ψ̃(0) as G(0)/(zdHd).

Theorem 2.6 (Theorem 3.5 of [PW02]). Let F = G/H =
∑
arzr have a strictly minimal, simple

pole at z. Suppose zdHd does not vanish. If the Hessian of f̃ at z is nonsingular, then there is an

expansion

ar ∼ z−r
∑
l≥l0

Clr
(1−d−l)/2
d

where l0 is the degree to which G vanishes on V near the point z. When G does not vanish at z

then l0 = 0 and

C0 = (2π)(1−d)/2H−1/2 G(z)
zdHd

where H is the determinant of the Hessian at z.

�

The use of this theorem involves several intermediate steps. Given a generating function F (z) =

G(z)/H(z), one must calculate f̃ , ψ̃, and H, as well as the critical point z ∈ Ξ(r). While the last

calculation will persist in any general theorem, the first three are removed in the d = 2 case

by Theorem 2.7. On the other hand, as Pemantle and Wilson put it in [PW02] “As we state

more general theorems, it becomes cumbersome and in fact obfuscating to give formulae for the

expansion coefficients directly in terms of derivatives of G and H.” Another issue is the apparent

designation of the dth coordinate in the result. This persists in the following theorem, where the

result does not appear to be symmetric in x and y. While the result is in fact canonical, we will

not see this until we recast in terms of curvature in Section 5.2. Recall that in the d = 2 case we

denote (z1, z2) as (x, y) and (r1, r2) as (r, s).
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Theorem 2.7 (Theorem 3.1 of [PW02]). Let F = G/H be a meromorphic function of two vari-

ables, not singular at the origin. Define

Q(x, y) = −x2H2
xyHy − xHxy

2H2
y − x2y2(H2

xHyy +H2
yHxx − 2HxHyHxy).

Then

ar,s ∼
G(x, y)√

2π
x−ry−s

√
−yHy

sQ

uniformly as (x, y) varies over a compact set of strictly minimal, simple poles of F on which Q

and G are nonvanishing, and (r, s) ∈ dir (x, y).

Proof: While we refer the reader interested in an exact proof of Theorem 2.7 to [PW02], we

observe that the key steps in its proof include the evaluation of f̃ ′′(0) (which is equivalent to H

in the d = 2 case) in terms of the partial derivatives, as well as an application of a more general,

two sided integral version of Theorem 2.5, which provides the uniform estimate. In the case of

a strictly minimal simple pole where Q and G are nonvanishing, the leading asymptotic term is

the k = 2, l = 0 term in Equation 2.7, for which A+(2, 0) = 1
2Γ( 1

2 ) =
√
π/2. While we do not

demonstrate the complete evaluation of f̃ ′′(0) here, we will do so in the more general d = 3 case

in Section 2.3 below. �

One can generalize either of the above theorems to the finitely minimal case using a partition

of unity argument to develop the corollary below.

Corollary 2.8 (Corollary 3.7 of [PW02]). Suppose z is a finitely minimal point of V with V∩T(z) =

{z1, . . . , zn}. Then

ar ∼
n∑
j=1

Ej(r)

where Ej(r) is the asymptotic expression given by the previous theorems with z = zj. In other

words, if there are finitely many points on V ∩ T(z), then sum the contributions as if each were

strictly minimal.

�
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2.3 Interpretation of Multivariate Results and Examples

Despite the comment by Pemantle and Wilson quoted in Section 2.2 concerning explicit results

in terms of G and H, we find that for the d = 3 case, explicit results can facilitate the use of

Theorem 2.6. Recall that in this case we denote (z1, z2, z3) as (x, y, z) and (r1, r2, r3) as (r, s, t).

Corollary 2.9. Let F = G/H be a meromorphic function of two variables, not singular at the

origin. Then

ar,s,t ∼
G(x, y, z)zHz

2πtξ
√
−Q(x, y, z)

x−ry−sz−t

uniformly as (x, y, z) varies over a compact set of strictly minimal, simple poles of F (x, y, z) on

which Q(x, y, z) and G(x, y, z) are nonvanishing, and (r, s, t) ∈ dir (x, y, z), where ξ is a root of

unity consistent with the choice of square root of H and Q(x, y, z) is defined as the symmetric

polynomial

Q(x, y, z) :=
Q(x, z)Q(y, z)−R(x, y, z)2

(zHz)2

with the polynomial Q in two variables defined as in the statement of Theorem 2.7 and R(x, y, z)

defined as

R(x, y, z) := xyz (zHz(HxyHz −HxHyz −HyHxz) +HxHyHz + zHxHyHzz) .

Proof: When d = 3 the Hessian determinant is:

H = det

 ∂2Z
∂X2

∂2Z
∂X∂Y

∂2Z
∂Y ∂X

∂2Z
∂Y 2


in which X, Y and Z represent the complex arguments of x, y and z, respectively. As (X,Y )

varies over a neighborhood of (0, 0) ∈ S1 × S1 we define h such that H(eiX , eiY , eih(X,Y )) = 0.

Differentiating the statement H(eiX , eiY , eih(X,Y )) = 0 with respect to X results in the equation

ieiXHx + ieih(X,Y )HzhX = 0. Recalling that x = eiX and z = eih(X,Y ), we get that ∂Z
∂X = hX =

−xHx

zHz
. Similarly ∂Z

∂Y = hY = −yHy

zHz
. Differentiating these statements with respect to X and Y ,
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and making the proper substitutions using the above identities, we get

∂2Z

∂X2
=

−ixz
(zHz)3

(
HxHz(zHz − 2xzHxz + xHx) + xz(H2

xHzz +HxxH
2
z )
)

∂2Z

∂X∂Y
=

−ixyz
(zHz)3

(zHz(HxyHz −HxHyz −HyHxz) +HxHyHz + zHxHyHzz)

∂2Z

∂Y 2
=

−iyz
(zHz)3

(
HyHz(zHz − 2yzHyz + yHy) + yz(H2

yHzz +HyyH
2
z )
)

∂2Z

∂X∂Y
=

∂2Z

∂Y ∂X

Simplifying the expression for H using the above values proves the theorem. �.

Before applying this corollary, we note the ease with which it can be generalized. In degree d,

if we denote the argument of zj as Zj , then H = det
(
( ∂2Zd

∂Zj∂Zk
)(j,k)

)
and for 1 ≤ j, k ≤ d− 1

∂2Zd
∂Z2

j

=
−izjzd
(zdHd)3

(
HjHd(zdHd − 2zjzdHjd + zjHj) + zjzd(H2

jHdd +HjjH
2
d)
)

∂2Zd
∂Zj∂Zk

=
−izjzkzd
(zdHd)3

(zdHd(HjkHd −HjHkd −HkHjd) +HjHkHd + zdHjHkHdd)

Now Theorem 2.6 can be readily applied in any dimension. We now do this in dimensions 3

and 4 to analogs of the Delannoy numbers. The Delannoy number ar,s is defined as the number

of paths from the origin to the lattice point (r, s) ∈ (Z+)2 using the steps (1, 0), (0, 1) and (1, 1).

Notice that the deletion of the (1, 1) step would result in the binomial coefficients. Analyses of

these numbers can be found throughout the literature.

We define the 3-Dimensional Delannoy number ar,s,t as the number of paths from the origin to

the lattice point (r, s, t) ∈ (Z+)3 using the steps (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1). (There is

no natural choice whether or not to include the (1, 1, 0), (1, 0, 1) and (0, 1, 1) steps as well, so we

choose to exclude them.) The generating function for this sequence is
∑∞
j=0(x+y+z+xyz)j where

the term raised to the jth power coincides with paths taking j steps. The sum converges formally

in C[[x, y, z]] to F = 1
1−(x+y+z+xyz) since x + y + z + xyz includes no constant coefficient. Also,

F converges analytically in a neighborhood of the origin. Now G(x, y, z) = 1 and H(x, y, z) =

1− (x+ y + z + xyz), from which we determine that Q(x, y, z) = (z + y + xz2 + x+ x2z + x2y +
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yz2 + y2z + y2z2x+ xy2 + x2yz2 + x2y2z)xyz. In dimension 3 the critical point equations become

H = 0 (2.8)

K1 := txHx − rzHz = 0 (2.9)

K2 := tyHy − szHz = 0 (2.10)

Thus z = (x, y, z) is a critical point for the direction r = (1, 1) ⇐⇒

1− (x+ y + z + xyz) = 0

tx(−1− yz)− rz(−1− xy) = 0

ty(−1− xz)− sz(−1− xy) = 0

We determine asymptotics along the main diagonal of this generating function, meaning the coef-

ficients an,n,n as n→∞. Thus r
t = s

t = 1. Using the method of Gröbner Bases described in detail

in Section 3.1 we develop the three polynomial equations in three unknowns to the equivalent

equations:

x3 + 3x− 1 = 0

x− y = 0

x− z = 0

If we designate ζ = (4 + 4
√

5)1/3, then the solution of the above equations closest to the origin

(and thus minimal) is z = ( ζ2−
2
ζ ,

ζ
2−

2
ζ ,

ζ
2−

2
ζ ). At this point zHz = −1+ 1−

√
5

4 ζ2+ζ ≈ −.35562929

and Q = 54− (6
√

5 + 9
4 )ζ2 + 129−33

√
5

4 ζ ≈ 25.39051888 while x−ny−nz−n = x−3n = (1− 3x)−n =

(1− 3
2ζ + 6

ζ )
−n ≈ 29.9007868n. Thus an,n,n ∼ 1.791980746

2πn · 29.9007868n.

To confirm this estimate we calculate the actual values of an,n,n for various values of n. We

note that if a path from the origin to (n, n, n) includes exactly j steps of the flavor (1, 0, 0), then

it must include exactly j (0, 1, 0) and (0, 0, 1) steps as well, and exactly n− j (1, 1, 1) steps, while
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n Actual an,n,n Asymptotic Prediction Percent Error

1 7 8.528 21.83%

10 1.595 · 1013 1.629 · 1013 2.13%

100 1.053 · 10145 1.055 · 10145 0.21%

1000 1.373 · 101472 1.373 · 101472 0.02%

10000 1.911 · 1014753 1.911 · 1014753 0.01%

Table 1: Comparison of Asymptotic Predictions versus Actual Values for the 3-Dimensional De-

lannoy Numbers

these steps can occur in any order. Thus we can calculate an,n,n as
∑n
j=0

(
n+2j

j, j, j, n−j
)
. Comparing

the actual values to our predicted asymptotics gives us the following table:

The table ends with n = 10000 as the actual calculation gets cumbersome. While it only

takes Maple .6 seconds to calculate a1000,1000,1000, it takes 50.6 seconds and then 537.5 seconds to

calculate a4000,4000,4000 and a10000,10000,10000, respectively. In comparison, once the initial determi-

nations of z and Q are made, the asymptotic estimate can be calculated almost instantaneously.

This difference in computation time highlights the usefulness of such an asymptotic expression.

Further highlighting this fact, our asymptotic analysis could quickly be generalized to diagonals

other than the main diagonal, while our calculation of the actual values is highly dependent on the

use of the main diagonal. A more thorough exploration of results for the 3-Dimensional Delannoy

numbers, including analysis of alternate diagonals, is done as an example in Section 3.1 below.

One could argue that the most important calculation for these asymptotics was the growth rate

of 29.9007868n. Only the determination of z and not the more involved interpretation of H was

necessary for this. Similarly, without directly interpreting H in the case of d = 4 we can calculate

that for the 4-Dimensional Delannoy numbers an,n,n,n ∼ a · 259.9769802n for constant a. While it

is true that the growth rate is always important; the determination of the remaining constant is

more important than we suggest above. For example, in the case of the Quantum Random Walk,
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for many of the directions of interest to us we will have |z| = 1 for the minimal critical points, and

the determination of the factor a above will be paramount. In fact, we will find that a is a multiple

of the curvature of the variety V at z, further linking our field of study to differential geometry,

while elucidating our results.
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3 Algebraic and Geometric Background

3.1 Gröbner Bases

Determining asymptotics for ar requires determining the set of relevant critical points crit(r) by

solving the equations (z1H1, . . . , zdHd)||(r1, . . . , rd) and H(z) = 0 for fixed r. We can rephrase

the equations as d polynomial equations: zjHjrd − zdHdrj ∀ 1 ≤  ≤ d − 1 and H(z) = 0. While

we could focus on numerical methods to determine the solution to several equations in several

variables, there are certain advantages to working algebraically. While we are interested in z ∈ Ξ(r)

as an input to z−rG(x, y)
√

−yHy

sQ (or its equivalent for d 6= 2), if we keep track of our solutions

in terms of the ideals of polynomials that annihilate them, we can take advantage of algebraic

simplifications. Over the last twenty years, the field of computational algebra has blossomed,

providing algorithms to manipulate these ideals and easily determine ideal membership. Our

reliance on these algorithms will be focused on the use of Maple’s algorithm for determining a

Gröbner basis. In order to define a Gröbner basis, however, we must first define several concepts

related to term orders. Below k will represent the field of rationals numbers, though as much

of the below applies to arbitrary characteristic zero fields, we use the notation k instead of Q.

For an ideal I ⊂ k[z] = k[z1, . . . , zd] generated by the set of polynomials {f1, . . . , fn} ⊂ k[z], the

algebraic variety in kn where every element of I vanishes will be denoted V (I). The definitions

and propositions below are due to [CLO98].

A monomial ordering on k[z] is any relation > on the set of monomials zα in k[z] (or equivalently

on the exponent vectors α ∈ Zd≥0) satisfying:

1. > is a total (linear) ordering relation. That is, the terms appearing within any polynomial

f can be uniquely listed in increasing or decreasing order under >;

2. > is compatible with multiplication in k[z], in the sense that if zα > zβ and zγ is a monomial,

then zαzγ = zα+γ > zβ+γ = zβzγ ;
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3. > is a well-ordering. That is, every nonempty collection of monomials has a smallest element

under >.

In the lexicographic term order, zα > zβ if and only if for some j ≤ d, αj > βj while αk = βk

for all k < j. The lexicographic Gröbner basis has the property that when the associated ideal

I is zero-dimensional, the first element of the basis is a polynomial f ∈ k[zd]. This f is called

the elimination polynomial for zd and can be extremely helpful in identifying the points of V (I).

Similarly, the jth element of the basis is a polynomial fj ∈ k[zd−j+1, . . . , zd] which can be used

along with the prior fk’s with k ≤ j to identify the zd−j+1 coordinates of the points in V (I).

While this is highly desirable, simplifying future computations, this algorithm can be rather time-

intensive. Alternatively, we may consider a total degree order in which α > β if either the degree

of α is greater than the degree of β, or their degrees are equal while α > β in the reverse version

of the lexicographic order (where z1 > z2 . . . > zd). While Gröbner bases delivered by Maple with

respect to this ordering may not be as helpful, the bases can be determined much more quickly.

Before moving on, we make a note on the importance of a term ordering. When d = 1 and

we deal in k[z], simple division requires the notion of an ordering. The ordering of monomials by

degree is essential to the division algorithm, as well as to the notion of a remainder. Dividing p(z)

by q(z) we find that p = aq + r; it must be that r < q in order for this result to be unique. Thus

the important concept of degree in k[z] is really a simple term ordering.

Given any monomial order > and polynomial f ∈ k[z] we denote the leading term of f with

respect to > as LT (f). For any ideal I ⊂ k[z] we define its associated Gröbner basis as follows. A

Gröbner basis for the ideal I with respect to the monomial order > is a basis {g1, . . . , gk} for I

with the property that for any nonzero f ∈ I, LT(f) is divisible by LT(gi) for some i. The basis is

reduced if no monomial of gi is divisible by LT(gj) for any distinct i and j. As reduced Gröbner

bases are unique (via Proposition 6 in Section 2.7 of [CLO98]) they can be used to determine if

two ideals I and J are equivalent. More importantly (for our purposes), reduced Gröbner bases
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are algorithmically computable, and they have been implemented in Maple’s Groebner package via

the command Basis ([p1, . . . , pk], order ).

In the examples of interest to us, there will be finitely many solutions to the critical point

equations. Consequently, the following theorem (whose proof can be found in [CLO92]) will be

extremely useful. Most importantly, it guarantees the existence of zd’s elimination polynomial as

the first element of the lexicographic Gröbner basis.

Theorem 3.1 (Theorem 6 of Chapter 5, Section 3 of [CLO92]). Let I be an ideal in Q[z]. The

following conditions are equivalent:

1. The set V (I) of common solutions to all polynomials in I is a finite subset of Cd.

2. C[z]/I is a finite dimensional vector space over C.

3. Given a monomial order, there are finitely many monomials not divisible by a leading term

of the Gröbner basis for I.

Furthermore, if these conditions are met, then there is a univariate polynomial in I whose roots

are precisely the values of zd of the last coordinates of the roots z of I.

As an example of the use of a Gröbner basis, we consider the critical point equations for the

3-Dimensional Delannoy numbers introduced in Section 2.3. As this is a relatively simple set

of equations (judged both by number of equations, as well as by the equations’ degrees) we ask

Maple for a Gröbner basis in the lexicographic order. We do this with the command GB = Basis

([1− (x+y+z+xyz), x(−1−yz)−z(−1−xy), y(−1−xz)−z(−1−xy)], plex(z, y, x)). The triple

(z, y, x) at the end of this command designates the order of the variables, meaning we ask Maple

to let z1 = z, z2 = y and z3 = x. Thus we can expect that if the output is of the form {g1, g2, g3},

then g1 ∈ Q[x], g2 ∈ Q[x, y] and g3 ∈ Q[x, y, z]. This is what we receive, with the Maple output

GB = [−1 + 3x + x3, x − y, x − z]. If we refer to the three solutions of g1 = −1 + 3x + x3 = 0

as x1, x2 and x3, then V (I) = {(x1, x1, x1), (x2, x2, x2), (x3, x3, x3)}. While useful enough to help
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us with the analysis of the 3-Dimensional Delannoy numbers in Section 2.3, this analysis does

not include the exploitation of algebraic simplification promised above. If we further exploit the

machinery described above, we can determine the value of A = (GzHz)2

−Q and our desired result

will be
√
A

2πξtx
−ry−sz−t. The key here is that we force a new variable Z to be equal to − 1

Q by

requiring that the polynomial ZQ+1 vanishes. We then force an additional variable A to be equal

to (GzHz)2

−Q = Z(GzHz)2 by requiring that A−Z(GzHz)2 vanishes. Now to find the asymptotics in

the direction (λt, µt, t), we enter the Maple command: Basis ([H,K1,K2, QZ + 1, A− Z(zHz)2],

plex(z, y, x, Z,A)) withK1 andK2 defined by Equations (2.9) and (2.10). As we order A last in our

lexicographic term order, the first polynomial in our Gröbner basis output will be an elimination

polynomial for A. The polynomial Maple outputs is f1(λ, µ)(Aλµ + λ + µ + 1)A2 + f2(λ, µ)A +

(µ−λ+1)(µ−λ− 1)(µ+λ− 1) where f1(a, b) = b6 +4b5 +4ab5− 12ab4 +8ab3− 10b3a3 +8b3a2−

10b3 +8ab2 +8a3b2−36a2b2−12a4b+8ba2−12ba+4a5b+8ba3 +4b+1+a6 +4a5 +4a−10a3 and

f2(a, b) = −3b5−ab4−b4−ab3+4b3+4b3a2+4a2b2+4ab2+4a3b2+4b2+4ba2−ba−ba3−b−a4b+

4a3 + 4a2 − a4 − a− 3a5 − 3. One interested in a general solution of the form aλt,µt,t ∼ f(λ, µ, t)

could find the roots of this degree three polynomial. We simply notice here that for the direction

we solved in Section 2.3, we would have λ = µ = 1, in which case the minimal polynomial would

be 1− 18A+ 81A2 + 27A3. With ρ = (292 + 4
√

5)1/3, the solution A = −ρ
6 −

22
3ρ − 1 delivers the

asymptotics developed in Section 2.3 with at,t,t ∼
√
−A

2πt x
−ty−tz−t.



26

3.2 Resultants

According to [CLO98], given two polynomials f, g ∈ k[x] of positive degree with f = a0x
l + · · ·+

al, a0 6= 0, l > 0 and g = b0x
m + · · · + bm, b0 6= 0, m > 0, the resultant of f and g, denoted

Res(f, g) is the determinant of the (l +m)× (l +m) matrix



a0 b0

a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .

... a2
. . . a0

... b2
. . . b0

al
...

. . . a1 bm
...

. . . b1

al
... a2 bm

... b2

. . .
...

. . .
...

al bm


in which the blank entries are filled with zeroes, the first m columns have first nonzero entry a0 and

the remaining l columns have first nonzero entry b0. To stress the dependence on x (when more

than one variable is involved) we will denote the resultant as Res(f, g, x). We note that Res(f, g)

is an integer polynomial in the coefficients of f and g. However, the property of resultants most

relevant to our interests is that Res(f, g) = 0 ⇐⇒ f and g have a nontrivial common factor in

k[x]. This is the result of Proposition 1.7 of [CLO98].

Supposing that f, g ∈ k[x, y] we can view f and g as elements of k(y)[x]. Then the resultant

of f and g gives a polynomial in y whose roots are the yj values for which there exist xj such

that f(xj , yj) = g(xj , yj) = 0. We can generalize to determine solutions of more than 2 equations

in more than 2 unknowns, with a word of caution. Let f, g, h ∈ k[x, y, z]. Suppose there exists a

triple z := (x′, y′, z′) such that f(z) = g(z) = h(z) = 0. Then Res(Res(f, g, x), Res(f, h, x), y) will

vanish when z = z′. However, the vanishing of the iterated resultant does not imply a solution

to the equation f = g = h = 0. That is to say, the method of iterated resultants may deliver
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extraneous roots. We see this as follows.

Suppose we wish to determine when f = g = h = 0. We let r1 = Res(f, g, x) and r2 =

Res(f, h, x). Thus, r1(y′, z′) = 0 ⇒ ∃x′1 such that f(x′1, y
′, z′) = g(x′1, y

′, z′) = 0 and r2(y′, z′) =

0 ⇒ ∃x′2 such that f(x′2, y
′, z′) = h(x′2, y

′, z′) = 0. It need not be the case that x′1 = x′2. Thus

if there are some y and z such that r1(y, z) = r2(y, z) = 0, there need not be some x such that

f(x, y, z) = g(x, y, z) = h(x, y, z) = 0. If, however, there is a triple (x, y, z) at which f ,g, and h all

vanish, then it will be the case that both r1 and r2 vanish at the pair (y, z).

We make two final notes on resultants which will make our work easier. As we are only

concerned with points of vanishing, we may discard repeated factors and units. Thus if r1 = 3p1p
2
2

and r2 = 2q31 , for polynomials p1, p2 and q1, we need only consider Res(p1p2, q1). Also when we

are concerned with vanishing on V1 we can remove factors of x, y and z.
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3.3 Differential Geometry

For a smooth orientable hypersurface V ⊂ Rd+1, the Gauss map n sends each point p ∈ V to a

consistent choice of normal vector. We may identify n(p) with an element of Sd. For a given patch

P ⊂ V containing p, let n[P ] := ∪q∈Pn(q), and denote the area of a patch P in either V or Sd as

A[P ]. Then the Gauss-Kronecker curvature of V at p is defined as

K := lim
P→p

A(n[P ])
A[P ]

. (3.1)

When d is odd, the antipodal map on Sd has determinant −1, whence the particular choice of

unit normal will influence the sign of K, which is therefore only well defined up to sign. When d

is even, we take the numerator to be negative if the map n is orientation reversing and we have a

well defined signed quantity. Clearly, K is equal to the Jacobian of the Gauss map at the point p.

For computational purposes, it is convenient to have a formula for the curvature of the graph of a

function from Rd to R.

Proposition 3.2. Suppose that in a neighborhood of the point p, the smooth hypersurface V ⊆ Rd+1

is the graph of a function h mapping the origin to p; that is, in some neighborhood of the origin,

V = {(x, τ) : τ = h(x)}. Let ∇ := ∇h(0) and H := det
(

∂h

∂ui∂uj
(0)
)

1≤i,j≤d
denote respectively

the gradient and Hessian determinant of h at the origin. Then the curvature of V at the origin is

given by

K =
H√

1 + |∇|2
2+d

.

The square root is taken to be positive and in case d is odd, the curvature is with respect to a unit

normal in the direction in which the dependent variable increases.

First Proof: Let X : U ⊆ Rd → Rd+1 denote the parameterizing map defined by

X(u) := (u1, . . . , ud, h(u1, . . . , ud))

on a neighborhood U of the origin. Let π be the restriction to V of projection of Rd+1 onto the
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first d coordinates, so π inverts X on U . Define a vector

N(u) :=
(
∂h

∂u1
, . . . ,

∂h

∂ud
,−1

)

normal to V at X(u) and let N̂ denote the corresponding unit normal N/|N|. Observe that

|N| =
√

1 + |∇h|2, and in particular, that |N(0)| =
√

1 + |∇|2. The Jacobian of π at the point p

is, up to sign, the cosine of the angle between the zd+1 axis and the normal to the tangent plane

to V at p. Thus

|J(π(p))| = |N̂ · ed+1|
|N̂||ed+1|

=
1/|N(0)|

1 · 1
=

1√
1 + |∇|2

. (3.2)

The Gaussian curvature at the point p is, by definition, the Jacobian of the map N̂ ◦ π at p.

Using J to denote the Jacobian, write N̂ as | · | ◦N and apply the chain rule to see that

K = J(π(p)) · J(N)(0) · J(| · | )(N(0)) =
1√

1 + |∇|2
· J(N)(0) · J(| · | )(∇,−1) . (3.3)

Here, |·| is considered as a map from Rd×{−1} to Sd; at the point y, its differential is an orthogonal

projection onto the plane orthogonal to (y,−1) times a rescaling by |(y,−1)|−1, whence

J(| · | )(y) =
√

1 + |y|2
−1√

1 + |y|2
−d
. (3.4)

Because N maps into the plane zd+1 = −1 we may compute J(N) from the partial derivatives

∂Ni/∂xj = ∂2h/∂xi∂xj , leading to J(N)(0) = H. Putting this together with (4.3) gives

J(N̂)(0) =
H√

1 + |∇|2
d+1

(3.5)

and using (3.3) and (3.2) gives

K =
H√

1 + |∇|2
d+2

,

proving the proposition. �

Second Proof: We reuse the notation from the first proof. Additionally, for each 1 ≤ j ≤ d

we abbreviate by denoting the partial derivative huj
as hj and the vector Xuj

with 1 in its jth

position, hj in its (d+ 1)th position, and 0 in its remaining positions as Xj .
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We first note that limP→pA(P ) can be represented by the square root of the determinant of the

matrix whose coefficients are the coefficients of the first fundamental form. That is to say that the

denominator of K is
√

det((< Xj ,Xk >)j,k) where <,> represents the standard inner product.

