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1 Introduction

Quantum random walk, as proposed by [ADZ93], describes the evolution in discrete time of a
single particle on the integer lattice. The Hamiltonian is space- and time-invariant. The allowed
transitions at each time are a finite set of integer translations. In addition to location, the particle
possesses an internal state (the chirality), which is necessary to make the evolution of the location
nondeterministic. A rigorous mathematical analysis of this system in one dimension was first given
by [ABN+01]. The particle moves ballistically, meaning that at time n, its distance from the origin
is likely to be of order n. By contrast, the classical random walk moves diffusively, being localized
to an interval of size

√
n at time n.

A very similar process may be defined in higher dimensions. In particular, given a subset
E ⊂ Zd with cardinality k and a k × k unitary matrix U , there is a corresponding space- and
time-homogeneous QRW in which allowed transitions are translations by elements of E and evo-
lution of chirality is governed by U . When E is the set of signed standard basis vectors we
call this a nearest neighbor QRW; for example in two dimensions, a nearest neighbor walk has
E = {(0, 1), (0,−1), (1, 0), (−1, 0)}; a complete construction of quantum random walk is given in
Section 2.1 below. Published work on quantum random walk in dimensions two and higher began
around 2002 (see [MBSS02]). Most studies, including the most recent and broad study [WKKK08],
are concerned to a great extent with localization; this phenomenon is not generic in quantum ran-
dom walk models and not present in the models we discuss below. The analyses we have seen
range from analytic derivations without complete proofs to numerical studies. As far as we know,
no rigorous analysis of two-dimensional QRW has been published. The question of describing the
behavior of two-dimensional QRW was brought to our attention by Cris Moore (personal commu-
nication). In the present paper, we answer this question by proving theorems about the limiting
shape of the feasible region (the region where probaiblities do not decay exponentially with time) for
two-dimensional QRW, and by giving asymptotically valid formulae for the probability amplitudes
at specific locations within this region.

Our analyses begin with the space-time generating function. This is a multivariate rational
function which may be derived without too much difficulty. The companion paper [BP07] introduces
this approach and applies it to an arbitrary one-dimensional QRW with two chiralities (k = 2). This
approach allows one to obtain detailed asymptotics such as an Airy-type limit in a scaling window
near the endpoints. As such, it improves on the analysis of [ABN+01] but not on the more recent
and very nice analysis of [CIR03]. In one dimension, when the number of chiralities exceeds two,
N. Konno [Kon05] found new behavior that is qualitatively different from the two-chirality QRW.
Forthcoming work of the last author with T. Greenwood uses the generating function approach
to greatly extend Konno’s findings. The generating function approach, however, pays its greatest
dividends in dimension two and higher. This approach is based on recent results on asymptotics
of multivariate rational generating functions that allow nearly automatic transfer from rational
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generating functions to asymptotic formulae for their coefficients [PW02; PW04; PW08; BP08].
Based on these results, analyses of any instance of a two-dimensional QRW becomes relatively

(a) limit

(b) Exact probabilities at time 200

Figure 1: Fixed-time empirical plot versus theoretical limit

easy, although in some cases new versions of the results under weaker hypotheses were required.