In order to determine the value of the numerator of K, we again make the choice of normal vector

N̂ defined in the first proof. As with X we abbreviate the vector derivative of N̂ with respect to uj

as N̂j . We can now calculate the area of an infinitesimal patch in Sd (i.e. limP→pA(G(P ))) as the

determinant of the matrix whose coefficients are the coefficients of the second fundamental form,

divided by the square root of the determinant of the matrix whose coefficients are the coefficients

of the first fundamental form. That is to say that the numerator of K is det((< N̂j ,Xk >)j,k).

Thus now:

K =
det((< N̂j ,Xk >)j,k)
det((< Xj ,Xk >)j,k)

To evaluate the numerator we first note that since < N̂,Xj >= 0, by integration by parts

< N̂j ,Xk >= − < N̂,Xj,k > for all pairs 1 ≤ j, k ≤ d. Concurrently, for all pairs 1 ≤ j, k ≤ d

we have Xj,k = (0, ..., 0, hj,k), so − < N̂,Xj,k >= hj,k√
1+|∇|2

. Thus the numerator of K can be

rewritten as (1 + |∇|2)−d/2H.

Evaluating the denominator, we note that < Xj ,Xj >= 1 + h2
j , while for j 6= k, < Xj ,Xk >

= hjhk. Thus, we wish to calculate det((δj,k + hjhk)j,k), where δ is the Kronecker delta function.

We do this by row reduction by first noting that at p there is some j such that hj 6= 0. We

know this in the general case of a regular surface (regularity being a necessary requirement of

a surface before we discuss its Gauss-Kronecker curvature) and we know this in the application

to generating functions as X is a smooth parametrization. Without loss of generality we assume

that h1 is nonzero at p. As demonstrated below, if we subtract hk

h1
· (row 1) from row k for each

k ∈ {2, ..., d} we get a matrix with identical determinant whose first row is unchanged and whose
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jth row has −hj

h1
in the first column, a 1 on the main diagonal and 0’s elsewhere.

det



1 + h2
1 h1h2 h1h3 . . . h1hd

h1h2 1 + h2
2 h2h3 . . . h2hd

h1h3

...
. . .

...

...
...

. . .
...

h1hd h2hd . . . 1 + h2
d


= det



1 + h2
1 h1h2 h1h3 . . . h1hd

−h2/h1 1 0 . . . . . .

−h3/h1 0 1 0 . . .

...
...

. . . . . .
...

−hd/h1 0 . . . . . . 1


The determinant of this latter matrix is easy to calculate as only d elements of the symmetric

group Sd make nonzero contributions. The contributors are the identity (meaning the product of

the diagonal entries) which contributes 1+h2
1 and the single transpositions (1, j) (in cycle notation)

which each contribute (−1) · (−hj

h1
h1hj) = h2

j . Thus the determinant is 1 + |∇|2. Putting together

our results for the numerator and denominator of K completes the proof. �

We pause to record two special cases, the first following immediately from ∇h(0) = 0. If Q is

a homogeneous quadratic form, we let ||Q|| denote the determinant of the Hessian matrix of Q; to

avoid confusion, we point out that the diagonal elements aii of this matrix are twice the coefficient

of x2
i in Q. The determinant will be the same when the coefficients of ||Q|| are computed with

respect to any orthonormal basis.

Corollary 3.3. Let P be the tangent plane to V at p and let v be a unit normal. Suppose that V

is the graph of a smooth function h over P, that is,

V = {p+ u + h(u)v : u ∈ U ⊆ P} .

Let Q be the quadratic part of h, that is, h(u) = Q(u) +O(|u|3). Then the curvature of V at p is

given by

K = ||Q|| .

�
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Corollary 3.4 (curvature of the zero set of a polynomial). Suppose V is the set {x : H(x) = 0}

and suppose that p is a smooth point of V, that is, ∇H(p) 6= 0. Let ∇ and Q denote respectively

the gradient and quadratic part of H at p. Let Q⊥ denote the restriction of Q to the hyperplane

∇⊥ orthogonal to ∇. Then the curvature of V at p is given by

K =
||Q⊥||
|∇|d

. (3.6)

Proof: Replacing H by |∇|−1H leaves V unchanged and reduces to the case |∇H(p)| = 1;

we therefore assume without loss of generality that |∇| = 1. Letting u⊥ + λ(u)∇ denote the

decomposition of a generic vector u into components in 〈∇〉 and ∇⊥, the Taylor expansion of H

near p is

H(p+ u) = ∇ · u +Q⊥(u) +R

where R = O(|u⊥|3 + |λ(u)||u⊥|). Near the origin, we solve for λ to obtain a parametrization of

V by ∇⊥:

λ(u) = Q⊥(u) +O(|u|3) .

The result now follows from the previous corollary. �
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4 Introduction to Quantum Random Walks

In this chapter we analyze several aspects of the Quantum Random Walk on the line, as well

as give details of the setup for these walks in any dimension. In Section 4.1 we give a detailed

description of these walks, and prove facts that will be useful for the remainder of this thesis.

In Section 4.2 we determine asymptotics for the 2-Chirality walk on Z applicable everywhere

outside neighborhoods of the points r
s = 1±c

2 with c a parameter of the unitary coin flip operator.

Section 4.3 gives asymptotics for the neighborhoods missing in Section 4.2. Lastly, Section 4.4

determines asymptotics for a 3-Chirality walk on the line.

4.1 Description of QRWs and Key Lemmas

4.1.1 Background on QRWs

The classical random walk is a well-understood system with many important applications to com-

puter science. Well-known examples of algorithms based on random walks include algorithms for

counting, sampling, and testing properties such as satisfiability of Boolean formulae or graph con-

nectivity. One of the most basic and useful random walks is a simple random walk on Z. Here,

a single particle moves on the one-dimensional integer lattice. At each step the particle moves

one position to the left or right with equal probability. As the time t increases, the probability

distribution describing the particle’s location can be approximated increasing well by a normal dis-

tribution. The particle’s expected location is at the origin, and its standard deviation is 1
2

√
t, so

its distribution is O(
√
t) in probability. That is to say that Pr (x ∈ [−M

√
t,M

√
t]) → 1 uniformly

in t as M →∞.

Throughout the last century mankind has developed an increasing appreciation for the fact that

Newton’s laws alone do not describe our world. Among man’s most recent attempts to harness

the power of his quantum reality has been the field of quantum information theory, bringing with

it the potential to devise instruments of extraordinary power [NC00]. For example, in 1994 Peter
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Shor [Sho97] discovered an algorithm to factor numbers on a quantum computer in a number of

steps which is polynomial in the length of the number to factored. This problem is not known to be

solvable in polynomial time on a classical computer. Similarly, in [Gro96], Lov Grover determined

a quantum mechanical algorithm reducing the time for searching a database of N entries from

O(N) steps to O(
√
N) steps. Algorithms such as these have brought researchers from a variety of

scientific fields to focus on quantum information theory.

With the application of the classical random walk to information theory, as well as the growing

promise of quantum information theory, it is clearly of interest to define the Quantum Random

Walk. This was first done by Y. Aharanov, L. Davidovich and N. Zagury [ADZ93] who introduced

the Quantum Random Walk and first discussed differences with the classical random walk due

to quantum interference. Shortly thereafter, David Meyer [Mey96] pointed out that the simple

classical random walk described above does not translate into a quantum framework. Semigroup

operators, such as the combination 1
2σ+ + 1

2σ− of shifts defining the classical simple random walk,

are positive operators of norm 1 over the classical state space l1(Z), but fail to be unitary over the

quantum space l2(Z). In fact, it is easy to verify that the only translation-invariant positive real

operators on l2(Z) are trivial (powers of the shift operator).

In order to construct unitary operators that disperse the position of a particle, it is necessary

to introduce an extra degree of freedom, known as chirality. At any position on the lattice the

particle’s chirality takes either the value R (for RIGHT) or L (for LEFT). The elementary states

are thus Z × Σ where Σ := {R,L}, and the state space is l2(Z × Σ) = l2(Z) ⊗ l2(Σ). While this

is the convention established by Ambainis et al. in [ABN+01], we will refer to particles in the

LEFT and RIGHT positions with the vector notation
(
1
0

)
and

(
0
1

)
, respectively. We will denote

the unit basis vector of l2(Z) ⊗ l2(Σ) at position i with LEFT chirality as e(i, L) and we define

e(i, R) analogously. We will order this basis as

. . . e(i− 1, L), e(i− 1, R), e(i, L), e(i, R), e(i+ 1, L), e(i+ 1, R) . . . .



35

Ambainis et al. focus on the Hadamard walk. This is based on the Hadamard transformation, a

unitary operator on l2(Σ) whose matrix with respect to the standard basis is

U√ 1
2

:=
1√
2

 1 1

1 −1

 .

We then extend this transformation to l2(Z)⊗l2(Σ) as I⊗U√ 1
2

where I is the identity, resulting

in a transformation which acts as the block diagonal matrix:



. . .
...

...
...

. . . U√ 1
2

0 0 . . .

. . . 0 U√ 1
2

0 . . .

. . . 0 0 U√ 1
2

. . .

...
...

...
. . .


We then define a translation operator T̃ which shifts a particle with chirality R to the right

one step and shifts a particle with chirality L to the left one step. More formally, we have

T̃ : e(i, L) 7→ e(i− 1, L), T̃ : e(i, R) 7→ e(i+ 1, R)

and in the basis described above,
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T̃ =



. . .
...

...
...

...
...

...
...

...

. . . 0 0 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 1 0 0 0 . . .

. . . 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 . . .

. . . 0 0 0 1 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 0 0 . . .

...
...

...
...

...
...

...
...

. . .



in which every fourth diagonal alternates in 0’s and 1’s and all other entries are 0. We then define

the operator W̃ as W̃ = T̃ (I⊗U√ 1
2
). As each of T̃ and I⊗U√ 1

2
are unitary, W̃ is unitary as well.

This unitary composition of operators represents one step of the Hadamard walk.

In the quantum framework, the state of the system is any element ψ ∈ l2(Z× Σ). If the state

is ψ and we choose to measure the location (and chirality, which are simultaneously measurable),

then the experiment ends and the probability of finding the particle at location i with chirality ξ

is given by

p(i, ξ) := |ψ(i, ξ)|2 .

The quantity ψ(i, ξ) is called the amplitude of the particle to be in state (i, ξ). Execution of s

steps of the QRW corresponds to acting on the state space by W̃ s. The most general question we

can ask about QRW is the chance of finding it in state ξ after s steps, given that it started in state

ξ0. By linearity, it suffices to answer this for elementary states, and by translation invariance, our

study may be reduced to the analysis of the quantities ψξ0,ξ(r, s), defined to be the amplitude to
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be in state (r, ξ) at time s given the starting state (0, ξ0). We let

pξ0,ξ(r, s) := |ψξ0,ξ(r, s)|2

be the corresponding probabilities, and

Pξ0(r, s) = pξ0,L(r, s) + pξ0,R(r, s)

be the total probability of translating r units after time s, starting from chirality ξ0.

The first rigorous analysis of the QRW on the line, resulting in asymptotics for the Hadamard

walk, was done in [ABN+01]. Their work spurred on much related analysis, including that

in [AAKV01], [Kem05], [CFG02], and [MBSS02]. Furthermore, new methods have been developed

by [CIR03], simplifying analysis and results, as well as by [Kon05a], allowing certain generaliza-

tions to unitary transformations. We believe our methods to be simpler than those employed in

the above, and our methods will allow for ease of generalization, with extension to the unitary case

in Section 4.2, new regions of asymptotics in Section 4.3, extension to 3 chiralities in Section 4.4

and generalization to dimensions greater than 1 in Chapter 5. We discuss further work by other

authors in higher dimensions and multiple chiralities in the sections in which we present our results.

In the years since Ambainis et al. first successfully analyzed this walk, papers have begun to

emerge offering new methods to transfer the results of the Quantum Random Walk to quantum

computing. For example, in [SKW03] the authors introduce a quantum search algorithm based on

the architecture of the Quantum Random Walk that attains an algorithmic speed-up over classical

algorithms. Additionally, in [Amb05] Ambainis constructs a quantum walk algorithm for element

distinctness. In the wake of such developments, it is more clear than ever that much benefit can

come from a firm understanding of Quantum Random Walks.

4.1.2 Generating Functions for QRWs and Key Lemmas

In this section we work in as much generality as possible so that the lemmas we prove will be

applicable for the remainder of this thesis. In that context, the Quantum Random Walk is a
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model for the motion of a single quantum particle evolving in Zd under a time and translation

invariant Hamiltonian for which the probability profile of a particle after one time step, started

from a known location, is supported on the set of neighbors. Let d ≥ 1 be the spatial dimension, so

d+ 1 will be the dimension of our generating functions going forward. Let E = {v(1), . . . ,v(k)} ⊆

Zd be a set of finite cardinality k. When E is the set of signed standard basis vectors we call

this a nearest neighbor QRW; for example in one dimension, a nearest neighbor walk like that

described above has E = {(1), (−1)}, while in two dimensions, a nearest neighbor walk has E =

{(0, 1), (0,−1), (1, 0), (−1, 0)}.

Let U be a unitary matrix of size k. The set Zd×E indexes the set of pure states of the QRW

with parameters k,E and U . Let Id⊗U denote the operator that sends (r,v(j)) to (r, Uv(j)), that

is, it leaves the location unchanged but operates on the chirality by U . Let σ denote the operator

that sends (r,v(j)) to (r + v(j),v(j)), that is, it translates the location according to the chirality

and does not change the chirality. The product σ · (Id ⊗ U) is the operator we call QRW with

parameters k,E and U . Let us denote this by Q.

For 1 ≤ i, j ≤ k and r ∈ Zk,

ψ(i,j)
n r := 〈e0,i|Qn|er,j〉

denotes the amplitude at time n for a particle starting at location 0 in chirality i to be in location

r and chirality j. As before, let z denote (z1, . . . , zd+1) and define

F (i,j)(z) :=
∑
n,r

ψ(i,j)
n (r)zr11 · · · zrd

d z
n
d+1 (4.1)

which denotes the spacetime generating function for n-step transitions from chirality i to chirality

j and all locations. Let F(z) denote the matrix (F (i,j))1≤i,j≤k. Let M denote the diagonal matrix

whose entries are the monomials {zr : r ∈ E}. When d = 2 we use (x, y, z) for (z1, z2, z3) and (r, s)

for r; for a two-dimensional nearest neighbor QRW, therefore, the notation becomes

F (i,j)(x, y, z) =
∑
n,r,s

ψ(i,j)
n (r, s)xryszn
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and

M =



x 0 0 0

0 x−1 0 0

0 0 y 0

0 0 0 y−1


.

We can now derive an explicit expression for F via the elementary enumerative technique known

as the transfer matrix method [Sta97, GJ83]. We do so for the nearest neighbor walk with d = 2,

though the explanation in higher dimensions is analogous, with slight variations for walks that are

not nearest neighbor. The interpretation of the entries of the product (MU)n is as follows. The

(ξ0, ξ)-entry sums the weights of paths ξ0, ξ1, . . . , ξn with ξn = ξ, with the weight of each path

given by the product over each of the n consecutive pairs (ξj , ξj+1) of (MU)ξj ,ξj+1 . This product

is equal to the product of Uξj ,ξj+1 times xrys where r is the number of times (1, 0) appears in

ξ0, . . . , ξn−1 minus the number of times (−1, 0) appears and s is the number of times (0, 1) appears

in ξ0, . . . , ξn−1 minus the number of times (0,−1) appears. But the sum over paths of Uξj ,ξj+1 with

a given value of (r, s) is the amplitude of the wave function to be at ((r, s), ξ) if the elementary

state ((0, 0), ξ0) is chosen at time zero. Therefore, (MU)n is a matrix whose (ξ0, ξ)-entry is the

generating function whose xrys coefficient is ψξ0,ξ(r, s, n). Multiplying by zn and summing over z

establishes the following proposition:

Proposition 4.1.

F(x, y, z) =
∞∑
n=0

zn(MU)n = (I − zMU)−1 .

Proof: Let A denote the matrix zMU . Since A contains no entries with nonzero x0y0z0 coeffi-

cient, the sum
∑
k≥0 Ak converges in the (matrices over the) formal power series ring. The limit

B clearly satisfies (I −A)B = B(I −A) = I. �

In general the (i, j)-entry of the matrix, F (i,j), may therefore be written as a rational function
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G/H where

H = det(I − zd+1MU) .

The following result is easy but crucial. It is valid in any dimension d ≥ 1. Let Td denote the unit

torus in Cd.

Proposition 4.2 (torality). The denominator H of the spacetime generating function for a Quan-

tum Random Walk has the property that

(z1, . . . , zd) ∈ Td and H(z) = 0 =⇒ |zd+1| = 1 . (4.2)

Proof: If (z1, . . . , zd) ∈ Td thenM is unitary, henceMU is unitary. The zeros of det(I−zd+1MU)

are the reciprocals of eigenvalues of MU , which are therefore complex numbers of unit modulus. �

The next result, which will be just as crucial towards Theorem 5.9, is due to Yuliy Baryshnikov.

Proposition 4.3. Let H be any polynomial and let V denote the pole variety, namely the set

{z : H(z) = 0}. Let V1 := V ∩Td+1. Assume the torality hypothesis (4.2). Let p ∈ V1 be any point

for which ∇H(p) 6= 0. Then V1 is a smooth d-dimensional manifold in a neighborhood of p.

Proof: We will show that ∂H/∂zd+1(p) 6= 0. It follows by the implicit function theorem that

there is an analytic function g : Cd → C such that for z in some neighborhood of p, H(z) = 0 if

and only if zd+1 = g(z1, . . . , zd)). Restricting (z1, . . . , zd) to the unit torus, the torality hypothesis

implies zd+1 = 1, whence V1 is locally the graph of a smooth function.

To see that ∂H/∂zd+1(p) 6= 0, first change coordinates to zj = pj exp(iθj) and zd+1 =

pd+1 exp(iσ). Letting H̃ := H ◦ exp, the new torality hypothesis is (θ1, . . . , θd) ∈ Rd and

H(θ1, . . . , θd, σ) = 0 implies σ ∈ R. We are given ∇H̃(0) 6= 0 and are trying to show that

∂H̃/∂σ(0) 6= 0.

Consider first the case d = 1 and let θ := θ1. Assume for contradiction that ∂H̃/∂σ(0, 0) =

0 6= ∂H̃/∂θ(0, 0). Let H̃(θ, σ) =
∑
j,k≥0 bj,kθ

jσk be a series expansion for H̃ in a neighborhood of
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(0, 0). We have b0,0 = 0 6= b1,0. Let ` be the least positive integer for which b0,` 6= 0; such an integer

exists (otherwise H̃(0, σ) ≡ 0, contradicting the new torality hypothesis) and is at least 2 by the

vanishing of ∂H/∂σ(0, 0). Then there is a Puiseux expansion for the curve {H̃ = 0} for which σ ∼

(b1,0θ/b0,`)1/`. This follows from [BK86] although it is quite elementary in this case: as σ, θ → 0,

the power series without the (1, 0) and (0, `) terms sums to O(|θ|2+|θσ|+|σ|`+1) = o(|θ|+|σ|`) (use

Hölder’s inequality); in order for H̃ to vanish, one must therefore have b1,0θ+b0,`σ
` = o(|θ|+ |σ|`),

from which σ ∼ (b1,0θ/b0,`)1/` follows. The only way the new torality hypothesis can now be

satisfied is if ` = 2 and b1,0θ/b0,` is always positive; but θ may take either sign, so we have a

contradiction.

Finally, if d > 1, again we must have b0,...,0,` 6= 0 in order to avoid H̃(0, . . . , 0, σ) ≡ 0. Let

r ∈ Rd be any vector not orthogonal to ∇H̃(0) and let G(θ, σ) := H̃(r1θ, . . . , rdθ, σ). Then

∂G/∂θ(0, 0) 6= 0 = ∂G/∂σ(0, 0) and the new torality hypothesis holds for G; a contradiction then

results from the above analysis for the case d = 1. �
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4.2 Initial Asymptotics for QRWs on Z

In this section we begin our analyses of QRWs by recovering the results of [ABN+01]. Our analysis

via generating functions is simpler than their work, allowing the generalization to multiple chiral-

ities and higher dimensions in the coming chapters. We further simplify our analysis of the walk

on Z by making the walk aperiodic. The most convenient way to do this is to choose steps {0, 1},

replacing the {−1, 1} steps in [ABN+01]. In order to facilitate comparison of our results to those

in [ABN+01], we need to avoid using the same notation for different quantities. Hence we replace

their {L,R} with {↑, ↓}, their rescaled location parameter α with λ, and so forth, as outlined in

the upcoming paragraph.

Define the chirality space Σ := {↑, ↓}, where a particle with chirality ↓ will shift to the right

with each increase in time by one unit. Formally, we replace T̃ by T , defined by

T (e(i, ↑)) = e(i, ↑), T (e(i, ↓)) = e(i+ 1, ↓) .

Given a unitary operator U on l2(Σ), our QRW operator is defined by

W := T (I ⊗ U) .

In particular, the Hadamard Quantum Random Walk is

W√ 1
2

:= T (I ⊗ U√ 1
2
) .

A particle at position n at time t in the QRW defined by [ABN+01] corresponds to a particle

at position r := n+t
2 ∈ Z+ at time s = t in our model; note that |n| ≤ t and n ≡ t( mod 2).

Furthermore, just as α = n
t represents the location, rescaled linearly by time within the framework

of Ambainis et al., we use the rescaled location parameter

λ :=
r

s
=
α+ 1

2
.

Again, the information of interest for a QRW is the value of pξ0,ξ(r, s) := |ψξ0,ξ(r, s)|2 for any

time s and any state of a system (r, ξ) that began in state (0, ξ0). Comparing to [ABN+01]:
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• Our λ is their (1 + α)/2;

• Our ψ↓↓(r, s) is their ψR(2r − s, s);

• Our ψ↓↑(r, s) is their ψL(2r − s, s);

4.2.1 Statement of results

The Hadamard QRW may be generalized by allowing the quantum coin flip matrix U to be any

unitary operator on the two dimensional chirality space l2(Σ). The unitary group of rank 2 may

be parameterized by three unit circle parameters eiα, eiβ , eiγ and a real parameter c ∈ [0, 1]:

Uα, β, γ, c =

 ceiα
√

1− c2eiβ

√
1− c2eiγ −cei(β+γ−α)

 .

All our results are stated in this generality, which we refer to as a general unitary nearest-neighbor

QRW on Z1. The behavior of this QRW is the same as the behavior of the Hadamard QRW (in

which c =
√

1
2 ), except that the parameter c controls the size of the rescaled interval in which the

particle may be found. Specifically, define

J :=
[
1− c

2
,
1 + c

2

]
. (4.3)

We assume throughout that the parameter c is not one or zero, since these correspond respectively

to propagation of the initial chirality and strict alternation of chiralities, hence to deterministic

motion to the right and a mixture of no motion.

Corresponding to Theorems 1 and 2 of [ABN+01], we have the following two results.

Theorem 4.4 (rapid decay beyond J). Consider the quantities pξ0,ξ for a general unitary QRW

with 0 < c < 1. For each compact K ⊆ Jc and each integer N > 0 there is a C > 0 such that for

any chiralities ξ0 and ξ,

pξ0,ξ(r, s) ≤ Cs−N

whenever λ = r/s ∈ K.
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Remark. Rapid decay may be improved to exponential decay by an argument that is not too

complicated but involves moving a contour in two complex dimensions.

Theorem 4.5 (asymptotics inside the interval J). Given a general unitary walk with transforma-

tion U , let λ := r
s . Then there are phase functions ρξ0,ξ(r, s) described in Equation (4.20) below,

such that

p↓↓(r, s) ∼ 2
π

λ
√

1− c2

(1− λ)s
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↓↓(r, s)) (4.4)

p↑↑(r, s) ∼ 2
π

(1− λ)
√

1− c2

λs
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↑↑(r, s)) (4.5)

p↓↑(r, s) ∼ 2
π

√
1− c2

s
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↓↑(r, s)) (4.6)

p↑↓(r, s) ∼ 2
π

√
1− c2

s
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↑↓(r, s)) (4.7)

uniformly as λ varies over any compact subset of the interior of J .

Remark. The computations will be the most transparent when the parameters α, β and γ are zero.

These parameters have no physical significance and in any case, the result for nonzero α, β, γ is

easily deduced from the case α = β = γ = 0. The same is not the case for the parameter c.

We will therefore begin the proofs by assuming that the coin flip operator U is real, hence in the

orthogonal group, parameterized by c:

URe :=

 c
√

1− c2

√
1− c2 −c

 .

In fact this parameterizes the anti-special orthogonal group (determinant = -1). This slightly

unusual choice is due to the fact that U√ 1
2

happens to have determinant −1.

These results of Theorem 4.5 for p↓↓(r, s) and p↓↑(r, s) are depicted below in Figure 1 for the

Hadamard Walk.
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Figure 1: Time n = 100 probability values by location (p↓,↓ on left and p↓,↑ on right) and their

upper envelope obtained by dropping the cos2(ρ) term.

4.2.2 Determination and Preliminary Analysis of Generating Functions

As the generating functions of this section have degree two, we denote (z1, z2) as (x, y) with the

exponents of x and y denoting position and time, respectively. With steps of {0, 1}, in the notation

introduced in Section 4.1, we have E = {(0), (1)} so

M =

 1 0

0 x

 .

Then by Proposition 4.1, we have F(x, y) = (I − yMU)−1 = 1
HG. Where

G(x, y) =

 1 + ce(β+γ−α)ixy eβixy
√

1− c2

eγiy
√

1− c2 1− ceαiy

 (4.8)

and

H(x, y) = 1− ceαiy + ce(β+γ−α)ixy − e(β+γ)ixy2 . (4.9)
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In the case that U = Uc is real, this specializes to

Gc =

 1 + cxy xy
√

1− c2

y
√

1− c2 1− cy

 ,

Hc = 1− cy + cxy − xy2 .

To see why the only physically relevant parameter is c, observe that

Hc,α,β,γ(x, y) = Hc

(
ei(β+γ−2α)x, eiαy

)
(4.10)

while the entries of Gc,α,β,γ(x, y) are equal to unit complex multiples of Gc(ei(β+γ−2α)x, eiαy). It

follows that the coefficients of the generating function Fc,α,β,γ have the same magnitudes as the

coefficients of Fc.

For comparison to the literature, we specialize further to the Hadamard case (c =
√

1/2) and

record:

G√ 1
2
(x, y) =

 1 + xy√
2

xy√
2

y√
2

1− y√
2


H√ 1

2
(x, y) = 1− 1− x√

2
y − xy2 .

For the remainder of this section, we omit subscripts when referring to the real case, which

from above we see is all we need consider to derive all desired asymptotics. Furthermore, by

making additional substitutions in our generating functions, we see that we need only consider

certain combinations of chiralities in our analysis. For example, as F↑,↑( 1
x ,−xy) = 1−cy

1+cxy−cy−xy2 =

F↓,↓(x, y), for any positive integers r and s we see that ψ↓,↓(r, s) = (−1)sψ↑,↑(s − r, s). Thus

p↓,↓(r, s) = p↑,↑(s− r, s), meaning that the graphs of p↓,↓ and p↑,↑ are mirror images of each other

with respect to the line λ = 1
2 . Similarly, F↑,↓( 1

x ,−xy) = −xy
√

1−c2
1+cxy−cy−xy2 = −F↓,↑(x, y), so for any

(r, s) ∈ (Z+)2 we observe that ψ↓,↓(r, s) = (−1)s+1ψ↑,↑(s−r, s) and p↓,↓(r, s) = p↑,↑(s−r, s). Thus

the graphs of p↓,↑ and p↑,↓ are mirror images of each other with respect to the line λ = 1
2 . As
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F↓,↑(x, y) = xF↑,↓(x, y), we also see that p↓,↑(r + 1, s) = p↑,↓(r, s), implying that F↑,↓ and F↓,↑

have identical asymptotics. Thus any asymptotic formula for either p↓,↑(r, s) or p↑,↓(r, s) should

be symmetric with respect to the line λ = 1
2 . While we will not yet exploit these symmetries in our

analysis, they will limit the number of graphs that we must provide under full disclosure. Also,

these symmetries will be helpful with the analysis in Section 4.3.

In general, the geometry of V = {z : H(z) = 0} can be complicated and asymptotic results

depend greatly on the geometric classification of V; see [PW02, PW04, PW08]. In the case of the

one-dimensional QRW, the geometry of V is simple enough that asymptotics can be handled by

the methods for smooth critical points found in [PW02]. The following propositions establish these

geometric facts.

Proposition 4.6. For QRWs on Z1 with matrix Uc for 0 < c < 1, the quantity Hy is nonvanishing

on V1.

Proof: SolvingH = 0,Hy = 0, using the Maple command Basis([H, diff(H,y)], plex(x,y)),

shows that there are precisely two pairs (x, y) where both polynomials vanish; the possible values

of y are not on the unit circle except in the degenerate case c = 1. �

Proposition 4.7. For the general unitary QRW on Z1, if (x, y) ∈ V, then |x| = 1 if and only if

|y| = 1.

Proof: The forward direction is a direct result of Proposition 4.2. Conversely, solving

H(x, y) := 1− cy + cxy − xy2 = 0

for x gives

x =
cy − 1
y(c− y)

=
c− y−1

c− y
.

If |y| = 1, then |y−1| = 1 and since c ∈ R, it follows that |c − y−1| = |c − y|. Thus |y| = 1 =⇒

|x| = 1. �
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4.2.3 New Asymptotics for Torally Minimal Points when d = 2

As we show in the following section, for any λ in the interior of J , the set of critical points Ξ(r, s)

for this direction will consist of torally minimal points. We therefore seek a result that is as similar

to Theorem 2.7 as possible, but handles the case of torally minimal points.

Before stating one, we note that while in dimension d > 2, dir (z) = (z1H1, . . . , zdHd), in

dimension 2 we define dir as the ratio of the two coordinates of the associated vector. That is

dir (x0, y0) = yHy

xHx
|x=x0,y=y0 . Also for a, b ∈ R+, we define Da,b = {(x, y) ∈ C2 : |x| ≤ a, |y| ≤ b}

and Ta,b = {(x, y) ∈ C2 : |x| = a, |y| = b}. Also, we remind the reader of the definition of Q from

Section 2.2:

Q(x, y) = −x2H2
xyHy − xHxy

2H2
y − x2y2(H2

xHyy +H2
yHxx − 2HxHyHxy (4.11)

We can now state a variation of Theorem 2.7 and adapt the proof of Theorem 2.7 to this scenario.

Theorem 4.8. For fixed a, b > 0 suppose that the following conditions hold:

1. V ∩Da,b = V ∩ Ta,b;

2. |x| = a ⇐⇒ |y| = b on V;

3. For each x the set {y1(x), . . . , yk(x)} of values for which H(x, y) = 0 is finite;

4. Hy is nonvanishing on V ∩ Ta,b.

Then the following two conclusions hold.

1. If λ is not in the image under dir of V ∩Ta,b, then arbsars is rapidly decreasing. Specifically,

as λ varies over a compact set disjoint from the range of dir , for every integer N > 0 there

is a C > 0 such that arbsars ≤ Cs−N .

2. Conversely, let Λ be a compact subset of the range of dir such that for any λ ∈ Λ, the set

Ξ(λ) of points (x, y) ∈ V∩Ta,b for which dir (x, y) = λ is finite and neither Q nor G vanishes
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there. Then

ar,s ∼
∑

(x,y)∈Ξ(r/s)

G(x, y)√
2π

x−ry−s

√
−yHy

sQ(x, y)
(4.12)

as r, s→∞, uniformly as r/s varies over Λ.

Proof: We prove the second conclusion first. The proof of Theorem 2.7 begins with the localiza-

tion step (Lemma 2.1) and it is this step which requires alteration in order to prove the second

conclusion of Theorem 4.8. Instead, we substitute the following lemma:

Lemma 4.9. Given r, s, let {(xl(r/s), yl(r/s) : 1 ≤ l ≤ L} enumerate Ξ(r/s) and let Nl be a small

neighborhood of xl. Then

ars =
1
2π

∑
l

∫
Nl

x−r−1y−s−1
∑
l

G(x, yl(x))
(∂H/∂y)(x, yl(x))

dx+O(a−rb−ss−N ) (4.13)

for every N , uniformly for λ ∈ Λ.

Assuming this for the moment, the remainder of the proof follows the proof of Theorem 2.7

(the full proof can be found in [PW02]) so closely that we merely indicate the numbers of the

corresponding results. Changing variables to x = aeiθ, we write x−ry−s as exp(−sfl(θ)) near each

(xl, yl) ∈ Ξ(r/s) and rewrite (4.13) as

ars ∼
1
2π
a−rb−s

∑
l

∫
N ′l

exp(−sf(θ))ψ(θ) dθ

where N ′
l is a neighborhood around each critical θ and f and ψ are defined in Section 2.2. The

summand is an integral near a stationary phase point; in the present case the exponent f is

purely imaginary, so we may use a standard result to evaluate this, such as [Ste93, Proposi-

tion 3 of CH. VIII], rather than the complex phase version found in Theorem 2.4. The application

of the formula for ∂2Z
∂X2 in the proof of Corollary 2.9 to the d = 2 case (in which we replace Z and

z by Y and y, respectively) finishes the computation in the case at hand, finishing the proof of the

second conclusion of Theorem 4.8.

The first conclusion then follows from the fact that there are, in the case λ /∈ J , no stationary

phase points. Thus the sum is empty and the result follows (and in fact one may halt the derivation
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in the lemma at (4.16)). Finally, the uniformity in both conclusions is a consequence of the fact that

estimates such as Theorem 2.4 and [Ste93, Proposition VIII.3] are uniform under these conditions.

�

Proof of Lemma 4.9: The following successive estimates for ars copy the reasoning in the proof

of Lemma 2.1, though they occur in a different order due to differing geometry. We will write

down the estimates and then see what is needed to justify them in our case.

ars =
(

1
2π

)2 ∫
Ca

∫
Cb−ε

x−r−1y−s−1F (x, y) dy dx . (4.14)

=
(

1
2π

)2
[∫

Ca

∫
Cb+ε

x−r−1y−s−1F (x, y) dy dx (4.15)

−
∫
Ca

(∫
Cb+ε

−
∫
Cb−ε

)
x−r−1y−s−1F (x, y) dy dx

]
.

=
1
2π

∫
Ca

x−r−1
∑
j

y−s−1
j Res(F ; y = yj) dx+O(a−r(b+ ε)−s) . (4.16)

=
1
2π

∫
Ca

x−r−1
∑
j

y−s−1
j

G(x, yj(x))
(∂H/∂y)(x, yj(x))

+O(a−r(b+ ε)−s) dx . (4.17)

The first of these is Cauchy’s integral formula. It is valid as long as F is analytic on Da,b−ε,

which is guaranteed by hypothesis (1). The second is true whenever F is analytic on the torus

Ta,b+ε as well, which is guaranteed by hypothesis (2). The third equation is true as long as F (x, ·)

has finitely many poles on the annulus b− ε < |y| < b+ ε for every x ∈ Ca. This is guaranteed by

hypothesis (3). The fourth of these is true as long as the poles of H(x, ·) are simple for x outside

a set of measure zero, which is guaranteed by hypothesis (4).

Finally, to arrive at (4.13), we establish that

η :=
G

∂H/∂y
dx

pulls back to a smooth form on the smooth manifold V ∩Ta,b. In fact, smoothness of the form and

the manifold follow from hypothesis (4) and the implicit function theorem. It now follows by [Ste93,
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Proposition 1 of Ch. VIII], using a partition of unity, that the integral is rapidly decreasing away

from the critical points Ξ(r/s), reducing (4.17) to (4.13). �

4.2.4 Location of the critical points for QRW

We show that for λ in the interval

J :=
[
1
2
(1− c),

1
2
(1 + c)

]
,

asymptotics are determined by a pair of critical points on the unit torus via Theorem 4.8, while

for λ outside the closure of this interval, asymptotics are determined by a single critical point on

a different torus via Theorem 2.7. This is established in the following lemmas.

Lemma 4.10.

(x(λ), y(λ)) ∈ T1,1 ⇐⇒ λ ∈ J =
[
1
2
(1− c),

1
2
(1 + c)

]
.

Proof: First assume (x(λ), y(λ)) ∈ T1,1. By Proposition 4.7, this is equivalent to |y| = 1. If we

let X and Y be the arguments of x and y respectively, then implicit differentiation of the equation

eiX =
1− ceiY

eiY (eiY − c)

results in the logarithmic derivative

dY

dX
= − 1

ceiY

1−ceiY + 1 + eiY

eiY −c
= −

(
1 +

c2 − 1
−cy−1 + 2− cy

)
.

When (x, y) is on the unit torus, this expression simplifies to
dY

dX
= −

(
1 +

c2 − 1
2− 2c · cos(Y )

)
. We

now observe that

dY

dX
=
d(log y)
d(log x)

= −x∂H/∂x
y∂H/∂y

= − 1
dir (x, y)

= − 1
1/λ

= −λ

by the definition of dir . Thus λ = 1 +
c2 − 1

2− 2c · cos(Y )
. It is not hard from here to check that

as y varies over the unit circle, λ is decreasing in Re {y}, so that the minimum value of λ is

λ(1) = (1− c)/2, while the maximum is λ(−1) = (1 + c)/2. Thus

(x(λ), y(λ)) ∈ T1,1 ⇒ λ ∈ J :=
[
1
2
(1− c),

1
2
(1 + c)

]
.
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For the other direction, we choose λ ∈ J and solve for all possible points (x(λ), y(λ)). These

are points (x, y) ∈ V at which the logarithmic normal vector (xHx, yHy) is parallel to (r, s) where

r/s = λ. Thus (x, y) satisfies the two equations:

H(x, y) = 0 (4.18)

K(x, y) := sxHx − ryHy = 0 (4.19)

Then the Maple command Basis([H,K], plex(y,x)) results in a reduced Gröbner basis whose

first polynomial is the polynomial satisfied by x over Z[r, s]:

s2c2x− xs2 − 2rc2xs+ sc2rx2 + rc2s+ 4rxs+ 2r2c2x− c2r2x2 − r2c2 − 4r2x .

Dividing by s2 and recalling that λ = r
s yields

λ(1− λ)c2x2 − [(1− c2)− (4− 2c2)λ+ (4− 2c2)λ2]x+ λ(1− λ)c2 .

Viewed as a polynomial in x, the roots are conjugate (possibly equal) if and only if the discriminant

is nonpositive, which happens exactly when λ ∈ J . The product of the roots is the ratio of the

constant to the quadratic coefficient, in this case 1, therefore λ ∈ J implies the two conjugate roots

are on the unit circle, hence by Proposition 4.7, |x| = |y| = 1 for all critical points. �

To sum up:

Proposition 4.11. The torus T1,1 is a minimal torus and the image of dir on V ∩ T1,1 is J .

Proof: In order for T1,1 to be a minimal torus, it is necessary and sufficient to show the following

two conditions:

1. V ∩ {|x| < 1, |y| < 1} = ∅

2. V ∩ ({|x| < 1, |y| = 1} ∪ {|x| = 1, |y| < 1}) = ∅.

Condition (1) follows from the absolute convergence of F (α, β) for every pair of positive real

α, β < 1. Condition (2) follows from Proposition 4.7. �



53

4.2.5 Proofs of Theorems 4.4 and 4.5

Observe first, using the relation (4.10) and the subsequent discussion, that it suffices to prove both

theorems in the real case, U = Uc. Thus we assume throughout this section that α = β = γ = 0.

Proof of Theorem 4.4: This is immediate from the first conclusion of Theorem 4.8 with a =

b = 1, once one observes that the hypothesis are satisfied. The first hypothesis was verified in

Proposition 4.11, the second in Proposition 4.7, the third follows whenever H has no factor P (x),

and the fourth was Proposition 4.6. �

Proof of Theorem 4.5: Fix λ in the interior of J . By Proposition 4.11, T1,1 is a minimal

torus containing two conjugate critical points, (x, y) and (x, y). These satisfy the hypotheses of

Theorem 4.8, whence the conclusion (4.12) holds.

Recalling thatG↓↓(x, y) = 1−cy, and observing that the two summands in (4.12) are conjugates,

we see that

ψ↓↓(r, s) ∼ 2Re

{
1− cy√

2π
x−ry−s

√
−yHy

sQ(x, y)

}

where Q is given in (4.11). Letting

ρξ0,ξ(r, s) := Arg

(
Gξ0,ξ√

2π
x−ry−s

√
−yHy

sQ(x, y)

)
, (4.20)

allows us to rewrite this as

p↓↓(r, s) ∼
2
π

cos2 ρ↓↓(r, s)
∣∣∣∣(1− cy)2

−yHy

sQ(x, y)

∣∣∣∣ .
Instead of solving for x and y and plugging into expressions for Hy and Q, the computations are

simplified by finding directly the minimal polynomial for w := (1− cy)2 −yHy

sQ(x,y) .

Recalling that (x, y) satisfies H(x, y) = K(x, y) = 0, we introduce a variable z := 1/(sQ) so
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that w may be expressed as the solution to the following four polynomial equations.

H = 0

K = 0

szQ− 1 = 0

w + (1− cy)2(yHy)z = 0

To obtain a polynomial in w alone, we use the Basis command with term order plex(x, y, z, w),

resulting in the polynomial

r2s2(1− c2)− (s(1 + c)− 2r)(s(1− c)− 2r)(s− r)2w2 .

We divide by s2 and rewrite in terms of λ:

λ2(1− c2) + 4
(

1 + c

2
− λ

)(
λ− 1− c

2

)
(1− λ)2s2w2 .

We are actually interested in |w|, but since the above expression may be written as A + Bw2 for

positive real A and B, we see that |w| is the positive square root of A/B, in other words,

|w| =
√

1− c2λ

(1− λ)s
√
−((1− c2)− 4λ+ 4λ2)

.

This proves Equation (4.4). The computations for the other three cases are slight variations,

the only difference being the value of Gξ0,ξ(x, y). Because G↑↓(x, y) = y
√

1− c2 has the same

magnitude as G↓↑(x, y) = xy
√

1− c2, the formulae for p↑↓ and p↓↑ will differ only in the phase

term. The minimal polynomial for −G2
↑↓yHy/(sQ) in terms of r and s turns out to be Aw2+Bw+C

where

A = 4rc2(s− r)
(
s(c+ 1)

2
− r

)(
s(c− 1)

2
+ r

)
B = 4(1− c2)(2r − s)

(
s(c+ 1)

2
− r

)(
s(c− 1)

2
+ r

)
C = rc2(1− c2)(s− r)
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Dividing each of these by s2, and letting λ = r
s we get A′w2 +B′w + C ′, where

A′ = 4λc2(1− λ)
(
c+ 1

2
− λ

)(
c− 1

2
+ λ

)
s2

B′ = 4(1− c2)(2λ− 1)
(
c+ 1

2
− λ

)(
c− 1

2
+ λ

)
s

C ′ = λc2(1− c2)(1− λ)

Then since B′2 − 4A′C ′ < 0 for λ ∈ J , we have that

|w| = |−B
′ ±

√
B′2 − 4A′C ′

2A′
| =

√
B′2

4A′2
+
−B′2 + 4A′C ′

4A′2
=

√
C ′

A′
=

√
1− c2

s
√
−((1− c2)− 4λ+ 4λ2)

The minimal polynomial for −G2
↑↑yHy/Q in terms of λ turns out to be:

(1− λ)2(1− c2) + 4
(

1 + c

2
− λ

)(
λ− 1− c

2

)
λ2s2w2 .

Again we are interested in |w|, and the above expression may be written as A+Bw2 for positive

real A and B, so |w| is the positive square root of A/B. Thus

|w| =
√

1− c2(1− λ)
λs
√
−((1− c2)− 4λ+ 4λ2)

.

This completes the proof of Theorem 4.5. �
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4.3 Airy Behavior for QRWs on Z

The results of the prior section relied on the asymptotic estimation of an integral of the form:∫
exp(−rdf̃(θ))ψ̃(θ))dθ (4.21)

using the stationary phase method when the stationary points of f̃ (which are the saddle points

for the integral) are isolated. We summed the contributions from two isolated conjugate saddle

points (at each of which f̃ vanished to order 2) to determine the asymptotic estimate. As λ→ 1±c
2 ,

however, the saddle points coalesce into a single point at which f̃ vanishes to order 3. Consequently,

our previous results do not hold in neighborhoods of the points λ = 1±c
2 . In this section we

demonstrate this coalescence, then we review and apply a result for the asymptotics of integrals

with coalescing saddle points.

4.3.1 Statement of Results

As mentioned in Section 4.2, we need only forecast asymptotics in a neighborhood of the direction

λ = r
s = 1−c

2 for each of our four pairs of chiralities, due to the symmetries of our distributions.

Theorem 4.12 (Asymptotics near λ = 1−c
2 ). Given a general unitary walk with transformation

Uc, let δ = s
r −

2
1−c . Then as s→∞ and δ → 0 the probabilities for the directions λ = r

s are given

by the following asymptotic formula:

pξ0,ξ(r, s) ∼
(
dθ

dt

)2

|Airy(r
2/3γ2)

r1/3
F 0
ξ0,ξ +

Airy′(r2/3γ2)
r2/3

· F 1
ξ0,ξ|

2 (4.22)

where

F 0
↓,↓ ≡ 1 F 1

↓,↓ ≡ 0 (4.23)

F 0
↑,↑ =

δ(1− c) + (1 + c)
1− c

F 1
↑,↑ ≡ 0 (4.24)

F 0
↑,↓ =

δ(1− c) + 2c
2c

√
1 + c

1− c
F 1
↑,↓ =

(1 + c)1/6

2c5/6

√
δ(1− c)(1 + c) + 4c

1− c
(4.25)

F 0
↓,↑ = F 0

↑,↓ F 1
↓,↑ = −F 1

↑,↓ (4.26)

γ ∼
√
δ(1− c)(1 + c)[c(1 + c)]−1/6 (4.27)
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and (
dθ

dt

)2

∼ 2(1 + c)1/3(1− c)2

c1/6[δ(1− c) + (c+ 1)]
√
δ(1− c)(1 + c) + 4c

with Airy(x) the function defined for x ∈ R as Airy(x) := 1
π

∫∞
0

cos( t
3

3 + xt)dt.

We again demonstrate our results pictorially, this time with a graph of the U1/2 walk’s actual

probabilities (for the (↓, ↓) chirality on the left and (↓, ↑) chirality on the right) versus our predic-

tions in the range of the point r
s = 1−c

2 = 1
4 for time s = 1000. One can see that the prediction is

best when δ is smallest, which in Figure 2 is when the location is closest to 250.

Figure 2: Time n = 1000 probability values by location (p↓,↓ on left and p↓,↑ on right) for the U1/2

walk and our asymptotic prediction.
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4.3.2 Proof of Theorem 4.12

We employ the method detailed in Chapter 9 (titled Uniform Asymptotic Expansions) of [BH86].

This method determines an asymptotic approximation for an integral such as ours in the neigh-

borhood of a point where two simple saddle points coalesce into a saddle point of order 2. The

“order” of a saddle point is the degree to which the derivative of the phase f̃ vanishes. A “simple”

saddle point is one of order 1. While in the case of a single saddle point we defined f̃ so that it

vanished along with its derivative, this is not necessary.

Before utilizing the methods of [BH86], we determine the explicit integral representations of

our coefficients and demonstrate the coalescence of our simple saddle points into a saddle point of

order 2.

Lemma 4.13. For the nearest neighbor QRW on the line with unitary coinflip Uc, given initial

chirality ξ0 and final chirality ξ, the norm of the amplitude aξ0,ξ(r, s) is given by the equation:

|aξ0,ξ(r, s)| =
1
2π
|
∫
C
ψ̃ξ0,ξ(θ) exp

[
−r
(

log
(

1− ceiθ

eiθ(eiθ − c)

)
+ i

s

r
θ

)]
dθ| (4.28)

where C is a contour circling the origin with winding number 1 containing the critical points z ∈

Ξ(r) while:

ψ̃↑,↑(θ) := 1 (4.29)

ψ̃↑,↑(θ) :=
eiθ(1− c)(1 + c)

(1− ceiθ)(eiθ − c)
(4.30)

ψ̃↑,↓(θ) =
eiθ

1− ceiθ

√
1− c2 (4.31)

ψ̃↓,↑(θ) =
1

eiθ − c

√
1− c2 (4.32)

Proof: To simplify our calculations we reorder the variables x and y (from the generating function

of QRWs on Z) as z = (y, x). Thus the function g defined in Section 2.2 is the function such that

H(y, g(y)) = 0 ∀y. From the proof of Proposition 4.7, we obtain g(y) = 1−cy
y(y−c) . Also, we maintain

the original associations between r and z so that r is now (s, r). Thus rd = r. Our result now

follows from the proof of Lemma 2.1, once one determines f̃ and ψ̃ and omits the localization step.
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In Section 2.2 we defined f̃ so that the point θ = 0 coincided with the sole critical point

z ∈ Ξ(r), and hence the sole saddle point for the integral. With two critical points we define

f̃ so that θ = 0 corresponds to y = 1, a natural choice as the critical points will correspond to

additive inverses for θ. This is a translate of the phase used in Section 2.2, and as we use the same

contour of integration, the value of the integral is unaffected. To distinguish this setting from that

of Section 2.2, as well as to borrow from the notation of [BH86], we rename this new phase w. In

this context, w(θ) = log
(
g(exp(iθ))

g(1)

)
+ i sr θ = log (g(exp(iθ))) + i sr θ = log

(
1−ceiθ

eiθ(eiθ−c)

)
+ i sr θ.

In contrast, the calculation of ψ̃ will be slightly more involved, and as it depends on both the

numerator and denominator of the generating function, it will vary depending on the initial and

final chirality. From the definition of ψ̃ in Section 2.2, centering at y = 1 we have

ψ̃↓,↓(θ) = − lim
x→g(eiθ)

(
x− g(eiθ)

) 1− ceiθ

[1− ceiθ + xeiθ(c− eiθ)]x

= − lim
x→g(eiθ)

(
x− 1− ceiθ

eiθ(eiθ − c)

) 1−ceiθ

eiθ(eiθ−c)

[ 1−ceiθ

eiθ(eiθ−c) − x]x

= − lim
x→g(eiθ)

1
x
· 1− ceiθ

eiθ(eiθ − c)

= 1

Making the analogous calculation for the other combinations of chiralities completes the proof. �.

With this integral representation, it is a direct computation to show that the methods of [BH86]

apply to our integral.

Lemma 4.14. For the nearest neighbor QRW on the line with unitary coinflip Uc, the integral

I(r) :=
∫
C

exp(−rw(θ))ψ̃(θ)dθ (4.33)

has 2 simple saddle points α± which coalesce into a saddle point of order 2 precisely when r
s = 1±c

2 .

Furthermore, there is a simply connected domain D1 containing the contour C and the points

θ = α±.

Proof: We begin by solving the critical point equations via Gröbner bases with the Maple com-
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mand Basis([H,K], plex(x,y)). This results in a reduced Gröbner basis whose first polynomial

is the polynomial satisfied by y over Z[r, s]. Making the substitution s = rλ in this polynomial

and dividing by the coefficient of y2 results in the minimal polynomial: y2 + λ(1+c2)−2
c(1−λ) y + 1 = 0.

Whether or not this equation’s solutions have unit modulus, they will be multiplicative inverses,

as the coefficients of y2 and y0 are both 1. Furthermore, this equation has a single solution of

order 2 if and only if λ = 1±c
2 . We focus on the point λ = 1−c

2 ; the calculations for λ = 1+c
2 are

analogous.

Making the substitution s
r = 1/λ = 2

1−c + δ and solving for y results in the two solutions:

y± =
[2 + δ(1− c)](c2 + 1)− 2(1− c)± (1− c)

√
δ(1− c)(1 + c)[δ(1− c)(1 + c) + 4c]

2c[(1 + c) + δ(1− c)]
(4.34)

which coalesce in a neighborhood of δ = 0 only when δ = 0, in which case y+ = y− = 1. Using the

equation x = g(y) we obtain a unique value of x to correspond with each of y+ and y−. We now

define α+ = i log(y+) and α− = i log(y−) = −i log(y+). We complete the proof by showing that

the integral has simple saddle points at α± when δ is in a neighborhood of 0 and that these points

coalesce into a saddle point of order 2 when δ = 0. (Note: When we take the log of a number

z ∈ C we always let log(z) denote the principal logarithm with discontinuity when Arg(z) = π.)

By taking derivatives we see that wθ(α+) = wθ(α−) = 0, while

wθθ(i log(y+)) = −wθθ(i log(y−)) =
(1− c)(1 + c)(1− y+)(1 + y+)y+c

(y+ − c)2(y+c− 1)2
. (4.35)

To simplify this, we note that if we refer to the minimal polynomial of y± as y2 + Ay + 1, then

(y+ − 1)(y+ + 1) = −2−Ay+ and (y+ − c)(y+c− 1) = −y+(Ac+ 1 + c2). Then

y+(y+ − 1)(y+ + 1)
(y+ − c)2(y+c− 1)2

=
y+(−2−Ay+)
y2
+(Ac+ 1 + c2)2

=
−2y−A

(Ac+ 1 + c2)2
.

Now substituting the values of y+ and y− as well as A = λ(1+c2)−2
c(1−λ) and simplifying we get

wθθ(i log(y+)) =
[δ(1− c) + (c+ 1)]

√
δ(1 + c)(1− c)[δ(1− c)(1 + c) + 4c]
(1 + c)(1− c)2

(4.36)

which only vanishes in a neighborhood of δ = 0 when δ = 0.
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Differentiating once more, we see that

wθθθ(0)|δ=0 =
2i(1 + c)c
(1− c)3

(4.37)

which is nonvanishing in our interval c ∈ (0, 1). This completes the proof. �

We are now free to employ the methods of [BH86], the first step of which is a conformal change

of variables t = v(θ) designed to simplify the phase w of the integral. We denote the inverse of

the map v as u = v−1 so that θ = u(t). These changes of variables are defined implicitly by the

equation

w(θ) = −
(
t3

3
− γ2t

)
+ ρ = φ(t) (4.38)

in which γ and ρ are constants, yet to be determined.

Equation 4.38 defines three potential maps u, none of which is clearly conformal. Theorem 4.15

below, cited from [CFU57], isolates the correct conformal map:

Theorem 4.15. For each α± in D1, the transformation (4.38) has just one branch which defines

a conformal map of some disc Dα containing α±. On this branch the points θ = α+ and θ = α−

correspond respectively to t = γ and t = −γ.

�

We adopt the notation D̂α for the image u(Dα) from [BH86]. Now with the conformal maps

u and v so defined, we determine the values of ρ and γ. First we note that as desired, the new

phase φ has isolated simple saddle points at t = ±γ when γ 6= 0 and a single saddle point of order

2 when γ = 0.

By differentiating (4.38) with respect to t, we obtain

dθ

dt
=
γ2 − t2

wθ(θ)
. (4.39)

Since dθ
dt must be finite and nonzero for all t ∈ D̂α (or equivalently all θ ∈ Dα) so that u may be

conformal, it must be as Theorem 4.15 prescribes that

t = ±γ when θ = α±. (4.40)
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Making the correspondence (4.40) in Equation (4.38) provides the following expressions for γ and

ρ.

4γ3

3
= w(α+)− w(α−) (4.41)

ρ =
1
2
[w(α+) + w(α−)] (4.42)

As our phase function w is odd and α+ and α− are additive inverses in our case, the above

equations simplify to:

4γ3

3
= 2w(α+)

= 2 log
(

1− cy−
y−(y− − c)

)
+ 2 log(y−)

(
2

1− c
+ δ

)
= 2 log

(
1− cy−
1− cy+

)
+ 2 log(y−)

(
2c

1− c
+ δ

)

and

ρ = 0. (4.43)

Substituting the values of y+ and y− from (4.34) into the equation in γ above and expanding

into a power series in δ at the origin, we obtain

γ3 = − (1− c)3/2√
c(1 + c)

δ3/2 + o(δ3/2) (4.44)

so that

γ = −
√
δ(1− c)

[c(1 + c)]1/6
ζ3 + o(δ1/2) (4.45)

for some third root of unity ζ3.

Thus we have three possible values of γ when α+ 6= α−. In [BH86] the authors resolve this

ambiguity by developing contours C1, C2, and C3, each beginning and ending at ∞, such that for

t ∈ Cj , they have π
3 (4 − 2j) < Arg(t) < π

3 (6 − 2j). For each of the three possible choices of γ in

Equation (4.41) the regular branch of u(t) promised by Theorem 4.15 maps C ∩Dα onto a contour

asymptotically equivalent to one of C1∩ D̂α, C2∩ D̂α, or C3∩ D̂α. The authors show it is correct to
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choose the determination of γ leading to an image contour asymptotically equivalent to C1 ∩ D̂α.

Furthermore, they demonstrate that this choice of γ is that satisfying the equation:

1
2
Arg∆θ +

1
2
Arg(wθ(θ0))−

2π
3
< Arg(γ) <

1
2
Arg∆θ +

1
2
Arg(wθ(θ0))−

π

3
( mod π) (4.46)

where θ = θ0 is the preimage of t = 0 and ∆θ is an increment directed from θ = θ0 to the contour

C.

In the following lemma we demonstrate ζ3 = 1 will always be our desired third rooty of unity.

Lemma 4.16. For any δ in a neighborhood of the origin, letting ζ3 = 1 gives the choice of γ

satisfying Equation (4.46). Thus γ = −
√
δ(1−c)

[c(1+c)]1/6 + o(δ1/2).

Proof: To facilitate the proof we refer to our original form for the oscillatory integral, taking a

step back from (2.1) to the integral with f and ψ in terms of ŵ. In this case ŵ = y = ŷeiθ = eiθ.

The contour of integration is then the unit circle when δ ≤ 0 (in which case |y+| = |y−| = 1)

and while it must be deformed in the case that δ > 0, the contour still circles the origin. In light

of the fact that y0 is clearly 1, ∆y will be a negative real increment, so Arg(∆y) = π. We next

differentiate w(y(θ)) to get wθ = dw
dy

dy
dθ . For y = 1 we find dw

dθ = iδ and dy
dθ = i, so wy(1) = δ. Thus

for δ < 0, Arg(wy(y0)) = π while for δ > 0, Arg(wy(y0)) = 0. Substituting into Equation (4.46)

for δ < 0, we have:

π

2
+
π

2
− 2π

3
< Arg(γ) <

π

2
+
π

2
− π

3
( mod π)

so the argument of γ is within π/6 of the argument of a purely imaginary number. As ζ3 = 1

ensures that γ ∈ R−i, it is the appropriate choice. Substituting into Equation (4.46) for δ > 0, we

have:

0 +
π

2
− 2π

3
< Arg(γ) < 0 +

π

2
− π

3
( mod π)

so the argument of γ is within π/6 of the argument of a real number. As ζ3 = 1 ensures that

γ ∈ R−, it is the appropriate choice. �
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With γ and ρ now defined, we note that when α+ 6= α− so that γ 6= 0, by applying L’Hopital’s

rule in Equation (4.39) we obtain

(
dθ

dt

)2

|t=±γ or θ=α± =
∓2γ

wθθ(α±)
(4.47)

which is finite and nonzero. In our case we have

dθ

dt
|θ=α+ =

√
− 2γ
wθθ(α+)

∼

√
2(1 + c)1/3(1− c)2

c1/6[δ(c− 1)− (c+ 1)]
√
δ(1− c)(1 + c) + 4c

(4.48)

while dθ
dt |θ=α− = dθ

dt |θ=α+ as wθθ(α−) = −wθθ(α+). We will denote this common value simply as

dθ
dt .

When δ = 0, so that α+ = α− and γ = 0, L’Hopital’s rule must be applied twice and the result

is (
dθ

dt

)3

|t=0 or θ=α+ =
−2

wθθθ(α+)
(4.49)

which is also finite and nonzero. In our case, when δ = 0 we have

dθ

dt
= − 1− c

[(1 + c)c]1/3
i. (4.50)

which has equal norm to the limit as δ → 0 in our original expression for dθ
dt . Thus when we seek

the value of |dθdt | going forward, we may always use the formula for the δ 6= 0 case.

We are now free to apply the transformation (4.38) to the integral (4.33) to obtain

I(r) =
∫
C1∩D̂α

G0(t) exp{−rφ(t)}dt+ E (4.51)

with

G0(t) := ψ̃(u(t))
dθ

dt
(4.52)

which is regular in D̂α, while E is asymptotically negligible, being by assumption exponentially

smaller than I itself.

We next expand G0 to facilitate the derivation of a uniform expansion. Specifically, we exploit

the fact that when the integrand vanishes near a critical point, the contribution to asymptotics
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from that point is diminished. Thus we write:

G0(t) := a0 + a1t+ (t2 − γ2)H0(t) (4.53)

(with a0, a1 and H to be determined) so that as long as H0 is regular in D̂α, the last term of (4.53)

vanishes at the two saddle points t = ±γ. We can then determine a0 and a1 by assuming H0 to

be regular and setting t = ±γ in (4.53) to get

a0 :=
G0(γ) +G0(−γ)

2
(4.54)

a1 :=
G0(γ)−G0(−γ)

2γ
(4.55)

With a0 and a1 so determined, it is shown in [BH86] that H0 = G0(t)−a0−a1t
t2−γ2 is regular in D̂α as

desired.

Then inserting (4.53) into (4.51) we obtain

I(r) ∼ exp{rρ}
∫
C1∩D̂α

exp{−r( t
3

3
− γ2t)}(a0 + a1t)dt+R0(r) (4.56)

where R0(r) = exp{rρ}
∫
C1∩D̂α

(t2 − γ2)H0(t) exp{−r( t
3

3 − γ2t)}dt.

We rewrite the first integral in (4.56) by first replacing C1 ∩ D̂α with C1 itself (introducing an

asymptotically negligible error) then using the alternate characterization of the Airy function:

Ai(x) =
1

2πi

∫
C1

exp(sx− s3/3)ds =
2
π

∫ ∞

−∞
cos(

τ3

3
+ τx)dτ (4.57)

in order to express the integral in terms of Ai(x) and its derivative Ai′(x). To determine R0 we

integrate by parts and introduce another asymptotically negligible error by ignoring the boundary

terms. The result is the expansion;

I(r) ∼ 2πi exp{rρ}
[ a0

r1/3
Ai(r2/3γ2) +

a1

r2/3
Ai′(r2/3γ2)

]
+R1(r) (4.58)

with

R1(r) =
exp{rρ}

r

∫
C1∩D̂α

G1(t) exp{−r( t
3

3
− γ2t)}dt
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and G1(t) = d
dtH0. We observe that R1(r) is an integral of the form (4.51) multiplied by r−1. Thus

the above process can be applied repeatedly, after N + 1 applications arriving at the asymptotic

expansion

I(r) ∼ 2πi exp{rρ}

[
Ai(r2/3γ2)

r1/3

N∑
n=0

a2n

rn
+
Ai′(r2/3γ2)

r2/3

N∑
n=0

a2n+1

rn

]
+RN (r) (4.59)

with RN (r) = r−(N+1) exp{rρ}
∫
C1∩D̂α

GN+1(t) exp{−r( t
3

3 − γ2t)}dt.

In Theorem 9.2.2 of [BH86] the authors show that the above formal procedure yields an asymp-

totic expansion of I(r) that is uniformly valid for δ small. In addition, they point out that the Airy

function provides a smooth transition in the algebraic order of I in r which is r−1/2 for separated

simple saddle points and r−1/3 for a single saddle point of order 2.

Thus, in particular, we have the asymptotic formula

I(r) ∼ 2πi exp{rρ}
[ a0

r1/3
Ai(r2/3γ2) +

a1

r2/3
Ai′(r2/3γ2)

]
.

As ρ = 0, |a(r, s)| = | I(r)2π | and p(r, s) = |a(r, s)|2, we seek to simplify the asymptotic expression

p(r, s) ∼ | a0

r1/3
Ai(r2/3γ2) +

a1

r2/3
Ai′(r2/3γ2)|2. (4.60)

We begin by simplifying a0 and a1 below:

a0 =
ψ̃ξ0ξ(α+)dθdt + ψ̃ξ0ξ(α−)dθdt

2
=
ψ̃ξ0ξ(α+) + ψ̃ξ0ξ(α−)

2
dθ

dt
(4.61)

and similarly

a1 =
ψ̃ξ0ξ(α+)− ψ̃ξ0ξ(α−)

2γ
dθ

dt
.

Remark. In the above we facilitate the application of [BH86] by writingG0(±γ) = ψ̃(u(±γ))dθdt |t=±γ

simply as ψ̃(α±)dθdt and avoiding the direct use of the new variable t.

If we let F 0
ξ0,ξ

=
[
ψ̃ξ0,ξ(α+)+ψ̃ξ0,ξ(α−)

2

]
and F 1

ξ0,ξ
=
[
ψ̃ξ0,ξ(α+)−ψ̃ξ0,ξ(α−)

2γ

]
, then Equation (4.60)

becomes

p(r, s) ∼ |dθ
dt
|2 · |Ai(r

2/3γ2)
r1/3

F 0
ξ0,ξ +

Ai′(r2/3γ2)
r2/3

F 1
ξ0,ξ|

2. (4.62)
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As dθ
dt and γ are calculated above, it only remains to determine F 0 and F 1.

Since ψ̃↓,↓ ≡ 1, we obtain F 0
↓,↓ = 1 and F 1

↓,↓ = 0 with no work. Also, as ψ̃↑,↑ is an even function,

F 1
↑,↑ will be 0 as well, while F 0

↑,↑ = ψ̃↑,↑(α+). As ψ̃↑,↓(θ) = ψ̃↓,↑(−θ), we know that F 0
↓,↑ = F 0

↑,↓ and

F 1
↓,↑ = −F 1

↑,↓. Thus we have reduced our number of calculations from 8 to 3. Using the notation

from above we have

F 0
↑,↑ =

(1− c)(1 + c)
(1− y−c)(1− y+c)

=
(1− c)(1 + c)
1 + c2 + cA

=
δ(1− c) + (1 + c)

1− c

and

F 0
↑,↓ =

1
2

y− + y+ − 2c
(1− y−c)(1− y+c)

√
1− c2 =

1
2

−A− 2c
1 + c2 + cA

√
1− c2 =

δ(1− c) + 2c
2c(1− c)

√
1− c2

while

F 1
↑,↓ =

√
1− c2

2γ

[
y−

1− y−c
− 1
y− − c

]
=
√

1− c2

2γ
·

y2
− − 1

(1− yc)(y− − c)
=
√

1− c2

2γ
· −2y+ −A

Ac+ 1 + c2
.

Making substitutions for y+, A, and γ gives the estimate F 1
↑,↓ ∼

(1+c)1/6·
√
δ(1−c)(1+c)+4c

2c5/6
√

1−c and

completes the proof of the theorem. �
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4.4 The Three-Chirality QRW on Z

In this section we include a brief discussion of a three-chirality walk on the line. In this walk, (first

studied in [Kon05b]) the particle either moves one step to the left or right, or stays still with each

time step, thus

M :=


x 0 0

0 1 0

0 0 x−1

 .

The matrix

U3
Had :=

1
3


1 −2 −2

−2 1 −2

−2 −2 1


is used as the unitary coin flip operator. We will denote the three chiralities R, M and L.

While the walk behaves very similarly to the 2 chirality walks above in most regions, including

exponential decay outside an interval, and relatively uniform oscillation in another, it also includes

a bound state, that is, a particular ratio λ′ = r/s just that lims→∞ aλ′s,s 6= 0. We give a simplified

proof of the results found in [Kon05b]). For example, the existence of a potential bound state is

immediate from the factoring of the generating function Ĥ3 := (1+y)(−3y2x+y+4yx+yx2−3x)

as the first factor depends only on y with unit root. While we require Theorem 5.9 as V1 is not

smooth, we include our asymptotics here along with the above results for walks on the line. We

also show that Theorem 5.9 cannot prescribe asymptotics for the bound state; we use an alternate

technique to determine these asymptotics.



69

4.4.1 Statement of Results

Theorem 4.17. For the three-chirality Quantum Random Walk with unitary matrix U = U3
Had,

let J = (−
√

1/3, 0)∪ (0,
√

1/3) and λ = r
s . Let pr := pr,s denote the probability to be at position r

at time s. Then as |r| → ∞, uniformly over r̂ in a compact subset of the interior of J , there are

phase functions ρξ0,ξ(r, s) defined in Equation (4.83), such that

pR,R(r, s) ∼ 1
2πs

· (1 + λ)3

(1− λ)
√

2− 6λ2
cos2(ρR,R(r, s)) (4.63)

pR,M (r, s) ∼ 1
πs

· (1 + λ)2√
2− 6λ2

cos2(ρR,M (r, s)) (4.64)

pR,L(r, s) ∼ 1
2πs

· (1 + λ)(1− λ)√
2− 6λ2

cos2(ρR,L(r, s)) (4.65)

pM,R(r, s) ∼ 1
πs

· (1 + λ)2√
2− 6λ2

cos2(ρM,R(r, s)) (4.66)

pM,M (r, s) ∼ 2
πs

· (1 + λ)(1− λ)√
2− 6λ2

cos2(ρM,M (r, s)) (4.67)

pM,L(r, s) ∼ 1
πs

· (1− λ)2√
2− 6λ2

cos2(ρM,L(r, s)) (4.68)

pL,R(r, s) ∼ 1
2πs

· (1 + λ)(1− λ)√
2− 6λ2

cos2(ρL,R(r, s)) (4.69)

pL,M (r, s) ∼ 1
πs

· (1− λ)2√
2− 6λ2

cos2(ρL,M (r, s)) (4.70)

pL,L(r, s) ∼ 1
2πs

· (1− λ)3

(1 + λ)
√

2− 6λ2
cos2(ρL,L(r, s)) (4.71)

When λ /∈ J ∪ {0} then for every integer N > 0 there is a C > 0 such that Pr (r) ≤ C|r|−N with

C uniform as r ranges over a neighborhood N of r whose closure is disjoint from the closure of J .
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Theorem 4.18. For the three-chirality Quantum Random Walk with unitary matrix U = U3
Had,

define pr as above. Then the particle appears at the origin with the probabilities:

lim
s→∞

pR,R(0, s) =
1
6

(4.72)

lim
s→∞

pR,M (0, s) =
5− 2

√
6

3
(4.73)

lim
s→∞

pR,L(0, s) =
49− 20

√
6

6
(4.74)

lim
s→∞

pM,R(0, s) =
5− 2

√
6

3
(4.75)

lim
s→∞

pM,M (0, s) =
2
3

(4.76)

lim
s→∞

pM,L(0, s) =
5− 2

√
6

3
(4.77)

lim
s→∞

pL,R(0, s) =
49− 20

√
6

6
(4.78)

lim
s→∞

pL,M (0, s) =
5− 2

√
6

3
(4.79)

lim
s→∞

pL,L(0, s) =
1
6

(4.80)

We once again demonstrate our results pictorially, this time with a graph of the walk’s actual

probabilities versus the predicted upper envelope (calculated by dropping the cos2 term from our

asymptotic prediction) for (ξ0, ξ) equal to each of (L,L), (L,M), and (L,R). With time t = 400, we

use a shifted walk beginning at the point r = 401. We note that as the prediction of Theorem 4.17

holds for λ in a compact subset of J , we refer to Theorem 4.18 for r = 401.
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Figure 3: Time t = 400 probability values by location (pL,L on left and pL,D on right) for the three

chirality walk on the line and our asymptotic prediction of the upper envelope. The asymptotic

values of pL,L(401, 400) and pL,M (401, 400) predicted by Theorem 4.18 are 1
6 and 5−2

√
6

3 ≈ .0168,

respectively. The actual values of pL,L(401, 400) and pL,M (401, 400), too large to appear in these

viewing windows, are ≈ 0.1675 and ≈ .0255, respectively. As ρL,M (0, s) is close to 0, it will take

much longer for pL,M (0, s) to converge than for the other states pictured above.

4.4.2 Proof of Theorem 4.17

We define G,F, x, y,X, Y, r, s,H and λ as earlier in this chapter, with one exception. To clear

denominators we define Ĥ := −3xdet(I − yMU3
Had). (We also include a factor of −3x in G as not

to affect asymptotics.) As this gives Ĥ = (1+y)(−3y2x+y+4yx+yx2−3x), it will be convenient

to define H = −3y2x + y + 4yx + yx2 − 3x. While Ĥy will vanish on the unit torus, we still aim

to use a result like that of Theorem 4.8. To this end, we turn to Theorem 5.9 of the following

chapter, while also making an adjustment to account for the factoring of Ĥ. For the purpose of the

following discussion we note that the image of dir (V1) is a subset of the set K from Theorem 5.9,

while the result of Theorem 5.9 is a generalization to dimension d of the result for Theorem 4.8.

We will be more thorough and specific in our exploration of these connections in the next chapter.
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Figure 4: Time t = 400 probability values by location (pL,R) for the three chirality walk on the

line and our asymptotic prediction of the upper envelope. The asymptotic value of pL,R(401, 400)

predicted by Theorem 4.18 is 49−20
√

6
6 ≈ .0017

Our current modification is the treatment of the (1 + y) factor in Ĥ as a locally smooth

factor, which we do as follows. Using the fact that cos(X) = 1
2 (x + 1/x) for x on the unit torus,

we factor Ĥ as Ĥ = 2xy(1 + y)(cos(X) − 3 cos(Y ) + 2). We then write V1 = C1 ∪ C2 where

C1 = {(x, y) : |x| = |y| = 1, cos(X) − 3 cos(Y ) = 2} and C2 = {(x, y) : |x| = 1, y = −1}. Then

every (x, y) ∈ C2 can only contribute towards asymptotics in the direction λ = − dY
dX = 0, which is

the image of the Gauss map of C2. As C2 is a flat plane, Gaussian curvature vanishes there, so we

may effectively ignore C2 as we apply Theorem 5.9. Our modified result will then have an extra

factor of y+1 in the denominator of its asymptotic estimate, and we can now deal with H instead

of Ĥ.

Next we accommodate the fact that C1 is not smooth. That is to say, ∇H vanishes on C1. As

the lexicographic Gröbner Basis for the ideal generated by H, Hx and Hy is {y − 1, x − 1}, we

see that the gradient of H vanishes on C1 precisely at the point (1, 1). The use of an additional

Gröbner basis shows that this point is the only one on C1 where Hy vanishes. Theorem 5.9 can then
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handle this case, delivering a result like that of Theorem 4.8, under the appropriate conditions.

In this case those conditions are met on account of the facts that dir (1, 1) /∈ J and while H does

vanish to degree 2 at (x, y) = (1, 1), G vanishes at this point as well. The second of these we

observe as

G :=


−3x+ y + yx+ y2 2yx(−y + x) −2yx2(y − 1)

2y(−y + x) −3x+ y + yx2 + y2x −2y(−1 + yx)x

−2y(y − 1) −2y(−1 + yx) (−3 + y + yx+ y2x)x


vanishes at (x, y) = (1, 1), while we establish the first in the following lemma.

Lemma 4.19. dir (1, 1) /∈ J

Before proving the lemma we also note that the factoring of Ĥ and the vanishing of ∇H on

C1 do not combine to create a problem greater than the sum of their parts. To be more specific,

another Gröbner Basis computation shows that the gradient of Ĥ also only vanishes on C1 ∪ C2

at the point (1, 1).

Proof of Lemma 4.19: We recall that (x, y) ∈ C1 precisely when

3 cos(Y ) = 2 + cos(X). (4.81)

Differentiating this equation implicitly with respect to X gives the other critical point equation:

−λ =
dY

dX
=

sin(X)
3 sin(Y )

(4.82)

Squaring this equation results in λ2 = 1−cos2(X)
9(1−cos2(Y ) . Substituting the value of cos(Y ) given by

Equation (4.81) results in the equation λ2 = 1+cos(X)
1+5 cos(X) . Thus as (x, y) → (1, 1) ∈ C1, the direction

λ associated to (x, y) can only go to ±
√

1/3 /∈ J . �

Another advantage of using Theorem 5.9 instead of a result like Theorem 4.8 is that we only

need to show dir (C1 \ (1, 1)) = J ∪ {0} as opposed to proving a version of Proposition 4.11. The

only other major hypothesis of Theorem 5.9 is a result of Proposition 4.2.
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Proposition 4.20. dir (C1 \ (1, 1)) = J ∪ {0}.

Proof: The inclusion dir (C1 \ (1, 1)) ⊂ J ∪{0} follows immediately from the fact λ2 = 1+cos(X)
5+cos(X) ,

which we demonstrated in the proof of Lemma 4.19. For the inclusion J ∪ {0} ⊂ dir (C1 \ (1, 1)),

we choose λ ∈ J ∪ {0} and solve for all possible points (x(λ), y(λ)), by letting K = sxHx − ryHy

and using the Maple command GB = Basis ([H,K], plex(y, x)). The first basis element is the

minimal polynomial for x. Letting λ = r
s and discarding the solution x = 1 we get

x =
5λ2 − 1± 2λ

√
6λ2 − 2

1− λ2
.

When λ ∈ J ∪{0}, 6λ2− 2 < 0 and the solutions are conjugate complex units. By Proposition 4.2

the y coordinates are also units, completing the proof. �

It now remains only to mimic the last step in the proof of 4.5. With an extra factor of 1 + y in

each denominator, we have that for each pair (ξ0, ξ) ∈ {L,M,R}2 and r/s ∈ J ,

pξ0ξ(r, s) ∼
2
π

cos2 ρξ0ξ(r, s)
∣∣∣∣G2

ξ0ξ

−yHy

s(1 + y)2Q(x, y)

∣∣∣∣
where

ρξ0,ξ(r, s) := Arg

(
Gξ0,ξ√

2π
x−ry−s

√
−yHy

s(1 + y)2Q(x, y)

)
. (4.83)

Again we solve for the minimal polynomial of the bulk of this expression:

w := G2
ξ0ξ

−yHy

s(1 + y)2Q(x, y)
.

Recalling that (x, y) satisfies H(x, y) = K(x, y) = 0, we introduce a variable z := 1/((1+y)2sQ)

so that when ξ0 = ξ = R, w may be expressed as the solution to the following four polynomial

equations.

H = 0

K = 0

(1 + y)2szQ− 1 = 0

w + (−3x+ y + yx+ y2)2(yHy)z = 0
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To obtain a polynomial in w alone, we use the Basis command with term order plex(x, y, z, w),

resulting in the polynomial

32s4(3r2 − s2)(r − s)2w2 − (r + s)6.

With λ = r/s, we find that

|wR,R| =
(1 + λ)3

4(1− λ)s
√

2− 6λ2
.

We repeat this process for each pair (ξ0, ξ) ∈ {L,M,R}2, noting that |Gξ0,ξ| = |Gξ,ξ0 | in each of

our cases, as x and y are units. When the minimal polynomial of wξ0,ξ is of the form Aw2+Bw+C

with B 6= 0, we find that |wξ0,ξ| =
√
C/A, as is shown at the end of Section 4.2. Theorem 4.17

follows. �
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4.4.3 Proof of Theorem 4.18

As Gaussian curvature vanishes on C2, Theorem 5.9 will not be able to deliver asymptotics in

the direction λ = 0. Alternatively, we use the Hautus-Klarner-Furstenberg method for diagonal

extraction; we borrow the description of this method from Section 2.4 of [Pem09], particularly the

proof of its Theorem 2.8. This method requires a rational power series, versus the Laurent series

above, so we now use

M :=


x2 0 0

0 x 0

0 0 1


giving us a walk with asymptotics in the direction λ = 1 equal to those of our original walk in the

direction λ = 0.

Given a generating function F (x, y) = G(x,y)
H(x,y) =

∑
r,s≥0 arsx

rys, the method will deliver the

univariate generating function h(z) :=
∑
n≥0 annz

n as follows. Since F converges in a neighborhood

of the origin, for |y| sufficiently small, the function F (z, y/z) converges absolutely for z in some

annulus A(y). If we treat y as a constant and view F (z, y/z) as a Laurent series expansion with

respect to z in the annulus A(y), then the constant term of this series will be h(y). Thus by

Cauchy’s integral formula,

h(y) =
1

2πi

∫
C

G(z, y/z)
zH(z, y/z)

dz

where C is any circle around the origin in A(y). Then by the Residue Theorem

h(y) =
∑
j

RES
(
G(z, y/z)
zH(z, y/z)

; aj

)
where the aj are the poles inside the inner circle of the annulus. These are the poles that converge

to 0 as y → 0.

We demonstrate the use of this method in the calculation of lims→∞ pL,M (0, s) and note that

Maple’s residue command may be used to automate the process. In this case

GL,M (z, w/z)
zHL,M (z, w/z)

=
2w(wz − 1)

z(w + 1)[−wz2 + (3w2 − 4w + 3)z − w]
=

2(1− wz)
z(w + 1)(z − a+)(z − a−)
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where a± = 3w2−4w+3±(w−1)
√

9w2−6w+9
2w . We then use the method of partial fractions to write

GL,M (z,w/z)
zHL,M (z,w/z) = A0

z + A1
z−a+

+ A2
z−a− . Since z = 0 and z = a+ are the poles that go to 0 with

w, h(w) is the sum of their residues. Setting z = 0 and z = a+ we find in turn that A0 =

2
a+a−(w+1) and A1 = 2

a+(w+1)(a+−a−) −
2w

(w+1)(a+−a−) . Thus h(w) =
∑
n≥0 annw

n = 2
a+a−(w+1) +

2
a+(w+1)(a+−a−) −

2w
(w+1)(a+−a−) . Using the fact that a+a− = 1 and otherwise simplifying, we

find h(w) = w−3+
√

9w2−6w+9
(w+1)

√
9w2−6w+9

. Now as w = −1 is the pole of h closest to the origin and it

is a simple pole, we know limn→∞ ann = RES (h(w);−1) = h(w)(w + 1)|w=−1 = 3−
√

6
3 . Thus

lims→∞ pL,M (0, s) =
(

3−
√

6
3

)2

= 5−2
√

6
3 . Repeating this process for each pair of chiralities proves

the theorem. �

Remark. Alternatively, we could prove the above by using results of [PW04], adapted for torally

minimal multiple points. This approach, however, would be less self-contained. Also, their theorem

as written does not cover this case, though in fact their results hold in this case, as seen in the

later work [BP08]. We make this note as their methods are significantly more robust than the

diagonal method employed above. That being said, in this case the diagonal method lets us

quickly reproduce the results from [Kon05b].
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5 QRWs on Zd

In this chapter we provide the first results for several families of two-dimensional Quantum Random

Walks, determining new, more transparent asymptotic results for multivariate generating functions

along the way. In our QRWs on the plane, the feasible region (the region where probabilities do

not decay exponentially with time) grows linearly with time, as is the case with one-dimensional

QRWs. The limiting shape of the feasible region is, however, quite different. The limit region

turns out to be an algebraic set, which we characterize as the rational image of a compact algebraic

variety. We explicitly determine the boundary of this region using algebraic methods. We also

compute the probability profile within the limit region, which is essentially a negative power of

the Gaussian curvature of the same algebraic variety. Our methods are based on analysis of the

space-time generating function, following the methods of [PW02]. We also give asymptotics for

the Hadamard QRW on the plane, as well as preliminary results for walks in dimension d > 2.

Throughout this chapter, d will designate the dimension of the integer lattice for the walk, and

thus one less than the dimension of the associated generating function. This is in contrast to the

first three chapters, in which d designated the dimension of the generating function.

5.1 An Introduction to QRWs on the plane

Published work on Quantum Random Walks in dimensions two and higher began around 2002

(see [MBSS02]). Most studies, including the most recent and broad study [KWKK08], are con-

cerned to a great extent with localization; this phenomenon is not generic in quantum random walk

models and among the models we discuss, it is only present in the Hadamard walk of Section 5.5.

The analyses we have seen range from analytic derivations without complete proofs to numerical

studies. As far as we know, no rigorous analysis of two-dimensional QRW has been published. The

question of describing the behavior of two-dimensional QRW was brought to the attention of Robin

Pemantle and Yuliy Baryshnikov by Cris Moore (personal communication). In the next two sec-
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tions, we answer this question by proving theorems about the limiting shape of the feasible region

(the region where probabilities do not decay exponentially with time) for two-dimensional QRW,

and by giving asymptotically valid formulae for the probability amplitudes at specific locations

within this region.

As in dimension d = 1, our analyses begin with the space-time generating function: a multi-

variate rational function which may be derived without too much difficulty. This approach pays its

greatest dividends in dimension two and higher. While alternative techniques become exceedingly

complicated here, we can continue to use the methods introduced in [PW02, PW04, PW08] and

reviewed in Section 2.2 allowing nearly automatic transfer from rational generating functions to

asymptotic formulae for their coefficients. Based on these results, analyses of any instance of a

Figure 5: Fixed-time empirical plot (on right for time 200) versus theoretical limit (on left)

two-dimensional QRW becomes relatively easy, although in some cases new versions of the results

under weaker hypotheses were required. Empirically computed probability profiles such as are

shown on the right in Figure 5 are explained by algebraic computations, leading to limit shapes as

shown on the left. We computed probability profiles for a number of instances of two-dimensional

QRW. The pictures, which appear scattered throughout the upcoming sections, are quite varied.
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Not only did we find these pictures visually intriguing, but they pointed toward some refinements

of the theoretical work in Section 2.2, which we now describe, beginning with a more detailed

description of the two plots.

On the right is depicted the probability distribution for the location of a particle after 200 steps

of a Quantum Random Walk on the planar integer lattice; the particular instance of QRW is a

nearest neighbor walk (E = {(0, 1), (0,−1), (1, 0), (−1, 0)}) whose unitary matrix is discussed in

Section 5.3. Greater probabilities are shown as darker shades of grey. The feasible region, where

probabilities are not identically zero, is the diamond with vertices at the midpoints of the 400×400

square. The region where probabilities are not extremely close to zero appears to be a slightly

rounded, smaller diamond.

In [Bra07], Wil Brady computed an asymptotically valid formula for the probability amplitudes

associated with some instances of QRW. As n→∞, the probabilities become exponentially small

outside of a certain algebraic set Ξ, but are Θ(n−2) inside of Ξ. Theorem 4.5 of [Bra07] proves

such a shape result for a different instance of two-dimensional QRW and conjectures it for this one,

giving the believed characterization of Ξ as an algebraic set. The plot on the left side in Figure 5

is a picture of this characterization, constructed by parameterizing Ξ by patches in the flat torus

T0 := (R/2πZ)2 and then depicting the patches by showing the image of a grid embedded in the

torus.

When the plot was constructed, it was intended only to exhibit the overall shape. Nevertheless,

it is visually obvious that significant internal structure is duplicated as well. Identical dark regions

in the shape of a Maltese cross appear inside each of the two figures. To explain this, we consider

the map Φ : T → R2 whose image produces the region Ξ. Let V denote the pole variety of the

generating function F for a given QRW, that is, the complex algebraic hypersurface on which the

denominator H of F vanishes. Let V1 denote the intersection of V with the unit torus T. It is

easy to solve for the third coordinate z as a local function of x and y on V1 and thereby obtain a
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piecewise parametrization

(α, β) 7→
(
eiα, eiβ , eiφ(α,β)

)
of V1 by patches in R2. Theorem 5.7 extends the results of [PW02] to show that each point z of V1

produces a polynomially decaying contribution to the probability profile for movement at velocity

(r, s) which is the image of z under the logarithmic Gauss map n of the surface V1 at z:

n(z) :=
(
x
∂H

∂x
, y
∂H

∂y
, z
∂H

∂z

)
.

Formally, n maps into the projective space RP2, but we map this to R2 by taking the projection

π(r, s, t) := (r/t, s/t, 1). In other words, the plot is the image of the grid (Z/100Z)2 under the

following composition of maps:

(Z/100Z)2 ι−→ S1 × S1 (1,1,φ)−−−−→ V n−→ RP2 π−→ R2 . (5.1)

The intensity of an image of a uniform grid of dots is proportional to the inverse of the Jacobian

of the mapping. The Jacobian of the composition is the product of the Jacobians of the factors,

the most significant factor being the Gauss map, n. Its Jacobian is just the Gaussian curvature

(in logarithmic coordinates). The darkest regions therefore correspond to the places where the

curvature of logV1 vanishes. Alignment of this picture with the empirical amplitudes can only

mean that the formulae for asymptotics of generating functions given in [PW02] blow up when the

Gaussian curvature of logV1 vanishes. This observation allowed us to produce new expressions for

the quantities in the conclusions of theorems in [PW02], where lengthy polynomials were replaced

by quantities involving Gaussian curvatures.

To summarize, in the next three sections we will:

1. Prove (In Theorem 5.18), the shape conjecture from [Bra07]; further instances of this are

proved in Theorems 5.11 and 5.16.

2. Reformulate (in Theorems 5.7 and 5.9) the main result in [PW02] to clarify the relation
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between the asymptotics of a multivariate rational generating function and the curvature of

the pole variety in logarithmic coordinates.

3. Algebraically determine the directions associated with the subvariety on which curvature

vanishes.

The next two sections of this thesis are rather lengthy, and as such we give the following addi-

tional guidance as towards its organization. Below we summarize relevant background information

concerning Quantum Random Walks on the plane. We then supplement the background given

in Section 2.2 and Chapter 3 with additional background on notions of Laurent polynomials, the

multivariate Cauchy formula, and certain standard applications of the stationary phase method to

the evaluation of oscillating integrals. Section 5.2 contains general results on rational multivari-

ate asymptotics, clarifying the role of curvature, which, along with its application to QRW limit

theorems, is at the core of this thesis. In particular, Theorem 5.7 gives a new formulation of the

main result of [PW02], while Theorem 5.9 proves a version of these results in situations where

the geometry of V1 is more complicated than can be handled by the methods of [PW02]. Finally,

Section 5.3 applies these results to a collection of instances of two-dimensional nearest neighbor

QRW in which the unitary matrices are elements of one-parameter families named S(p), A(p) and

B(p), 0 < p < 1. This results in Theorems 5.11, 5.16 and 5.18 respectively. The QRW in Figure 5

has unitary matrix B(1/2), while the following figures show examples of the S(1/2) and A(5/9)

Quantum Random Walks.
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Figure 6: Limiting region (left) and Probabilities at time 200 (right) for the S(1/2) QRW

Figure 7: Limiting region (left) and Probabilities at time 200 (right) for the A(5/9) QRW
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We define each of d, U , F and M as in Section 4.1, using the transfer matrix method [Sta97,

GJ83] to determine the explicit expression

F(z) = (I − zd+1MU)−1
. (5.2)

for the generating function defined as

F (i,j)(x, y, z) =
∑
n,r,s

ψ(i,j)
n (r, s)xryszn

where we will use

M =



x 0 0 0

0 x−1 0 0

0 0 y 0

0 0 0 y−1


as we will focus on nearest neighbor QRWs. As before, the (i, j)-entry of the matrix, F (i,j), may

be written as a rational function G/H where

H = det(I − zd+1MU) .

A Hadamard matrix is one whose entries are all ±1. There is more than one rank-4 unitary

matrix that is a constant multiple of a Hadamard matrix, but for some reason the “standard

Hadamard” QRW in two dimensions is the QRW whose unitary matrix is

UHad :=
1
2



1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 1


.

This is referred to by Konno [IKK04, KWKK08] as the “Grover walk” because of its relation

to the quantum search algorithm of L. Grover. Shown on the right in Figure 8 is a plot of the

probability profile for the position of a particle performing a standard Hadamard QRW for 200

time steps. This is the only two-dimensional QRW we are aware of for which even a nonrigorous
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analysis had previously been carried out. On the left, in Figure 8, is the analogous plot of the

region of non-exponential decay. We give asymptotics for certain regions of this walk’s probability

distribution in Section 5.5.

Figure 8: Limit Prediction (left) and Exact Probabilities at time 200 for Moore’s Hadamard QRW

Another 4 × 4 unitary Hadamard matrix reflects the symmetries of (Z/(2Z))2 rather than

Z/(4Z):

ŨHad :=
1
2



1 1 1 1

−1 1 −1 1

1 −1 −1 1

−1 −1 1 1


.

This matrix also goes by the name of S(1/2) and is a member of the first family of QRW that we

will analyze. There is no reason to stick with Hadamard matrices. Varying U further produces

a number of other probability profiles including the families S(p), A(p) and B(p) analyzed in

Section 5.3.
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5.2 The Connection Between Curvature and Asymptotics

We begin this section by giving necessary background on amoebas and Cauchy’s formula, in ad-

dition to oscillatory integrals. While there is some overlap with Section 2.2, the following refines

those descriptions for use in the theorems to come. We refer the reader to Chapter 3 for further

background.

5.2.1 Amoebae and Cauchy’s formula

Let F = G/H be a quotient of Laurent polynomials, with pole variety V := {z : H(z) = 0}. Let

Log : (C∗)d+1 → Rd+1 denote the log-modulus map, defined by

Log (z) := (log |z1|, . . . , log |zd+1|) .

The amoeba of H is defined to be the image under Log of the variety V. To each component B of

the complement of this amoeba in Rd+1 corresponds a Laurent series expansion of F . When F is

the (d+ 1)-variable spacetime generating function of a d-dimensional QRW, we will be interested

in the component B0 containing a translate of the negative zd+1-axis; this corresponds to the

Laurent expansion that is an ordinary series in the time variable and a Laurent series in the space

variables. For QRW, the point 0 is always on the boundary of B0. In general, all components of the

complement of any amoeba are convex. For further details and properties of amoebas, see [GKZ94,

Chapter 6].

For any r ∈ Rd+1, let r̂ denote the unit vector r/|r|. Two important hypotheses that will be

satisfied for QRW are as follows.

The function r · x is maximized over B0 at a specified point x∗ ; (5.3)

we will be primarily concerned with those r̂ for which this maximizing point is the origin, and we

denote by K the set of r̂ for which this holds: thus for r̂ ∈ K and x ∈ B0, r · x ≤ 0 with equality
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when x = 0. Secondly, we assume that the set W = W(r) of z = exp(x + iy) such that

H(z) = 0 and ∇logH(z) ‖ r̂ (5.4)

is finite. The set W(r) depends on r only through r̂. We introduce the notation ∇logH(z)

to denote the gradient of H ◦ exp evaluated at log(z) and note that at z ∈ W, ∇logH(z) =

(z1∂H/∂z1, . . . , zd+1∂H/∂zd+1). It is immediate from (5.4) that ∇logH(z) is a multiple of the real

vector r̂.

Before we proceed we point out a condition under which (5.4) is always satisfied. Suppose that

V1 is smooth off a finite set E, and we let r be some direction such that hypothesis (5.4) fails. The

set W(r) is algebraic, so if it is infinite it contains a curve, which is a curve of constancy for the

logarithmic Gauss map. This implies that the Jacobian of the logarithmic Gauss map vanishes on

the curve, which is equivalent to vanishing Gaussian curvature at every point of the curve. Thus,

if we restrict r to the subset of V1 where K 6= 0, then hypothesis (5.4) is automatically satisfied.

The coefficients ar of the Laurent series corresponding to B0 may be computed via Cauchy’s

integral formula. Define the flat torus T0 := (R/(2πZ))d+1. The following proposition is well

known.

Proposition 5.1 (Cauchy’s Integral Formula). For any u interior to B0,

ar =
(

1
2π

)d+1

exp(−r · u)
∫
T0

exp(−ir · y)F ◦ exp(u + iy) dy . (5.5)

Corollary 5.2. Let λ := λ(r̂) := sup{r̂ · x : x ∈ B0}. For any λ′ < λ, the estimate

|ar′ | = o(exp(−λ′|r′|))

holds uniformly as r′ →∞ in some cone with r in its interior.

Proof: Pick u interior to B0 such that r · u > λ′. There is some ε > 0 and some cone K with

r in its interior such that r′ · u ≥ λ′ + ε for all r′ ∈ K. The function F is bounded on the torus

exp(u + iy), and the corollary follows from Cauchy’s formula. �
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Note: We allow for the possibility that hypothesis (5.4) holds for no points with modulus 1. In

the asymptotic estimate (5.13) below, the sum will be empty and we will be able to conclude that

ar = O(|r|−(d+1)/2), as opposed to Θ(|r|−d/2) in the more interesting regime; we will not be able

to conclude that ar decays exponentially, as it does when r /∈ K. This will correspond to the case

where in fact r ∈ K \K.

5.2.2 Oscillating integrals

Let M be an oriented d-manifold, let φ : M→ R be a smooth function and let A be a smooth d-

form on M. Say that p∗ ∈M is a critical point for φ if dφ(p∗) = 0. Equivalently, in coordinates,

p∗ is critical if the gradient vector ∇φ(p∗) vanishes. At a critical point, φ(p)− φ(p∗) is a smooth

function of p which vanishes to order at least 2 at p = p∗. Say that a critical point p∗ for φ is

quadratically nondegenerate if the quadratic part is nondegenerate; in coordinates, this means

that the Hessian matrix

H(φ; p∗) :=
(

∂2φ

∂xi∂xj
(p∗)

)
1≤i,j≤k

has nonzero determinant. It is well known (e.g., [BH86, Won89]) that the integral

∫
M

exp(iλφ(y))A(y) dy

can be asymptotically estimated via a stationary phase analysis. The following formulation is

adapted from [Ste93].

If p 7→ (x1, . . . , xd) is a local right-handed coordinatization, we denote by η[p, dx] the value A(p)

for the function A such that η = A(p) dx. If the real matrix M has nonvanishing real eigenvalues,

we denote a signature function σ(M) := n+(M) − n−(M) where n+(M) (respectively n−(M))

denotes the number of positive (respectively negative) eigenvalues of M . Given φ and η as above,

and a critical point p∗ for φ, we claim that the quantity F defined by

F(φ, η, p∗) := e−iπσ/4 |detH(φ; p∗)|−1/2
η[p∗, dx] (5.6)
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does not depend on the choice of coordinatization. To see this, note that the symmetric matrix

H has nonzero real eigenvalues, whence iH has purely imaginary eigenvalues and the quantity

e−iπσ/4|detH(φ; p∗)|−1/2 is a −1/2 power of det(iH), in particular, the product of the reciprocals

of the principal square roots of the eigenvalues. Up to the sign choice, this is invariant because a

change of coordinates with Jacobian J at p∗ divides η[p∗, dx] by J and H(φ; p∗) by J2. Invariance

of the sign choice follows from connectedness of the special orthogonal group, implying that any

two right-handed coordinatizations are locally homotopic and the sign choice, being continuous,

must be constant.

Lemma 5.3 (nondegenerate stationary phase integrals). Let φ be a smooth function on a d-

manifold M and let η be a smooth, compactly supported d-form on M. Assume the following

hypotheses.

1. The set W of critical points of φ on the support of η is finite and non-empty.

2. φ is quadratically nondegenerate at each p∗ ∈ W.

Then ∫
M

exp(iλφ) η =
(

2π
λ

)d/2 ∑
p∗∈W

eiλφ(p∗)F(φ, η, p∗) +O
(
λ−(d+1)/2

)
. (5.7)

Remarks. The stationary phase method actually gives an infinite asymptotic development for this

integral. In our application, the contributions of order λ−d/2 will not cancel, in which case (5.7)

gives an asymptotic formula for the integral. The remainder term (see [Ste93]) is bounded by a

polynomial in the reciprocals of |∇φ| and detH and partial derivatives of φ (to order two) and

η (to order one); it follows that the bound is uniform if φ and η vary smoothly with (1) and (2)

always holding.

Proof: Let {Nα} be a finite cover of M by open sets containing at most one critical point of φ,

with each Nα covered by a single chart map and no two containing the same critical point. Let
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{ψα} be a partition of unity subordinate to {Nα}. Write

I :=
∫
M

exp(iλφ) η

as
∑
α Iα where

Iα :=
∫
Nα

exp(iλφ) η ψα .

According to [Ste93, Proposition 4 of VIII.2.1], when Nα contains no critical point of φ then Iα is

rapidly decreasing, i.e, Iα(λ) = o(λ−N ) for everyN . According to [Ste93, Proposition 6 of VIII.2.3],

whenNα contains a single nondegenerate critical point p∗ for φ then, using the fact that ψα(p∗) = 1,

Iα =
(

2π
λ

)d/2
A(p∗)

d∏
j=1

µ
−1/2
j +O

(
λ−d/2−1

)
where η = A(x)dx in the local chart map, {µj} are the eigenvalues of iH in this chart map, and

the principal −1/2 powers are chosen. Summing over α then proves the lemma. �

As a corollary, we derive the asymptotics for the Fourier transform of a smooth d-form on

an oriented d-manifold immersed in Rd+1. Let M be such a manifold and let K(p) denote the

curvature of M at p. If η is a smooth, compactly supported d-form on M, denote η[p] = η[p, dx]

with respect to the immersion coordinates, and define the Fourier transform η̂ by

η̂(r) :=
∫
M
eir̂·x · η .

Corollary 5.4. Let K be a compact subset of the unit sphere. Assume that for r̂ ∈ K, the set W

of critical points for the phase function r̂ · x is finite (possibly empty), and all critical points are

quadratically nondegenerate. For x ∈ W, let τ(x) denote the index of the critical point, that is, the

difference between the dimensions of the positive and negative tangent subspaces for the function

r̂ · x. Then

η̂(r) =
(

2π
|r|

)d/2 ∑
x∗∈W

eir·x∗η[x∗]K(x∗)−1/2e−iπτ(x∗)/4 +O
(
λ−(d+1)/2

)
uniformly as |r| → ∞ with r̂ ∈ K.
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Proof: Plugging φ = r̂ · x into Lemma 5.3, and comparing with (5.6) we see that we need only

to verify for each x∗ ∈ W that

e−iπσ/4 |detH(φ;x∗)|−1/2
η[x∗, dx] = η[x∗] |K(x∗)|−1/2

e−iπτ(x∗)/4 .

With the immersed coordinates, σ = τ , and this amounts to verifying that

|detH(φ;x∗)| = |K(x∗)|.

Let P denote the tangent space to M at x∗ and let u1, . . . , ud be an orthonormal basis for P. Let

v be the unit vector in direction r̂, which is orthogonal to P because x∗ is critical for φ. In this

coordinate system, express M as a graph over P. Thus locally,

M = {x∗ + u + h(u)v : u ∈ P}

for some smooth function h with h(0) and ∇h(0) vanishing. Let Q denote the quadratic part of

h. By Corollary 3.3, we have K(x∗) = ||Q||. But

φ(x∗ + u + h(u)v) = φ(x∗) + h(u)

whence H(φ;x∗) = Q, completing the verification. �

5.2.3 Results on multivariate generating functions: when V is smooth on the unit

torus

In this section, we state general results on asymptotics of coefficients of rational multivariate

generating functions. These results extend previous work of [PW02] in two ways: the hypotheses

are generalized to remove a finiteness condition, and the conclusions are restated in terms of

Gaussian curvature. Our two theorems concern reductions of the (d+ 1)-variable Cauchy integral

to something more manageable; the second theorem is an extension of the first.

We give some notation and hypotheses that are assumed throughout this section. Let F = G/H

be the quotient of Laurent polynomials in d + 1 variables z := (z1, . . . , zd+1) and let B0 be a
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component of the complement of the amoeba of H containing a translate of the negative zd+1-axis

(see Section 5.2.1). Assume 0 ∈ ∂B0 and let F =
∑

r arz
r be the Laurent series corresponding to

B0. Let V denote the set {z ∈ Cd+1 : H(z) = 0} and V1 := V ∩ T denote the intersection of V

with the unit torus. Let E := V1 ∩ {z : ∇H(z) = 0} denote the singular set of V1. Let K := K(0)

denote the cone of r̂ for which the maximality condition (5.3) is satisfied with x∗ = 0 and let N

be any compact subcone of the interior of K such that (5.4) holds for r̂ ∈ N (finitely many critical

points).

We start with the definition/construction of the residue form in the case of a generic rational

function F = P/Q with singular variety VQ.

Proposition 5.5 (residue form). There is a unique d-form η, holomorphic everywhere ∇Q does

not vanish such that η ∧ dQ = P dz. We call it the residue form for F on VQ and denote it by

RES (F dz).

Remark. To avoid ambiguous notation, for the remainder of this section we denote the usual residue

at a simple pole a of a univariate function f by

residue(f ; a) = lim
z→a

(z − a)f(z) .

Proof: To prove uniqueness, let η1 and η2 be two solutions. Then (η1 − η2) ∧ dQ = 0. The

inclusion ι : VQ → Cd induces a map ι∗ that annihilates any form ξ with ξ ∧ dQ = 0. Hence

η1 = η2 when they are viewed as forms on VQ.

To prove existence, suppose that (∂Q/∂zd+1)(z) 6= 0. Then the form

η :=
P

∂Q/∂zd+1
dz1 · · · dzd (5.8)

is evidently a solution. One has a similar solution assuming ∂Q/∂zj is nonvanishing for any other

j. The form is therefore well defined and nonsingular everywhere that ∇Q is nonzero. �

From the previous proposition, RES (F dz) is holomorphic wherever ∇H 6= 0, and in particular,

on V1 \ E.
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Lemma 5.6. Let F,G,H,V, B0,V1 and E be as stated in the beginning of this section. Assume

torality (4.2) and suppose that the singular set E is empty. Then ar may be computed via the

following holomorphic integral.

ar =
(

1
2πi

)d ∫
V1

z−r−1RES (F dz) . (5.9)

Proof: As a preliminary step, we observe that the projection π : V → Cd onto the first d

coordinates induces a fibration of V1 with discrete fiber of cardinality 2d, everywhere except on a

set of positive codimension. To see this, first observe (cf. (5.2)) that the polynomial H has degree

2d in the variable zd+1. Let Y ⊆ V be the subvariety on which ∂H/∂zd+1 vanishes. Then on the

regular set U := T \ π(Y ), the inverse image of π contains 2d points and there are distinct, locally

defined smooth maps y1(x), . . . , y2d(x) that are inverted by π. The fibration

π−1[U ] π−→ U

is the aforementioned fibration with fiber cardinality 2d.

Next, we apply Cauchy’s integral formula with u = −ed+1. Let S1 and S2 denote the circles in

C1 of respective radii e−1 and 1 + s, and let Tj := Td × Sj for j = 1, 2. By (4.2), neither T1 nor

T2 intersects V, so beginning with the integral formula and integrating around T1, we have

ar =
(

1
2πi

)d+1 ∫
T1

z−r−1F (z) dz

=
(

1
2πi

)d+1 [∫
T1

z−r−1F (z)dz−
∫
T2

z−r−1F (z)dz
]

+
(

1
2πi

)d+1 ∫
T2

z−r−1F (z)dz .

Expressing the integral over Tj as an iterated integral over Td × Sj shows that the quantity in

square brackets is

∫
Td

[∫
S1

z−r−1F (z) dzd+1 −
∫
S2

z−r−1F (z) dzd+1

]
dz† (5.10)

where z† denotes (z1, . . . , zd). The inner integral is the integral in zd+1 of a bounded continuous

function of (z†, zd+1), so it is a bounded function of z†. We may always write the inner integral as
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a sum of residues. In fact, when z† ∈ U it is the sum of 2d simple residues, and since Td \ U has

measure zero, we may rewrite (5.10) as

2πi
∫
U

[
2d∑
k=1

z−r−1residue(F (z†, ·); yk(z†))

]
dz† . (5.11)

On U , we have seen from (5.8) that

RES (F dz)(z) = π∗ [residue (F (z†, ·); zd+1) dz†] (π(z)) ,

hence, from the fibration, (5.11) becomes

2πi
∫
π−1[U ]

z−r−1RES (F dz) .

Because the complement of π−1[U ] in V1 has measure zero, we have shown that

ar =
(

1
2πi

)d ∫
V1\E

z−r−1RES (F dz) +
(

1
2πi

)d+1 ∫
T2

z−r−1F (z)dz . (5.12)

The integral over T2 is O((1 + s)−rd); because s is arbitrary, sending s→∞ shows this integral to

be zero. We have assumed that E is empty, so (5.12) becomes the desired conclusion (5.9). �

The next theorem has the Quantum Random Walk as its main target, however it is valid

for a general class of rational Laurent series, provided we assume the hypotheses of Lemma 5.6,

namely torality (4.2) and smoothness (E = ∅). Under these hypotheses, the image of V1 under

z 7→ (log z)/i is a smooth co-dimension-one submanifold M of the flat torus; we let K(z) denote

the curvature of M at the point (log z)/i. Of primary interest is the regime of sub-exponential

decay, which is governed by critical points on the unit torus. We therefore let K denote the set

of directions r̂ for which r̂ · x is maximized at x = 0 on the closure B0 of the component of the

amoeba complement in which we are computing a Laurent series. We also assume (5.4) (finiteness

of W(r̂)) for each r̂ ∈ K. Observing that z = exp(ix) ∈ W if and only if x is critical for the

function r · x on M, we may define τ(z) to be the signature of the critical point (log z)/i (the

dimension of positive space minus dimension of negative space) for the function r̂ · x on M.
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Theorem 5.7. Under the above hypotheses, let N be a compact subset of the interior of K such

that the curvatures K(z) at all points z ∈ W(r̂) are nonvanishing for all r̂ ∈ N . Then as |r| → ∞,

uniformly over r̂ ∈ N ,

ar =
(

1
2π|r|

)d/2 ∑
z∈W

z−r G(z)
|∇logH(z)|

1√
|K(z)|

e−iπτ(z)/4 +O
(
|r|−(d+1)/2

)
(5.13)

provided that ∇logH is a positive multiple of r̂ (if it is a negative multiple, the estimate must be

multiplied by −1). When r̂ /∈ K then ar = o(exp(−c|r|)) for some positive constant c, which is

uniform if r̂ ranges over a compact subcone of the complement of K.

Proof: The conclusion in the case where r /∈ K follows from Corollary 5.2. In the other case,

assume r ∈ N and apply Lemma 5.6 to express ar in the form (5.9):

ar =
(

1
2πi

)d ∫
V1

z−rRES
(
F
dz
z

)
.

The chain of integration is a smooth d-dimensional submanifold of the unit torus in Rd+1, so

when we apply the change of variables z = exp(iy), the chain of integration becomes a smooth

submanifold M of the flat torus T0, hence locally an immersed d-manifold in Rd+1. We have

dz = iz dy, so F (z)dz/z = id F ◦ exp(y) dy and functoriality of RES implies that

RES
(
F
dz
z

)
= RES (F ◦ exp dy) .

After the change of coordinates, therefore, the integral becomes

ar = (2π)−dη̂(r) =
(

1
2π

)d ∫
M
e−ir·y η

where η := RES (F ◦exp dy). By hypothesis, η is smooth and compactly supported, so if we apply

Corollary 5.4 and divide by (2π)d we obtain

ar =
(

1
2π|r|

)d/2 ∑
z∈W

z−rη[z] |K(z)|−1/2
e−iπτ(z)/4 +O

(
|r|−(d+1)/2

)
.

Finally, we evaluate η[z] in a coordinate system in which the (d + 1)st coordinate is r̂. We see

from (5.8) that

η =
G(z)

∂H/∂r̂(z)
dA
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where dr̂ ∧ dA = dz. Because the gradient of H is in the direction r̂, this boils down to η =

G(z)/|∇logH(z)| at the point z, finishing the proof. �

5.2.4 Results on multivariate generating functions: when V contains noncontributing

cone points

In this section, we generalize Theorem 5.7 to allow ∇H to vanish at finitely many points of V. The

key is to ensure that the contribution to the Cauchy integral near these points does not affect the

asymptotics. This will be a consequence of an assumption about the degrees of vanishing of G and

H at points of E. We begin with some estimates in the vein of classical harmonic analysis. Suppose

η is a smooth p-form on a smooth cone in Rd+1; the term “smooth” for cones means smooth except

at the origin. We say η is homogeneous of degree k if in local coordinates it is a finite sum of

forms A(z) dzi1 ∧ · · · ∧ dzip with A homogeneous of degree k − p, that is, A(λz) = λk−pA(z). A

smooth p-form η on a smooth cone is said to have leading degree α if

η = η◦ +
∑

i1,...,ip

O(|z|α−p+1 dzi1 ∧ dzip) (5.14)

with η◦ homogeneous of degree α. The following lemma is a special case of the big-O lemma

from [BP08]. That lemma requires a rather complicated topological construction from [ABG70];

we give a self-contained proof, due to Phil Gressman, for the special case required here.

Lemma 5.8. Let V0 be a smooth (d − 1)-dimensional manifold in Sd and let V denote the cone

over V0 in Rd+1. Let η be a compactly supported d-form of leading degree α > 0 on V. Then

∫
V
eir·zη = O(|r|−α) .

Proof: Assume without loss of generality that η is supported on the unit polydisk {z : |z| ≤ 1},

where |z| :=
√∑d+1

j=1 |zj |2 is the usual Euclidean norm on Cd+1. The union of the interiors of the

annuli

Bn := {z : 2−n−2 ≤ |z| ≤ 2−n}
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is the open unit polydisk, minus the origin. Let θn : B0 → Bn denote dilation by 2−n and let

ηn := θ∗nη|B0 be the pullback to B0 from Bn of the form η. Let η◦ denote the homogeneous

part of η, that is, the unique form satisfying (5.14). The forms ηn are asymptotically equal to

2−αnη◦ in the following sense: for each L, the partial derivatives of 2αnηn up to order L converge

to the corresponding partial derivatives of η◦, uniformly on B0. Let χn be smooth functions,

compactly supported on the interior of B0, and with partial derivatives up to any fixed order

bounded uniformly in n. Then for any N > 0 there is an estimate

∫
B0

eir·zχn(z) · (2αnηn(z)) = O
(
|r|−N

)
(5.15)

uniformly in n. This is a standard result, an argument for which may be found in [Ste93, Propo-

sition 4 of Section VIII.2], noting that uniform bounds on the partial derivatives of coefficients

of χnηn up to a sufficiently high order L suffice to prove Stein’s Proposition 4 for the class ηn,

uniformly in n. To make the O-notation explicit, we rewrite (5.15) as

∫
B0

eir·zχn(z)ηn(z) ≤ gN (|r|) 2−αn |r|−N (5.16)

for some functions gN (x) each going to zero as x→∞.

Next, let {ψn : n ≥ 0} be a partition of unity subordinate to the cover {Bn}. We may choose

ψn so that 0 ≤ ψn ≤ 1 and so that the partial derivatives of ψn up to a fixed order L are bounded

by CL2n where CL does not depend on n. We estimate
∫
Bn

eir·zψnη in two ways. First, using

|ψn| ≤ 1 and η(z) = O(|z|α−d dzi1 · · · dzid), we obtain

∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ ≤ C 2−nd sup
z∈Bn

|z|α−d ≤ C ′ 2−nα (5.17)

for some constants C,C ′ independent of n. On the other hand, pulling back by θn, we observe that

the partial derivatives of θ∗nψn up to order L are bounded by CL independently of n. Using (5.16),
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for any N > 0 we choose L = L(N) appropriately to obtain∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ =
∣∣∣∣∫
B0

ei(r/2
n)·z(θ∗nψn) · (2αnηn)

∣∣∣∣
≤ gN

(
|r|
2n

)
2−αn

(
|r|
2n

)−N
for all n,N , where gN are real functions going to zero at infinity.

Let n0(r) be the least integer such that 2−n0 ≤ 1/|r|. Our last estimate implies that for

n = n0 − j < n0, ∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ ≤ 2−αn gN

(
|r|
2n

)(
|r|
2n

)−N

= 2−αn0

[
2αj gN

(
2j

|r|
2n0

)(
2j
|r|
2n0

)−N]
.

Once N > α, the quantity in the square brackets is summable over j ≥ 1, giving

∑
n<n0

∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ = O
(
2−αn0

)
.

On the other hand, (5.17) is summable over n ≥ n0, so we have

∑
n≥n0

∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ = O
(
2−αn0

)
.

The last two estimates, along with |r| = Θ(2n0), prove the lemma. �

Given an algebraic variety V := {H = 0}, let p be an isolated singular point of V. Let

H◦ = H◦
p denote the leading homogeneous term of H at p, namely the homogeneous polynomial

of some degree m such that H(p+ z) = H◦(z) +O(|z|m+1); the degree m will be the least degree

of any term in the Taylor expansion of H near p. The normal cone to V at p is defined to be the

set of all normals to the homogeneous variety Vp := {z : H◦
p (p + z) = 0}. We remark that r is in

the normal cone to V at p if and only if r · z has (a line of) critical points on Vp.

Theorem 5.9. Let F,G,H,V, B0,V1 and E be as stated at the beginning of this section. Assume

torality (4.2). Suppose that the singular set E is finite and that for each p ∈ E, the following

hypotheses are satisfied.
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1. The residue form η has leading degree α > d/2 at p.

2. The cone Vp is projectively smooth and r is not in the normal cone to V at p.

Then a conclusion similar to that of Theorem 5.7 holds, namely the sum (5.13) over the points

zj /∈ E where ∇H ‖ r gives the asymptotics of ar up to a correction that is o(|r|−d/2).

Proof: By [Tou68, Cor. 2”], condition (2) implies that the function H(p + z) is bi-analytically

conjugate to the function H◦
p , that is, locally there is a bi-analytic change of coordinates Ψp such

that H◦
p ◦ Ψp = H(p + z). Now for each p ∈ E, let Up be a neighborhood of p in V sufficiently

small so that it contains no other p′ ∈ E, contains no yj , and so that the bi-analytic map Ψp is

defined on Up. Let U0 be a neighborhood of the complement of the union of the sets Up. Using a

partition of unity subordinate to {Up, U0}, we replicate the beginning of the proof of Theorem 5.7

to see that it suffices to show

∫
Up

eir·yRES (F dx) = o(|r|−d/2) .

Changing coordinates via Ψp gives an integral of a smooth, compactly supported form η on the

cone Vp which is homogeneous of order α > d/2. Lemma 5.8 estimates the integral to be O(|r|−α),

which completes the proof. �
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5.3 Application to 2-D Quantum Random Walks

As before, we let F = (F (i,j))1≤i,j≤k where

F (i,j)(x, y, z) =
∑
r,s,t

a
(i,j)
r,s,tx

ryszt

and a
(i,j)
r,s,t is the amplitude for finding the particle at location (r, s) at time t in chirality j if it

started at the origin at time zero in cardinality i. Each entry F (i,j) has some numerator G(i,j) and

the same denominator H = det(I − zMU). In addition, we denote the image of the Gauss map of

V1 \ E as G. We note that r̂ ∈ G precisely when

There is some z in the unit torus for which H(z) = 0 and ∇logH(z) ‖ r̂ . (5.18)

In fact, we can make the stronger statement:

Lemma 5.10. G ⊂ K.

Proof of Lemma 5.10: Let z satisfy (5.18) for some r̂. Because V is smooth at z, a neighborhood

of z (or a patch including z) in V is mapped by the coordinatewise Log map to a support patch

to B0 which is normal to r̂. This patch lies entirely outside B0 by the convexity of amoeba

complements. In the limit we see the following. If we take the real version of the complex tangent

plane to V ∈ Cd+1 at z and map by the coordinatewise log map, the result is a support hyperplane

to B0 which again, lies completely outside B0 (except at Log |z|) by convexity. Now when r̂ ∈ G,

Equation (5.18) is satisfied with z ∈ V1. Thus Log |z| = 0 and r̂ ∈ K. The desired conclusion

follows. �

We apply the results of Section 5.2 to several one-parameter families of two-dimensional QRWs.

Each analysis requires us to verify properties of the corresponding family of generating functions.
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5.3.1 Sp

We begin by introducing a family S(p) of orthogonal matrices with p ∈ (0, 1):

S(p) =



√
p√
2

√
p√
2

√
1−p√
2

√
1−p√
2

−
√
p√
2

√
p√
2

−
√

1−p√
2

√
1−p√
2

√
1−p√
2

−
√

1−p√
2

−
√
p√
2

√
p√
2

−
√

1−p√
2

−
√

1−p√
2

√
p√
2

√
p√
2


.

The matrix S(1/2) is the alternative Hadamard matrix referred to earlier as ŨHad. A probability

profile was shown in Figure 6; here is a picture for another parameter value, namely 1/8. The

following theorem, conjectured in [Bra07], shows why similarity of the pictures is not a coincidence.

Figure 9: Limiting region (left) and Probabilities at time 200 (right) for the S(1/8) QRW

Theorem 5.11. For the Quantum Random Walk with unitary matrix U = S(p), let G′ be a

compact subset of the interior of G such that the curvatures K(z) at all points z ∈ W(r̂) are

nonvanishing for all r̂ ∈ G′. Fix chiralities i, j, let G := G(i,j), and let ar := ar,s,t denote the
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amplitude to be at position (r, s) at time t. Then as |r| → ∞, uniformly over r̂ ∈ G′,

ar = (−1)δ
1

2π|r|
∑
z∈W

z−r G(z)
|∇logH(z)|

1√
|K(z)|

e−iπτ(z)/4 +O
(
|r|−3/2

)
(5.19)

where δ = 1 if ∇logH is a negative multiple of r̂ (so as to change the sign of the estimate) and

zero otherwise. When r̂ ∈ [−1, 1]2 \ G then for every integer N > 0 there is a C > 0 such that

Pr (r) ≤ C|r|−N with C uniform as r ranges over a neighborhood N of r whose closure is disjoint

from the closure of G.

Before proving this theorem we interpret its implication for the probability profile. The proba-

bility of finding the particle at (r, s) in the given chiralities at the given time is equal to |ar|2. We

only care about ar up to a unit complex multiple, so we don’t care whether δ is zero or one, but we

must keep track of phase factors inside the sum because these affect the interference of terms from

different z ∈ W. In fact, the nearest neighbor QRW has periodicity (because all possible steps

are odd); the manifestation of this is that W consists of conjugate pairs. When r + s and t have

opposite parities the summands in the formula for ar cancel. Otherwise the probability amplitude

|ar|2 will be Θ(t−2), uniformly over compact regions avoiding critical values in the range of the

logarithmic Gauss map but blowing up at these values.

Proof of Theorem 5.11: As G ⊂ K by Lemma 5.10, the result when r̂ ∈ G′ is immediate once

we have shown that for any S(p), its generating function satisfies the hypotheses of Theorem 5.7.

We establish this in the lemma below.

Lemma 5.12. Let H := H(p) = det (I − zM(x, y)S(p)). Then for 0 < p < 1, ∇H 6= 0 on T3.

Consequently, V1 := VH ∩ T3 is smooth.

Theorem 5.7 will not be helpful in proving the case when r̂ ∈ [−1, 1]2\G. To prove this condition

we present the following lemma, which is a generalization of [Ste93, Proposition 4 of Section VIII.2].

Lemma 5.13. Let M be a compact d-manifold. Suppose α is smooth and that f is a smooth
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real-valued function with no critical points in M. Then

I(λ) =
∫
M
eiλf(x)α(x)dx = O(λ−N ) (5.20)

as λ→∞, for every N ≥ 0.

We see below that V1 is compact as it is a four-cover of the two-torus. In the calculation of

ar, we have f(y) = −r̂ · y and λ = |r|. Thus a direction r̂ is not in G precisely when f(y) has no

critical points in V1. Uniform exponential decay of amplitudes for r bounded outside the image of

the Gauss map follows. Thus Theorem 5.11 is proved, pending the proofs of the lemmas. �

We now prove the above lemmas in reverse order.

Proof of Lemma 5.13 : As M is compact it admits a finite open cover {Ui}i∈I with subordinate

partition of unity {φi}i∈I . We decompose the integral

I(λ) =
∫
M
eiλf(x)α(x)dx

=
∫
M
eiλf(x)α(x)

∑
i∈I

φi(x)dx

=
∑
i∈I

∫
M
eiλf(x)α(x)φi(x)dx

=
∑
i∈I

∫
Ui

eiλf(x)α(x)φi(x)dx

We will show that for each i ∈ I,
∫
Ui
eiλf(x)α(x)φi(x)dx is rapidly decreasing (the requirement

above for I(λ)). As the cover Ui is finite, this will give us the desired result.

For a given i ∈ I, we let ψ(x) := α(x)φi(x) which is then smooth with compact support. For

each x0 in the support of ψ(x), there is a unit vector ξ and a small ball B(x0), centered at x0,

such that ξ · (∇f)(x) ≥ c > 0 for some real c uniformly for all x ∈ B(x0). We then decompose the

integral
∫
Ui
eiλf(x)ψ(x)dx as a finite sum

∑
k

∫
eiλf(x)ψk(x)dx
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where each ψk is smooth and has compact support in one of these balls. It then suffices to prove

the corresponding estimate for each summand. Now choose a coordinate system x1, . . . , xd so that

x1 lies along ξ. Then

∫
eiλf(x)ψk(x)dx =

∫ (∫
eiλf(x1,...,xd)ψk(x1, ..., xd)dx1

)
dx2 . . . dxd

Now by [Ste93, Proposition 1 of Section VIII.2] the inner integral is rapidly decreasing, giving us

the desired conclusion. �

For the next two proofs, we clear denominators to obtain the following explicit polynomial:

H = (x2y2+y2−x2−1+2xyz2)z2−2xy−
√

2pz(xy2−y−x+z2y−z2x+z2xy2+z2x2y−x2y). We

make the substitution α =
√

2p to facilitate the use of Gröbner Bases, which require polynomials

as inputs. Use the notation Hx for ∂H
∂x , and similarly with y and z.

Proof of Lemma 5.12:

Using the Maple command Basis([H, Hx, Hy, Hz], plex(x, y, z, α) we get a Gröbner Basis with

first term zα2(α2 − 1)(α2 − 2) = 2zp(2p− 1)(2p− 2). Thus to show that S(p) results in a variety

whose intersection with T is smooth for p ∈ (0, 1), we need only consider the case when p = 1/2.

In this case α = 1 and the Gröbner Basis for the ideal where (H,∇H) = 0 is (−z + z5, z3 + 2y −

z,−z − z3 + 2x). Here B1 vanishes on the unit circle for z = ±1,±i. However, for z = ±1, B2

vanishes only when y = 0 and for z = ±i, B3 vanishes only when x = 0. Thus ∇H does not vanish

on T3. �

Further analysis of the limit shape for S(p)

Proposition 5.14. For each pair (x, y), there are four distinct values z1, z2, z3, z4 such that

(x, y, zi) ∈ V1 for i ∈ 1, 2, 3, 4. Consequently, the projection (x, y, z) 7→ (x, y) is a smooth four-

covering of T2 by V1.

Proof: Since H has degree four in z, it has at most four z values for each pair (x, y). Thus for

each (x, y) there are at most four z values on V1. Recall from Proposition 4.2 that all solutions to
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H(x, y, z) = 0 for a given (x, y) in the unit torus have |z| = 1 as well. Hence, if ever there are fewer

than four z values for a given (x, y), then there are fewer than four solutions to H(x, y, ·) = 0 and

the implicit function theorem must fail. Consequently, ∂H∂z = 0. This cannot be true, however, by

the following argument. We have ruled out Hx = Hy = Hz = 0 on V1, so if Hz = 0, then the

point (x, y, z) contributes toward asymptotics in the direction (r, s, 0) for some (r, s) 6= (0, 0). The

particle moves at most one step per unit time, so this is impossible. �

To facilitate discussions of subsets of the unit torus, we let (α, β, γ) denote the respective

arguments of (x, y, z), that is, x = eiα, y = eiβ , z = eiγ . We may think of α, β and γ as belonging

to the flat torus (R/2πZ)3.

Proposition 5.15. V1 can be decomposed into connected components as V1 = AqBqCqD, where

A,B,C and D will be the components containing the γ values 0, π/2, π and 3π/2, respectively.

Proof: Let χ := {(x, y, z) : z4 = −1}. We begin by establishing that |V1 ∩ χ| = 8 with two

points for each of the fourth roots of −1. Furthermore, −π/4 ≤ γ ≤ π/4 on A, π/4 ≤ γ ≤ 3π/4

on B, 3π/4 ≤ γ ≤ 5π/4 on C, and 5π/4 ≤ γ ≤ 7π/4 on D. These observations suffice to

prove the proposition, because the smooth variety V1 cannot have its intersection with a stratum

{(α, β, γ) : γ = c} that is pinched down to a point; the only possibility is therefore that these

values of γ are extreme values on components of V1.

To check the first of these statements, use the identities cos γ = (z + z−1)/2, sin γ = (z −

z−1)/(2i), as well as the analogous identities for α and β, to write the equation of V in terms of

α, β and γ. We find that H(x, y, z) = 0 if and only if

0 = L(α, β, γ) := 2 sin γ cos γ −
√

2p(sinβ cos γ + cosα sin γ) + cosα sinβ . (5.21)

Substituting γ = π/4 results in

1− (sinβ + cosα)
√
p+ cosα sinβ = 0 .
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Verifying that sinβ =
√
p is not a solution, and dividing by sinβ −√p, we find that

cosα =
1−√p sinβ
sinβ −√p

.

The right-hand side is in [−1, 1] only when sinβ = ±1. Thus when γ = π/4, the pair (α, β) is

either (π, π/2) or (0, 3π/2).

To check the remaining statements, we introduce the following set of isometries for V1. Define

φA(α, β, γ) := (−α,−β,−γ)

φB(α, β, γ) :=
(
β +

π

2
, α+

π

2
, γ +

π

2

)
φC(α, β, γ) := (α+ π, β + π, γ + π)

φD(α, β, γ) :=
(
β +

3π
2
, α+

3π
2
, γ +

3π
2

)
Verifying that φA, φB and φC (and hence φD which is equal to φC ◦φB) are isometries is a simple

exercise in trigonometry using Equation 5.21, which we will omit. Each isometry inherits its name

from the region it proves isometric with A. Using these isometries, we see that γ is equal to 3π/4,

5π/4 and 7π/4 exactly twice on V1. �

We remark upon the existence of an additional eight-fold isometry within each connected com-

ponent: φ1(α, β, γ) := (α, β + π,−γ), φ2(α, β, γ) := (−α, β, γ) and φ3(α, β, γ) := (α, π − β, γ).

These symmetries manifest themselves in the plots in figures 6 and 9 as follows. The image is

clearly the superposition of two pieces, one horizontally oriented and one vertically oriented. Each

of these two is the image of the Gauss map on two of the regions A,B,C,D, and each of these

four regions maps to the plot in a 2 to 1 manner on the interior, folding over at the bound-

ary. To verify this, we observe that if p0 contributes to asymptotics in the direction (r, s) then

φA(p0), φB(p0), φC(p0), φD(p0), φ1(p0), φ2(p0) and φ3(p0) contribute to asymptotics in the direc-

tions (r, s)(s, r), (r, s), (s, r), (−r,−s), (−r, s) and (r,−s), respectively. Thus while the image of the

Gauss map is two overlapping leaves, the Gauss map of A and C contribute to one leaf, while the

Gauss map of B and D contribute to the other.
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Figure 10: The variety V1 for p = 1/2

We end the analysis with a few observations on the way in which the plots were generated.

Our procedure was as follows. Solving for sin γ in (5.21), we obtained

sin γ = sinβ
√

2p cos γ − cosα
2 cos γ −

√
2p cosα

. (5.22)

Squaring (5.21) and making the substitution sin2 γ = 1− cos2 γ, we found that

(
1− cos2 γ

) (
2 cos γ −

√
2p cosα

)2

−
(
1− cos2 β

) (√
2p cos γ − cosα

)2

= 0

which we used to get the four solutions for γ in terms of α and β. We then let α and β vary over

a grid embedded in the 2-torus and solved for the four values of γ to obtain four points in V1; this

is the composition of the first two maps in (5.1). Differentiation of H(eiα, eiβ , eiγ) = 0 shows that

the projective direction (r, s, t) corresponding to a point (α, β, γ) is given by r/t = −∂γ/∂α, s/t =

−∂γ/∂β. Implicit differentiation of (5.21) then gives four explicit values for (r/t, s/t) in terms of

α and β. This is the composition of the last two maps in (5.1), with the parametrization of RP2

by (r/t, s/t) corresponding to the choice of a planar rather than a spherical slice.
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5.3.2 Ap

We now present a second family of orthogonal matrices A(p) below. In order for the matrices to

be real, we restrict p to the interval (0, 1/
√

3).

A(p) =



p p p
√

1− 3p2

−p p −
√

1− 3p2 p

p −
√

1− 3p2 −p p

−
√

1− 3p2 −p p p


This family intersects the family S(p) in one case, namely A(1/2) = S(1/2); for any (p, p′) ∈

(0, 1)2 other than (1/2, 1/2), we haveA(p) 6= S(p′). The following theorem follows from Lemma 5.13

along with a new lemma, namely Lemma 5.17 below, analogous to Lemma 5.12.

Theorem 5.16. If 0 < p < 1/
√

3 then Theorem 5.11 holds for the unitary matrix A(p) in place

of the matrix S(p). �

Lemma 5.17. Let H := H(p) = det (I − zM(x, y)A(p)). Then for 0 < p < 1/
√

3, ∇H 6= 0 on T3.

Consequently, V1 := VH ∩ T3 is smooth.

Proof of Lemma 5.17: We clear our denominator by setting H := (−xy) det(I−MA(p)z), now

to get

H = 2(x−1)(x+1)(y2+1)z2p2−(−y−x+xy2+z2y−x2y+z2xy2−z2x+z2x2y)zp+(yz2−x)(xz2+y) .

As no
√

1− p2 term appears, we can determine a Gröbner Basis without making a substitution.

The Maple command Basis([H, Hx, Hy, Hz], plex(x, y, z, p) delivers a Basis with first term p3z(2p+

1)(8p2−3)(2p2−1)(2p−1). The roots of the first four factors fall outside of the interval (0, 1/
√

3)

while the root of the last factor corresponds to the matrix S(1/2) for which we know V1 is smooth

from the discussion above. �

Again we use Theorem 5.7 to correctly predict asymptotics for individual directions. We show

probability profiles for a number of parameter values.
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Figure 11: The profile for A(1/6) shows how the QRW approaches degeneracy at the endpoints

p→ 0, 1
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Figure 12: As p increases from 1/3 to 5/9, the direction of the tilt switches
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5.3.3 Bp

To demonstrate the application of Theorem 5.9 we introduce a third family of orthogonal matrices,

B(p), with p ∈ (0, 1).

B(p) =



√
p√
2

√
p√
2

√
1−p√
2

√
1−p√
2

−
√
p√
2

√
p√
2

−
√

1−p√
2

√
1−p√
2

−
√

1−p√
2

√
1−p√
2

√
p√
2

−
√
p√
2

−
√

1−p√
2

−
√

1−p√
2

√
p√
2

√
p√
2


We have already seen a walk generated by such a matrix, as Figure 5 depicted the walk generated

by B(1/2). We note that B(p) is almost identical to S(p) with the one exception being the

multiplication of the third row by −1. As was the case with the S(p) walks we can see strong

similarities between the image of the Gauss map and the probability profile for various values of

p.

Figure 13: The image of the Gauss map alongside the probability profile for the B(2/3) walk

In contrast to the cases of S(p) and A(p), we will not be able to apply Theorem 5.7 because

V1 is not smooth.
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Theorem 5.18. For the Quantum Random Walk with unitary matrix U = B(p), let G′ be a

compact subset of the interior of G such that the curvatures K(z) at all points z ∈ W(r̂) are

nonvanishing for all r̂ ∈ G′. Then as |r| → ∞, uniformly over r̂ ∈ G′,

ar = ± 1
2π|r|

∑
z∈W

z−r G(z)
|∇logH(z)|

1√
|K(z)|

e−iπτ(z)/4 +O
(
|r|−3/2

)
. (5.23)

When r̂ ∈ [−1, 1]2 \ G then for every integer N > 0 there is a C > 0 such that Pr (r) ≤ C|r|−N

with C uniform as r ranges over a neighborhood N of r whose closure is disjoint from the closure

of G.

Proof: First, we apply Lemma 5.13 with the lemma being applicable as we will see below that

V1 := VH ∩ T3 is a two-fold cover of T2 and thus compact. The conclusion when r̂ ∈ [−1, 1]2 \ G

follows. We get the conclusion in the case where r̂ ∈ G′ by verifying the hypotheses of Theorem 5.9

in the following lemmas.

Lemma 5.19. Let H := H(p) = det (I − zM(x, y)B(p)). Then for 0 < p < 1, the set E =

{(x, y, z) : (H,∇H) = 0} consists only of the four points (x, y, z) = ±(1, 1,
√
p/2± i

√
1− p/2).

Lemma 5.20. For any 0 < p < 1 we have the following conclusions for each p0 ∈ E for the

generating function associated to the unitary matrix U = B(p).

1. The residue form η has leading degree α > d/2 at p0.

2. The cone Vp0 is projectively smooth and r is not in the normal cone to V at p0.

Proof of Lemma 5.19: The proof of Lemma 5.19 is similar to the corresponding proofs in the

two previous examples, so we give only a sketch. Computing H from (5.2) and the subsequent

formula yields

H = 2xy(z4 + 1)− (x+ y + xy2 + x2y)(z3 + z)
√

2p+ (4pxy + x2 + x2y2 + 1 + y2)z2

= xyz2 · [4p+ (5.24)

2(z2 + z−2)−
(
(x+ x−1) + (y + y−1)

)
(z + z−1)

√
2p+ (x+ x−1)(y + y−1)

]
,
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Treating p as a parameter and computing a Gröbner basis of {H,Hx,Hy,Hz} with term order

plex(x, y, z) one obtains {x3 − x, y − x, z(x2 − 1), z2 − 2x
√
pz + 2x2}. Removing the extraneous

roots when one of x, y or z vanishes, what remains is ±(1, 1, z) where z solves z2 − 2
√
pz + 2 = 0.

�

Proof of Lemma 5.20: Condition (1) follows from the fact that for each p0 ∈ E, the numerator

G(p)(x, y, z) vanishes as well as the denominator H(p) which only vanishes to order 1. To prove (2),

we compute the local geometry of {H = 0} near the four points found in the previous lemma. We

will do this for the points with positive (x, y) = (1, 1); the case (x, y) = (−1,−1) is similar.

Substituting x = 1+u, y = 1+ v, z = z0 +w into H and then reducing modulo z2
0 − 2

√
pz0 +2, we

find that the leading homogeneous term in the variables {u, v, w} is 4[
√
p(1−p)(u2+v2)−(2−p)w2].

For 0 < p < 1, this is the cone over a nondegenerate ellipse and therefore smooth. The dual cone

is the set of (r, s, t) with r2 + s2 = 2−p
(1−p)√p t

2. The minimum value of 2−p
(1−p)√p on [0, 1] is greater

than 4, while the vectors (r, s, t) inside the image of the Gauss map all have r2 + s2 < 4t2, whence

r is never in the normal cone to V at p0. �

Beginning with (5.25), we see that (x, y, z) ∈ V1 ⇐⇒

2 cos2 γ − (cosα+ cosβ)
√

2p cos γ + cosα cosβ + p− 1 = 0 . (5.25)

Thus for given α and β, the four values of γ are given explicitly by

γ = ± arccos

 (cosα+ cosβ)
√

2p±
√

2p (cosα+ cosβ)2 − 8 cosα cosβ − 8p+ 8

4

 . (5.26)

We then differentiate 5.25 with respect to α and β to obtain the partial derivatives

∂γ

∂α
=

sinα
sin γ

· cosβ − cos γ
√

2p
(cosα+ cosβ)

√
2p− 4 cos γ

and

∂γ

∂β
=

sinβ
sin γ

· cosα− cos γ
√

2p
(cosα+ cosβ)

√
2p− 4 cos γ

.

Remark. The fact that we can solve explicitly for γ with this family allows us to more clearly
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depict the connection between curvature and asymptotics. Using Proposition 3.2 and (5.26), we

let Maple evaluate ∇ as well as

H =

 ∂2γ
∂α2

∂2γ
∂α∂β

∂2γ
∂β∂α

∂2γ
∂α2


We then plot K against − ∂γ

∂α and − ∂γ
∂β as (α, β) varies over the two-dimensional torus.

Figure 14: A graph of curvature versus direction for the B(1/2) walk
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In the above picture we see the expected cross within a diamond region where curvature is low,

though the view is obstructed by regions of higher curvature.

To remedy this problem we restrict our view of the K axis to focus on the smallest values of

K which in turn contribute to the largest probabilities. The resulting picture thus predicts the

regions that will appear darkest in the probability profile.

Figure 15: A graph of the areas of lowest curvature and hence highest probabilities for the B(1/2)

walk
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5.4 Resultants for boundary of region of subexponential decay

Our goal is to determine for which r̂ it is the case that K vanishes. For U = B(1/2) our result is

Theorem 5.21. For the Quantum Random Walk with unitary coin flip U = B(1/2), the curvature

of the variety V1 vanishes at some z ∈ Ξ(u, v) if and only if (u, v) = (k1/t, k2/t) is a zero of the

polynomial P1 and satisfies |u|+ |v| < 3/4 where

P1(u, v) = 1 + 14u2 − 3126u4 + 97752u6 − 1445289u8 + 12200622u10 − 64150356u12+

220161216u14 − 504431361u16 + 774608490u18 − 785130582u20 + 502978728u22−

184298359u24 + 29412250u26 + 14v2 − 1284u2v2 − 113016u4v2 + 5220612u6v2−

96417162u8v2 + 924427224u10v2 − 4865103360u12v2 + 14947388808u14v2 − 27714317286u16v2+

30923414124u18v2 − 19802256648u20v2 + 6399721524u22v2 − 721963550u24v2 − 3126v4−

113016u2v4 + 7942218u4v4 − 68684580u6v4 − 666538860u8v4 + 15034322304u10v4−

86727881244u12v4 + 226469888328u14v4 − 296573996958u16v4 + 183616180440u18v4−

32546593518u20v4 − 8997506820u22v4 + 97752v6 + 5220612u2v6 − 68684580u4v6+

3243820496u6v6 − 25244548160u8v6 + 59768577720u10v6 − 147067477144u12v6+

458758743568u14v6 − 749675452344u16v6 + 435217945700u18v6 − 16479111716u20v6−

1445289v8 − 96417162u2v8 − 666538860u4v8 − 25244548160u6v8 + 194515866042u8v8−

421026680628u10v8 + 611623295476u12v8 − 331561483632u14v8 + 7820601831u16v8+

72391117294u18v8 + 12200622v10 + 924427224u2v10 + 15034322304u4v10 + 59768577720u6v10−

421026680628u8v10 + 421043188488u10v10 − 1131276050256u12v10 − 196657371288u14v10+

151002519894u16v10 − 64150356v12 − 4865103360u2v12 − 86727881244u4v12−

147067477144u6v12 + 611623295476u8v12 − 1131276050256u10v12 + 586397171964u12v12−

231584205720u14v12 + 220161216v14 + 14947388808u2v14 + 226469888328u4v14+

458758743568u6v14 − 331561483632u8v14 − 196657371288u10v14 − 231584205720u12v14−

504431361v16 − 27714317286u2v16 − 296573996958u4v16 − 749675452344u6v16+
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7820601831u8v16 + 151002519894u10v16 + 774608490v18 + 30923414124u2v18+

183616180440u4v18 + 435217945700u6v18 + 72391117294u8v18 − 785130582v20−

19802256648u2v20 − 32546593518u4v20 − 16479111716u6v20 + 502978728v22+

6399721524u2v22 − 8997506820u4v22 − 184298359v24 − 721963550u2v24 + 29412250v26.

Before proving the theorem, we verify the importance of P1(u, v) by comparing the points of

vanishing of P1 to the probability profile for the walk below.

Figure 16: The probability profile for the B(1/2) walk alongside the graph of P1(u, v) = 0
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Proof:

From Theorem 5.11 and the definition of W(r̂), z ∈ V1 contributes to asymptotics in the

direction r̂ if and only if H(z) = 0 and ∇logH(z) ‖ r̂. Letting u = k1/t and v = k2/t we see z ∈

W(r̂) if and only if H(z) = K1(z) = K2(z) = 0, where K1 := uzHz−xHx and K2 := vzHz−yHy.

Lemma 5.22 gives a final polynomial whose vanishing indicates that curvature vanishes as well.

Lemma 5.22. Gaussian curvature vanishes at z ∈ V1 if and only if L(z) = 0 with

L(x, y, z) :=
Q(x, z)Q(y, z)−R(x, y, z)2

(zHz)2

with the polynomial Q in two variables defined as in the statement of Theorem 2.7 and R(x, y, z)

defined as

R(x, y, z) := xyz (zHz(HxyHz −HxHyz −HyHxz) +HxHyHz + zHxHyHzz) .

Proof of Lemma 5.22: From Proposition 3.2, K = 0 ⇐⇒ H = 0. From the proof of

Corollary 2.9, H = 0 ⇐⇒ L(x, y, z) = 0. �

We now need only determine when K1 = K2 = L = 0 on V1 with U = B(1/2) to prove

Theorem 5.21. For U = B(1/2) we define H := HB = −2xy det(I − zMB(1/2)) to clear de-

nominators. The multiplication by −2xy does not affect the torality property as H = 0 ⇐⇒

det(I− zMB(1/2)) = 0 for x, y ∈ T1. We omit the value of L (determined using Lemma 5.22) and

have:
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H = −2xy + zx+ xzy2 − 2xz2y + zy − z2 − z2y2 + z3y + zx2y − z2x2 − z2x2y2 + z3x2y +

z3x+ z3xy2 − 2z4xy

K1 = uz(x+ xy2 − 4zxy + y − 2z − 2zy2 + 3z2y + x2y − 2zx2 − 2zx2y2 + 3z2x2y + 3z2x+

3z2y2x− 8z3yx)− x(−2y + z + zy2 − 2z2y + 2zxy − 2z2x− 2z2y2x+ 2z3yx+ z3 +

z3y2 − 2z4y)

K2 = vz(x+ xy2 − 4zxy + y − 2z − 2zy2 + 3z2y + x2y − 2zx2 − 2zx2y2 + 3z2x2y + 3z2x+

3z2y2x− 8z3yx)− y(−2x+ 2zxy − 2z2x+ z − 2z2y + z3 + zx2 − 2z2x2y + z3x2 +

2z3yx− 2z4x)

We then determine for which u and v we have H = K1 = K2 = L = 0 by eliminating each of x,

y, and z, one at a time, using resultants. We streamline this process by renaming these polynomials

with p1 := H, p2 := L, p3 := K1 and p4 := K2. We eliminate x by defining res12 := Res(p1, p2, x),

res13 := Res(p1, p3, x), and res14 := Res(p1, p4, x). We then omit repeated factors from each of

these polynomials, effectively dividing them by z6y2(zy − 1)2(z − y)2(4z10 − 4z14y6 − 12z11y7 −

4z2y2 + 40z13y3 + 40z13y5− 16z14y4− 12z12y6 + z4− 16z2y4 + 40z3y3 + z12y8− 12z4y2− 12z5y−

118z4y4 +108z5y3− 28z6y2 +4z6 +4y4− 12z12y2 +40z3y5− 12z4y6 +108z5y5− 184z6y4 +4z7y+

132z7y3 − 28z6y6 + 132z7y5 + 4z16y4 − 40z8y2 − 196z8y4 + 132z9y3 − 4z2y6 − 12z11y − 4z14y2 −

12z5y7 + z4y8 + 4z10y8 + 4z9y − 28z10y2 − 40z8y6 + 132z9y5 − 184z10y4 + 108z11y3 − 28z10y6 +

108z11y5 − 118z12y4 + 4z9y7 + 4z7y7 − 6z8y8 + 4z6y8 − 6z8 + z12 , z and z(2vy2z6 + z5y − z5y3 −

4z5vy− 4z5vy3 + z4vy4 + 6z4vy2 + z4v− vz2− 6vz2y2− z2vy4 + zy− zy3 + 4vzy+ 4zvy3− 2vy2),

respectively, and referring to the results as p12, p13 and p14, respectively. We have used H in each

of these calculations to simplify our work, as H is the simplest of our four initial polynomials.

We now eliminate y by defining res124 := Res(p12, p14, y) and res134 := Res(p13, p14, y). Omit-

ting repeated factors from these polynomials, we effectively divide by 16z34(z − 1)2(z + 1)2(z4 +
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1)6(z2 − z + 1)3(z2 + z + 1)3 and 16z28(z2 + z + 1)2(z2 − z + 1)2(z − 1)4(z + 1)4(z4 + 1)4, re-

spectively, and refer to the results as p124 and p134, respectively. We then eliminate z by defining

res1234 = Res(p124, p134, z).

From the section on resultants, we know that res1234 may contain extraneous factors. One way

to remove many of these is by exploiting the known symmetry of Ω := {(u, v)| ∃ z ∈ V with K1(z) =

K2(z) = L(z) = 0}. (Note: this definition uses V instead of V1.) As a result of the work in the

prior two sections we know that Ω is symmetric with respect to the u and v axes, as well as the

line u = v. Thus we may eliminate any factor of res1234 whose image under these symmetries is

not also a factor. Doing so yields the irreducible polynomial P1(u, v). As the set Ω is algebraic

and known to be a subset of the zero set of an irreducible polynomial P1, we see that Ω is the zero

set of P1.

Let Ω0 ⊂ Ω denote the subset of those (u, v) for which at least one (x, y, z) ∈ Ξ(u, v) with

L(x, y, z) = 0 lies on the unit torus. It remains to check that Ω0 consists of those (u, v) ∈ Ω with

|u|+ |v| < 3/4.

The locus of points in V at which L vanishes is a complex algebraic curve γ given by the

simultaneous vanishing of H and L. It is nonsingular as long as ∇H and ∇L are not parallel, in

which case its tangent vector is parallel to ∇H ×∇L. Let ρ := xHx/(zHz) and σ := yHy/(zHz)

be the coordinates of the map dir under the identification of CP2 with {(u, v, 1) : u, v ∈ C}. The

image of γ under dir (and this identification) is a nonsingular curve in the plane, provided that γ

is nonsingular and either dρ of dσ is nonvanishing on the tangent. For this it is sufficient that one

of the two determinants detMρ, detMσ does not vanish, where the columns of detMρ are ∇H,

∇L, ∇ρ and the columns of Mσ are ∇H, ∇L, ∇σ.

Let (x0, y0, z0) be any point in V1 at which one of these two determinants does not vanish.

By Lemma 2.2 the tangent vector to γ at (x0, y0, z0) in logarithmic coordinates is real; therefore

the image of γ near (x0, y0, z0) is a nonsingular real curve. Removing singular points from the
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zero set of P1 leaves a union U of connected components, each of which therefore lies in Ω0 or is

disjoint from Ω0. The proof of the theorem is now reduced to listing the components, checking

that none crosses the boundary |u| + |v| = 3/4, and checking Ξ(u, v) for a single point (u, v) on

each component. (Note: any component intersecting {|u| + |v| > 1} need not be checked as we

know the coefficients to be identically zero here.) �

We state an analogous result for U = S(1/2). While we again demonstrate the result pictorially,

we omit the proof as it is completely analogous to that of Theorem 5.21.

Theorem 5.23. For the Quantum Random Walk with unitary coin flip U = S(1/2), the curvature

of the variety V1 vanishes at some z ∈ Ξ(u, v) if and only if (u, v) = (k1/t, k2/t) is a zero of the

polynomial P2 and satisfies |u|+ |v| ≤ 2/3 where

P2(u, v) = 132019u16 + 2763072v2u20 − 513216v2u22 − 6505200v2u18 + 256v2u2 + 8790436v2u16

−10639416v10u8 + 39759700v12u4 − 12711677v10u4 + 4140257v12u2 − 513216v22u2−

7492584v2u14 + 2503464v10u6 − 62208v22 + 16v6 + 141048u20 + 8790436v16u2 + 2763072v20u2−

6505200v18u2 − 40374720v18u6 + 64689624v16u4 − 33614784v18u4 + 14725472v10u10+

121508208v16u8 − 1543v10 − 23060v2u6 + 100227200v10u12 + 7363872v20u4 − 176524u18+

121508208v8u16 − 197271552v8u14 − 13374107v8u6 + 1647627v8u4 + 18664050v8u8−

227481984v10u14 − 19343v4u4 + 279234496v12u12 − 67173440v14u4 − 7492584v14u2+

4140257v2u12 + 291173v2u8 − 1449662v2u10 + 7363872v4u20 − 227481984v14u10 + 132019v16−

197271552v14u8 − 59209u14 − 1449662v10u2 + 100227200v12u10 − 1543u10 − 153035200v14u6−

13374107v6u8 + 3183044v6u6 + 39759700v4u12 − 176524v18 + 72718v6u4 + 1647627v4u8−

62208u22 + 141048v20 − 1472v4u2 + 11664v24 − 33614784v4u18 + 128187648v16u6 − 1472v2u4−

67173440v4u14 + 291173v8u2 + 64689624v4u16 − 10639416v8u10 − 59209v14 + 72718v4u6+

92321584v8u12 − 56u8 + 92321584v12u8 − 153035200v6u14 − 23060v6u2 + 128187648v6u16−

40374720v6u18 + 72282208v12u6 + 14793u12 + 11664u24 + 14793v12 + 16u6 + 2503464v6u10−

56v8 − 12711677v4u10 + 72282208v6u12.

�
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Figure 17: The probability profile for the S(1/2) walk alongside the graph of P2(u, v) = 0
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5.5 Asymptotics for the Hadamard Walk on Z2

The walk based on the Hadamard matrix UHad mentioned in Section 5.1 distinguishes itself from

the other walks on Z2 in several ways. Its high level of symmetry greatly simplifies its study, which

is likely why it is the only walk on Z2 we are aware of to be studied using methods alternative to our

own. This symmetry allows us to surpass a result like Theorems 5.11, 5.16 and 5.18 to determine

a general asymptotic formula holding for any direction in a compact subset of the interior of the

Gauss map image, with the exception of those directions in a neighborhood of the origin. (Note:

while the origin is in the image of the Gauss map, asymptotics for the origin have contribution by

points of vanishing curvature. In this case, as with the three-chirality walk on the line, the result

is a probability of finding the particle at the origin which does not go to 0 with time.)

In our discussion of this walk, we again denote z as (x, y, z), and r as (r, s, t). When |x| =

|y| = |z| = 1, we let x = eiα, y = eiβ and z = eiγ . In addition we denote the relative direction

coordinates r/t and s/t as λ and µ, respectively. As explained in Section 5.3, with this notation

the critical point equations become H = 0, λ = −∂γ/∂α and µ = −∂γ/∂β. Lastly, we denote

the chiralities R,L,U and D, respectively, with a particle in the R chirality being sent one lattice

point to the right with each time step, and so forth.

While we can apply Theorem 5.9 as |E| = 2, we instead apply a slight variation to account for

the decomposition of V1 into two very different components. One of these components consists of

the two flat planes z = ±1, |x| = |y| = 1 while the other supports the asymptotics we seek for

r̂ ∈ G′ below. For z = ±1 and either x or y not equal to z, z contributes toward asymptotics in the

direction λ = µ = 0, though as curvature vanishes at these points, we cannot determine asymptotics

in this direction with a theorem like 5.9. In theory one could use the Hautus-Klarner-Furstenberg

method for diagonal extraction to determine limt→∞ p(0, 0) as in the proof of Theorem 4.18,

however as one iterates the use of this method, it becomes cumbersome and even intractable.
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5.5.1 Statement of Results

Theorem 5.24. For the Quantum Random Walk with unitary matrix U = UHad, let G′ be a

compact subset of the interior of the punctured disk {(λ, µ) : 0 < λ2 +µ2 < 1/2} where λ = r/t and

µ = s/t. Let pr := pr,s,t denote the probability to be at position (r, s) at time t. Then as |r| → ∞,

uniformly over r̂ ∈ G′, there are phase functions ρξ0,ξ(r, s, t) defined in Equation (5.45), such that

pR,R(r, s, t) ∼ 1
π2t2

· (λ+ µ+ 1)(λ− µ+ 1)
(λ+ µ− 1)(λ− µ− 1)

cos2(ρR,R(r, s, t)) (5.27)

pR,L(r, s, t) ∼ 1
π2t2

cos2(ρR,L(r, s, t)) (5.28)

pR,U (r, s, t) ∼ 1
π2t2

· λ+ µ+ 1
λ+ µ− 1

cos2(ρR,U (r, s, t)) (5.29)

pR,D(r, s, t) ∼ 1
π2t2

· λ− µ+ 1
λ− µ− 1

cos2(ρR,D(r, s, t)) (5.30)

pL,L(r, s, t) ∼ 1
π2t2

· (λ+ µ− 1)(λ− µ− 1)
(λ+ µ+ 1)(λ− µ+ 1)

cos2(ρL,L(r, s, t)) (5.31)

pL,U (r, s, t) ∼ 1
π2t2

· λ− µ− 1
λ− µ+ 1

cos2(ρL,U (r, s, t)) (5.32)

pL,D(r, s, t) ∼ 1
π2t2

· λ+ µ− 1
λ+ µ+ 1

cos2(ρL,D(r, s, t)) (5.33)

pU,U (r, s, t) ∼ 1
π2t2

· (λ+ µ+ 1)(λ− µ− 1)
(λ+ µ− 1)(λ− µ+ 1)

cos2(ρU,U (r, s, t)) (5.34)

pU,D(r, s, t) ∼ 1
π2t2

cos2(ρU,D(r, s, t)) (5.35)

pD,D(r, s, t) ∼ 1
π2t2

· (λ+ µ− 1)(λ− µ+ 1)
(λ+ µ+ 1)(λ− µ− 1)

cos2(ρD,D(r, s, t)) (5.36)

and for all pairs of chiralities ξ0, ξ, pξ0,ξ cos−2(ρξ0,ξ) = pξ,ξ0 cos−2(ρξ,ξ0). When λ2 + µ2 > 1/2

then for every integer N > 0 there is a C > 0 such that Pr (r) ≤ C|r|−N with C uniform as r

ranges over a neighborhood N of r whose closure is disjoint from the closure of G′.

We once more demonstrate our results pictorially, this time with a graph of the walk’s actual

probabilities versus the predicted upper envelope (calculated by dropping the cos2 term from the

asymptotic prediction) for (ξ0, ξ) equal to each of (U,U), (U,D), (U,R) and (U,L). With time

t = 100, we use a shifted walk beginning at the point (r, s) = (101, 101) ∈ Z2. We note that as the

prediction holds for (λ, µ) in a compact subset of G′, it does not hold for ( r−101
100 )2 + ( s−101

100 )2 near
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0 or 1/2.

Figure 18: Time t = 100 probability values by location (pU,U on left and pU,D on right) for the

Hadamard walk on Z2 and the asymptotic prediction of the upper envelope.
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Figure 19: Time t = 100 probability values by location (pU,R on left and pU,L on right) for the

Hadamard walk on Z2 and the asymptotic prediction of the upper envelope.

5.5.2 Proof of Theorem 5.24

We begin by letting Ĥ := xy det (I − zM(x, y)UHad) where the xy suits to clear the denominator.

Using the fact that cos(α) = 1
2 (x+1/x) for x on the unit torus, we factor Ĥ as Ĥ = xyz(z−1)(z+

1)(cos(α) + cos(β)− 2 cos(γ)). We can then write V1 = C1 ∪ C2 where C1 = {z : |x| = |y| = |z| =

1, cos(α)+cos(β) = 2 cos(γ)} and C2 = {z : |x| = |y| = 1, z = ±1}. Determining a Gröbner Basis

in Maple for the polynomials Ĥ, Ĥx, Ĥy and Ĥz, results in the set GB := {−z+3z3−3z5+z7, 3z+

2z2y−2y−4z3 +z5, z5 +2z2x−4z3−2x+3z, x−5z+y+8z3−3z5−4yzx+xy2 +x2y}. While the

first basis element factors to z(z−1)3(z+1)3, all the elements but the last vanish when z = 1. With

this substitution, the final basis element becomes x+y−4yx+xy2+x2y = 2xy(cos(α)+cos(β)−2)

which vanishes on the unit torus precisely when x = y = 1. We similarly find that when z = −1,

∇Ĥ vanishes if and only if x = y = −1. Thus E = {(1, 1, 1), (−1,−1,−1)} = C1 ∩ C2.

Our first goal is to show that we can use the variety C1 as if it were V1 and treat (z−1)(z+1) as

a locally smooth factor. This works so long as we only prescribe asymptotics for directions in the

set π ◦n(C1)\π ◦n(C2) where the maps π and n are those used in Equation (5.1). The composition
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of these is what we refer to as the Gauss map for the sake of simplicity, while in actuality, n is the

logarithmic Gauss map. We meet this goal with the following two lemmas.

Lemma 5.25. π ◦ n(C1 \ E) = {(λ, µ) : 0 ≤ λ2 + µ2 < 1
2}

Lemma 5.26. π ◦ n(C2) = {(0, 0)}

Proof of Lemma 5.26: If z ∈ C2\E, then each of Ĥ, Ĥx, and Ĥy vanish due to the (z−1)(z+1)

factor in Ĥ. As z /∈ E, it must be that Ĥz does not vanish. So (xĤx, yĤy, zĤz) is parallel to the

vector (0, 0, 1). While (xĤx, yĤy, zĤz) vanishes at z = ±(1, 1, 1), the limit of (xĤx, yĤy, zĤz) as

z → ±(1, 1, 1) in C2 is a vector parallel to (0, 0, 1). Thus the component C2 of V1 can only affect

asymptotics in a neighborhood of the direction (λ, µ) = (0, 0). Furthermore, as all z ∈ C2 have

the same normal, K ≡ 0 on this component, so Theorem 5.9 will not prescribe asymptotics for the

direction (λ, µ) = (0, 0). �

Proof of Lemma 5.25: We recall that z ∈ C1 precisely when

cos(γ) =
cos(α) + cos(β)

2
. (5.37)

Differentiating this equation implicitly with respect to each of α and β gives the remaining two

critical point equations:

−λ =
∂γ

∂α
=

sin(α)
2 sin(γ)

(5.38)

−µ =
∂γ

∂β
=

sin(β)
2 sin(γ)

(5.39)

Squaring, then summing these formulas results in the equation:

λ2 + µ2 =
2− (cos2(α) + cos2(β))

4(1− cos2(γ))
.

Substituting the value of cos(γ) given by Equation (5.37) results in the equation:

λ2 + µ2 =
2− (cos2(α) + cos2(β))

4− (cos2(α) + 2 cos(α) cos(β) + cos2(β))
. (5.40)
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Some simple calculus then shows that λ2 + µ2 ≤ 1/2 for z ∈ C1. This shows that the image of the

Gauss map is contained within this circle.

Before considering the reverse inclusion, we note the significance of excluding E when taking

the image of the Gauss map. Taking E as a subset of C1 we find that π ◦ n is undefined at E. We

find this by observing that

lim
α=0,β→0,γ=arccos(

cos(α)+cos(β)
2 )

sin(α)
2 sin(γ)

= 0

while

lim
α=β=γ→0

sin(α)
2 sin(γ)

=
1
2

Thus sin(α)
2 sin(γ) is undefined when z = (1, 1, 1). Similarly sin(α)

2 sin(γ) is undefined at (−1,−1,−1) as

well. This guarantees that E does not contribute toward asymptotics in the directions such that

0 < λ2 + µ2 < 1/2, as required by Theorem 5.9.

For the reverse inclusion, we will see when we solve the critical point equations that ∃z such

that dir (z) || (λt, µt, t) precisely when 0 ≤ λ2 + µ2 < 1/2. �

Thus we can treat C1 as if it were V1, treat the (z−1)(z+1) = 2iz sin(γ) term as a locally smooth

factor (which will appear in the denominator of the asymptotic formula) and get an asymptotic

formula that holds for (λ, µ) in any compact subset G′ ⊂ {(λ, µ) : 0 < λ2 + µ2 < 1
2}.

Our next task is to solve the critical point equations, before substituting the result into the

expression

ar ∼
1

2π|r|
∑
z∈W

z−r G(z)
|∇logH(z)|

1
2iz sin(γ)

√
|K(z)|

e−iπτ(z)/4.

Again the eventual goal is an expression for pr = |ar|2, simplifying our calculations. In the case of

the Hadamard walk on Z2, the critical point equations are much more easily manipulated in terms

of α, β and γ, rather than x, y, and z. As a result Maple’s Groebner package has difficulty doing

the work for us (as it had done for walks on Z) but we can make progress by hand, while relying

on Maple for simplification.
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Now substituting from Equation (5.38) into Equation (5.39) we get sin(β) = µ
λ sin(α). If

we let a = sin2(α), then squaring the prior equation results in sin2(β) = µ2

λ2 a, while squaring

Equation (5.38) we get sin2(γ) = a
4λ2 . Substituting the new expressions for sin2(β) and sin2(γ)

into a squared Equation (5.37) results in the equation:

4(1− a

4λ2
) = 1− a± 2

√
(1− a)(1− µ2

λ2
a+ 1− µ2

λ2
a

Solving for a = sin2(α), we get

sin2(α) = 0,
4λ2B(λ, µ)
A(λ, µ)

where A(λ, µ) := (λ+ µ+ 1)(λ+ µ− 1)(λ− µ+ 1)(λ− µ− 1) and B(λ, µ) := 1− 2(λ2 + µ2). We

note first that the solution sin(α) = 0 for all (λ, µ) is degenerate as it corresponds to the points

z ∈ E where ∇Ĥ vanishes. It will also be of interest that for B ≥ 0, A only vanishes at the points

(λ, µ) = (± 1
2 ,±

1
2 ).

Combining the solution for sin2(α) with our earlier observations, we get the complete list of

possible sines and then cosines for the critical points:

(sin(α), sin(β), sin(γ)) = ±

(
2

√
λ2B

A
, 2
µ

λ

√
λ2B

A
,− 1

λ

√
λ2B

A

)

(cos(α), cos(β), cos(γ)) =
1√
A

(
±(3λ2 + µ2 − 1),±(λ2 + 3µ2 − 1),±(λ2 − µ2)

)
Substitution of these possible solutions into Equation (5.37) reveals that the nonextraneous solu-

tions are

(cos(α), cos(β), cos(γ)) = ± 1√
A

(
3λ2 + µ2 − 1,−(λ2 + 3µ2 − 1), λ2 − µ2

)
(5.41)

We thus get four contributing critical points for each direction, as each of the two triples of cosine

values can correspond with either triple of sine values. We note that when λ2 + µ2 = 1/2,
√
A

becomes 2λ2 − 1/2 and (cos(α), cos(β), cos(γ)) becomes ±(1, 1, 1), corresponding to the points of

E. As there are no other obstructions when B ≥ 0, it is when B > 0 that (λ, µ) ∈ π ◦ n(C1 \ E).

If we refer to one of the critical points as z1 = (x1, y1, z1), then the other critical points are
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(−x1,−y1,−z1), (x1, y1, z1) and (−x1,−y1,−z1). As a consequence, e−iπτ(z)/4 is equal for each of

these critical points, so the expression for pr becomes

pr ∼ | 1
2π|r|

∑
z∈W

z−r G(z)
|∇logH(z)|

1
2iz sin(γ)

√
|K(z)|

|2 (5.42)

We now express each component of this formula in terms of λ, µ and t. As we have seen in

Section 3.3, when d = 2,

K =
∂2γ
∂α2 · ∂

2γ
∂β2 − ( ∂2γ

∂α∂β )2[
1 + ( ∂γ∂α )2 + ( ∂γ∂β )2

]2 (5.43)

For each of Equation (5.38) and Equation (5.39), we take partial derivatives, then make substitu-

tions for the values of λ and µ to get ∂2γ
∂α2 = −λ cot(α) − λ2 cot(γ), ∂2γ

∂β2 = −µ cot(β) − µ2 cot(γ)

and ∂2γ
∂α∂β = −λµ cot(γ), so

K =
λµ(cot(α) cot(β) + λ cot(β) cot(γ) + µ cot(α) cot(γ))

(1 + λ2 + µ2)2
.

Substituting the values of the critical points, we find that for any of the four critical points:

K =
−A

4(1 + λ2 + µ2)2
.

Also, |r| =
√
r2 + s2 + t2 = t

√
λ2 + µ2 + 1 and |∇logH(z)| =

√
x2H2

x + y2H2
y + z2H2

z =

εzHz

√
λ2 + µ2 + 1 where ε is a unit ensuring that the represented norm is a positive real, and

H = Ĥ/(z2 − 1). A simple calculation shows that zHz ( mod H) = 4ixyz sin(γ). Combining this

information, we get that

|r| · |∇logH(z)| ·
√
K = −2εtxyz sin(γ)

√
A.

Now recalling that sin2(γ) = B/A and substituting these results into Equation (5.42) we get

pr ∼ |
∑
z∈W

z−r G(z)
8πεtxyz2

√
A

B
|2 (5.44)

For the purpose of the following discussion we refer to the four z ∈ W as z1 = z, z2 = −z, z3 =

z, and z4 = −z. AsG and xyz2 are each homogeneous of even degree (we will see this forG shortly),
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then as a result of the conjugacy of the critical points, if we ignore the z−r terms, the first two

summands have equal contribution to the sum (we denote this c(r)) while the second two summands

each have complex conjugate contribution c(r). When λt + µt + t ∈ 2Z, c(r)z−r
1 = c(r)z−r

2

and c(r)z−r
3 = c(r)z−r

4 = c(r)z−r
1 . Thus the sum is |2c(r)z−r

1 + 2c(r)z−r
1 |2 = |4<(c(r)z−r

1 )|2 =

16|c(r)|2 cos2(Arg(c(r)z−r
1 )) = 16|z−r

1 · G
−8πεtx1y1z21

·
√
A
B |2 cos2(ρ) = | A

4π2t2B2 | · |G|2 cos2(ρ). The

definition of ρ is then

ρξ0,ξ = Arg

(
z−r
1

Gξ0,ξ(z1)
8πεtx1y1z2

1

√
A

B

)
. (5.45)

When λt+µt+ t /∈ 2Z, the contributions from z1 and z2 will sum to 0, as will the contributions

from z3 and z4. This is as we expect for any nearest neighbor walk on Z2, so we assume that

λt+ µt+ t ∈ 2Z going forward. Then if we let ψ = p/ cos2(ρ) represent the upper envelope of the

probability distribution, we now have the formula

ψξ0,ξ ∼
(λ+ µ+ 1)(λ+ µ− 1)(λ− µ+ 1)(λ− µ− 1)

4π2t2[1− 2(λ2 + µ2)]2
· |Gξ0,ξ|2 (5.46)

It only remains to determine each value of |Gξ0,ξ|. Multiplying by Ĥ to clear denominators in

the matrix I − zMUHad we get the matrix

G(z) =



GR,R GR,L GR,U GR,D

GL,R GL,L GL,U GL,D

GU,R GU,L GU,U GU,D

GD,R GD,L GD,U GD,D


where GR,R = 2yx − zx − xzy2 − zy + z3y, GR,L = −z(y − z − zy2 + z2y), GR,U = (−z2 +

zx + zy − yx)zy, GR,D = z(yzx − x − z2y + z), GL,R = −x2z(y − z − zy2 + z2y), GL,L =

(z3yx − yzx − zy2 − z + 2y)x, GL,U = −(z − y)(−1 + zx)yzx, GL,D = −(zy − 1)(−1 + zx)zx,

GU,R = (z − y)(−z + x)zx, GU,L = −(z − y)(−1 + zx)z, GU,U = −zx2y + z3x − zx + 2yx − zy,

GU,D = (−z + x)z(−1 + zx), GD,R = xz(yzx − x − z2y + z)y, GD,L = −(zy − 1)z(−1 + zx)y,

GD,U = (−z + x)zy2(−1 + zx), and GD,D = −(zx2 − z3yx+ yzx− 2x+ z)y.
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We observe that each entry of G(z) is homogeneous of even degree as promised. Now simplifying

|G(z1)|2 by first writing each entry in terms of trigonometric functions of α, β and γ, we obtain

|GR,R|2 = 4|(cos(γ)− cos(β)− sin2(γ) cos(α) + sin(α) sin(γ) cos(γ))2 + (5.47)

(− sin(γ) + cos(α) sin(γ) cos(γ) + sin(α) sin2(γ))2| (5.48)

|GR,L|2 = 4(cos(γ)− cos(β))2 (5.49)

|GR,U |2 = 4|(1− cos(α) cos(γ)− sin(α) sin(γ))(1− cos(β) cos(γ)− sin(β) sin(γ)) (5.50)

|GR,D|2 = 4|(1− cos(α) cos(γ)− sin(α) sin(γ))(1− cos(β) cos(γ) + sin(β) sin(γ)) (5.51)

|GL,R|2 = |GR,L|2 (5.52)

|GL,L|2 = 4|(cos(γ)− cos(β)− sin2(γ) cos(α)− sin(α) sin(γ) cos(γ))2 + (5.53)

(− sin(γ) + cos(α) sin(γ) cos(γ)− sin(α) sin2(γ))2| (5.54)

|GL,U |2 = 4|(1− cos(α) cos(γ) + sin(α) sin(γ))(1− cos(β) cos(γ)− sin(β) sin(γ)) (5.55)

|GL,D|2 = 4|(1− cos(α) cos(γ) + sin(α) sin(γ))(1− cos(β) cos(γ) + sin(β) sin(γ)) (5.56)

|GU,R|2 = |GR,U |2 (5.57)

|GU,L|2 = |GL,U |2 (5.58)

|GU,U |2 = 4|(cos(γ)− cos(α)− sin2(γ) cos(β) + sin(β) sin(γ) cos(γ))2 + (5.59)

(− sin(γ) + cos(β) sin(γ) cos(γ) + sin(β) sin2(γ))2| (5.60)

|GU,D|2 = 4(cos(γ)− cos(α))2 (5.61)

|GD,R|2 = |GR,D|2 (5.62)

|GD,L|2 = |GL,D|2 (5.63)

|GD,U |2 = |GU,D|2 (5.64)

|GD,D|2 = 4|(cos(γ)− cos(α)− sin2(γ) cos(β)− sin(β) sin(γ) cos(γ))2 + (5.65)

(− sin(γ) + cos(β) sin(γ) cos(γ)− sin(β) sin2(γ))2| (5.66)

and taking the coordinatewise squared norm:
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|G(z1)|2 = 4
B2

A



(λ+µ+1)(λ−µ+1)
(λ+µ−1)(λ−µ−1) 1 λ+µ+1

λ+µ−1
λ−µ+1
λ−µ−1

1 (λ+µ−1)(λ−µ−1)
(λ+µ+1)(λ−µ+1)

λ−µ−1
λ−µ+1

λ+µ−1
λ+µ+1

λ+µ+1
λ+µ−1

λ−µ−1
λ−µ+1

(λ+µ+1)(λ−µ−1)
(λ+µ−1)(λ−µ+1) 1

λ−µ+1
λ−µ−1

λ+µ−1
λ+µ+1 1 (λ+µ−1)(λ−µ+1)

(λ+µ+1)(λ−µ−1)


Substituting the values of above Gξ0,ξ(z1) into Equation (5.46) completes the proof of Theo-

rem 5.24. �
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5.6 QRWs on Zd for d > 2

In this final section we begin to confront the questions: “How much can the work above be

generalized?”, “Can the unitary coinflip alone tell us whether V1 will be smooth?” and “What

will happen when we consider walks in higher dimensions?” Even walks on Z3 are in uncharted

territory.

5.6.1 Smooth Walks on Zd

We begin with a simple observation, stated below as a proposition:

Proposition 5.27. If U has an eigenvalue ζ with multiplicity greater than 1, then V1 := {z :

|z1| = . . . |zd+1| = 1 and H(z) = 0} with H := det(I − zd+1MU) is not smooth.

Proof: Given units z1, . . . zd, H(z) = 0 if and only if 1/zd+1 is an eigenvalue of the matrix MU .

With z1 = . . . = zd = 1, MU has the multiple eigenvalue ζ, and thus the equation H = 0 has

the repeated root (1, . . . , 1, 1/ζ). Hence ∇H vanishes at (1, . . . , 1, 1/ζ) so V1 is not smooth. In a

nearest neighbor walk ∇H vanishes at (−1, . . . ,−1,−1/ζ) as well. �.

We now observe that the family B(p) of Section 5.3 lies within the three parameter family

B(a, b, c) =



a b c d

−b a −d c

−c d a −b

−d −c b a


of special orthogonal matrices (with d =

√
1− a2 − b2 − c2), each of which has two nonsimple

eigenvalues, a± i
√

1− a2. As a =
√
p/2 for the B(p) matrices, it is immediate that ∇H vanishes

for these walks at the points ±(1, 1,
√
p/2± i

√
1− p/2).

The result above is not an if and only if statement, so there is no guarantee V1 is smooth for
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every walk based on a matrix within the three parameter family

S(a, b, c) =



a b c d

−b a −d c

c −d −a b

−d −c b a


of orthogonal matrices (with d =

√
1− a2 − b2 − c2), each of which has the four simple eigenvalues

a ± i
√

1− a2, 1 and −1. This family includes the families S(p) and A(p) of Section 5.3 for which

we showed that V1 is smooth.

All the data to this point, however, does point to the possibility that an if and only if version

of Proposition 5.27 could be true. If so, then the following conjecture is true.

Conjecture 5.28. For any nondegenerate U = S(a, b, c), the variety V1 is smooth.

By nondegenerate, we mean nondeterministic (the walk would be deterministic if a = 1) and

irreducible. If c = d = 0 we would call the walk reducible as it would be equivalent to two walks on

the line. While this statement is only a conjecture, we can prove the following proposition, giving

us two two parameter families of matrices associated with smooth walks:

Proposition 5.29. For any nondegenerate U = S(a, b, c) with c2 = d2, the variety V1 is smooth.

Proof: For a generic member of the family S(a, b, c),

z ∈ V1 ⇐⇒ H(eiα, eiβ , eiγ) = 0 with

H = 2 sin(γ) [cos(γ)− a cos(α)]−2a sin(β) cos(γ)+(a2+c2) sin(α+β)+(b2+c2−1) sin(α−β) (5.67)

If V1 is not smooth, then H, Hα, Hβ and Hγ vanish together. Differentiating Equation (5.67)

with respect to each variable we obtain

Hα = 0 ⇐⇒ sin(γ) =
[
(a2 + c2) cos(α+ β) + (1− b2 − c2) cos(α− β)

]
/2a sin(α)

Hβ = 0 ⇐⇒ cos(γ) =
[
(a2 + c2) cos(α+ β) + (1− b2 − c2) cos(α− β)

]
/2a cos(β)
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Hγ = cos(γ) [cos(γ)− a cos(α)]− sin(γ) [sin(γ)− a sin(β)]

By the hypothesis c2 = d2, we have 1−b2−c2 = a2+c2, and using the appropriate trigonometric

identities we find that

Hα = 0 ⇐⇒ sin(γ) =
a2 − b2 + 1

2a
sin(β)

Hβ = 0 ⇐⇒ cos(γ) =
a2 − b2 + 1

2a
cos(α)

In addition to obtaining formulas for cos(γ) and sin(γ), we see that cos2(α)+sin2(β) =
(

2a
a2−b2+1

)2

.

Then substituting into the equation Hγ = 0 and solving we get

cos2(α) =
2a2

(1− b2 + a2)2
= sin2(β).

Thus cos(α) = a
1−b2+a2σα

√
2, sin(β) = a

1−b2+a2σβ
√

2, cos(γ) = σα/
√

2 and sin(γ) = σβ/
√

2 for

appropriate second roots of unity σα and σβ . Finally, substituting these values into Equation (5.67)

we get that H vanishes as well if and only if (a2+c2)c2 = 0. Now if c2 = 0 then the matrix S(a, b, c)

is block diagonal, and therefore degenerate. If a2 + c2 = 0 for a, c ∈ R, then a = c = 0 and the

walk is again degenerate. Thus for a nondegenerate choice of a, b and c, V1 is smooth. �.

While a walk on Zd for d greater than 2 with smooth V1 has yet to be discovered, more work

concerning the inverse of Proposition 5.27 could lead to such a walk. Meanwhile, we demonstrate a

seven parameter family of walks on Z4 that will each have V1 smooth if the inverse is true. Just as

the families of orthogonal matrices B(a, b, c) and S(a, b, c) reflect the symmetries of (Z/(2Z))2, we
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present the family S(a, b, c, d, e, f, g) of orthogonal matrices reflecting the symmetries of (Z/(2Z))3:

S(a, b, c, d, e, f, g) =



a b c d e f g h

b −a d −c f −e h −g

c −d −a b g −h −e f

d c −b −a −h −g f e

e −f −g h −a b c −d

f e h g −b −a −d −c

−g h −e f c −d a −b

−h −g f e −d −c b a


with h =

√
1− a2 − b2 − c2 − d2 − e2 − f2 − g2. If we let A = a2+c2+d2+e2+f2 and B = 1−A,

then S(a, b, c, d, e, f, g) has distinct eigenvalues: −a± i
√

1− a2,±
√
A−B ± 2i

√
AB, 1 and −1.

5.6.2 The Hadamard Walk on Zd

Much of the previous work on QRWs has been concerned with Hadamard walks. For some reason,

the accepted generalization UnHad of the Hadamard matrix to dimension n is the matrix with all

diagonal entries equal to an > 0 and all other entries equal to bn. For UnHad to be unitary, we need

a2
n+(n− 1)b2n = 1 and 2anbn+(n− 2)b2n = 0. Solving we find an = 1− 2/n and bn = −2/n. Thus

we can write UnHad := I − 2
n1 where 1 is the matrix of all 1’s. As we saw in Section 5.5, for the

walk on Z2 based on U4
Had, V1 is not smooth, though we can still deliver asymptotics as |E| <∞.

We show that for a walk on Zd based on U2d
Had, with d greater than 2, |E| = ∞, so we cannot

recover asymptotics with a theorem like 5.9. In particular, H(z) = det(I − zd+1MU2d
Had) (with M

the nearest neighbor matrix) vanishes to order 2d− 1 at the point z = (1, . . . , 1, 1), to order 2d− 3

at the point z = (z1, 1, . . . , 1) and to order d− 1 at the point z = (z1, . . . , z1) for each unit z1. It

is likely that this carries over to hindrances to analyzing the walk with methods different than our

own, leading to the skepticism that exists regarding QRWs on Zd for d greater than 2.
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The facts mentioned above about the vanishing of H are apparent once we prove the following

proposition.

Proposition 5.30. For the nearest neighbor Hadamard walk on Zd

H(z) =
[
Πd
j=1(1− zjzd+1)(zj − zd+1)

] 1 +
1
d

d∑
j=1

zjzd+1

1− zjzd+1
+

zd+1

zj − zd+1

 (5.68)

Proof: As described above H(z) = det(I −MU2d
Hadzd+1) with U2d

Had := I − 1
d1 and M the matrix

with diagonal entries z1, z−1
1 , . . . , zd, z

−1
d . If we replace row k of the matrix A = I −MU2d

Hadzd+1

with row k minus row 1 for each 2 ≤ k ≤ 2d, we get the matrix with equivalent determinant

A′ =



1− z1zd+1 + 1
dz1zj+1

1
dz
−1
1 zd+1

1
dz2zd+1 . . . 1

dzdzd+1
1
dz
−1
d zd+1

−(1− z1zd+1) 1− z−1
1 zd+1 0 . . . . . . 0

−(1− z1zd+1) 0 1− z2zd+1 0 . . . 0

...
... 0

. . . 0 . . .

−(1− z1zd+1) 0 . . . 0 1− zdzd+1 0

−(1− z1zd+1) 0 . . . . . . 0 1− z−1
d zd+1


The determinant of A′ is easy to calculate as only d elements of the symmetric group Sd make

nonzero contributions. The contributors are the identity (meaning the product of the diagonal

entries) and the single transpositions (1, j) (in cycle notation). Thus

det(A) = det(A′) =
[
Πd
j=1(1− zjzd+1)(1− z−1

j zd+1)
] 1 +

1
d

d∑
j=1

zjzd+1

1− zjzd+1
+

z−1
j zd+1

1− z−1
j zd+1

 .
Simplifying the fractions within fractions completes the proof. �.

If we now let P (z) = Πd
j=1(1− zjzd+1)(zj − zd+1), then as P (z) vanishes to degrees 2d, 2d− 2

and d at the points ±(1, . . . , 1), (z1, 1, . . . , 1) and (z1, . . . , z1), respectively, H vanishes to degrees

2d − 1, 2d − 3 and d − 1 at these points. This proves the assertions related to the difficulty in

deriving asymptotics for this walk.

In order to determine the Gauss map for these walks, we prove the following proposition in

which zj = eiZj for each 1 ≤ j ≤ d+ 1.
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Proposition 5.31. For the nearest neighbor Hadamard walk on Zd

z ∈ V1 ⇐⇒ P̃ (z) · sin(Zd+1)
d∑
j=1

1
cos(Zd+1)− cos(Zj)

= 0 (5.69)

where

P̃ (z) =
d∏
j=1

[cos(Zd+1)− cos(Zj)] .

Proof: Beginning with the result of Proposition 5.30, we observe that (1− zjzd+1)(zj − zd+1) =

2zjzd+1 [cos(Zd+1)− cos(Zj)]. Thus P = (2zd+1)d
[∏d

j=1 zj

]
P̃ . Then

H = P

1 +
1
d

d∑
j=1

−1 +
cos(Zd+1)− zd+1

cos(Zd+1)− cos(Zj)

 = P
d∑
j=1

−i sin(Zd+1)
cos(Zd+1)− cos(Zj)

Observing that −iP = 0 ⇐⇒ P̃ = 0 on V1 completes the proof. �

When d = 3 we denote (Z1, Z2, Z3, Z4) as (X1, X2, X3, Z) and simplify the above expression as

follows: z ∈ V1 ⇐⇒ sin(Z) = 0 or

3 cos2(Z)− 2

 3∑
j=1

cos(Xj)

 cos(Z) + cos(X1) cos(X2) + cos(X1) cos(X3) + cos(X2) cos(X3) = 0.

(5.70)

Thus for given X1, X2 and X3, the values of Z are given explicitly by 0, π,± arccos(α+) and

± arccos(α−) where α+ and α− are the two solutions to the quadratic equation in cos(Z) above.

As with the Hadamard walk on Z2, V1 decomposes into components C1 ∪C2. For any X1, X2 and

X3, Z is dictated by Equation (5.70) on C1 while sin(Z) = 0 on C2. As with the walk on Z2, the

image of the Gauss map of C2 is the origin. To determine the image of the Gauss map of C1 we

differentiate Equation (5.70) with respect to X1, and obtain the partial derivative:

∂Z

∂X1
=

sin(X1)
sin(Z)

/

(
3 +

[
cos(X2)− cos(X3)

cos(Z)− cos(X2) + cos(Z)− cos(X3)

]2)

By the symmetry of Equation (5.70), we obtain ∂Z
∂X2

and ∂Z
∂X3

by permutations of the indices.

Varying X1, X2, and X3 and plotting dir (z) = (− ∂Z
∂X1

,− ∂Z
∂X2

,− ∂Z
∂X3

) we obtain the image of the

Gauss map below. (Note: As the image is symmetric with respect to each axis, we only include

half the picture.)
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Figure 20: Half the image of the Gauss map for the Hadamard walk on Z3
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6 Conclusions and Further Areas of Study

In this thesis we have reviewed and developed several methods to better understand Quantum

Random Walks via generating functions. For each walk we studied on Zd we found a region

growing linearly in time t in which the probability of finding the particle was inversely proportion

to td, and showed that the constant of proportionality was a function of Gaussian curvature. We

demonstrated that probability decays exponentially outside this region, and for two chirality walks

on the line we showed that between the two regions lies one of Airy-like behavior. In the simplest

cases of nearest neighbor walks on Z, a three-chirality walk on Z and the Hadamard walk on Z2,

we determined exact asymptotics as well.

Quantum Random Walks on Zd for d greater than 2 are still relatively uncharted territory.

Variations of the methods in this thesis, tailored to higher dimensional problems with the aid of

more sophisticated computer algebra systems, could prove productive. For walks on Z4, analysis

of the class S(a, b, c, d, e, f, g) of orthogonal matrices with distinct eigenvalues would be a good

place to begin.

In addition, it would be exciting to see more work on a general approach to the study of

Quantum Random Walks. Theorems concerning what behavior is and is not generic in QRWs

could cut to the chase in a way that the study of further individual walks does not. That being

said, the results for families of walks contained in this thesis should prove helpful in this endeavor.
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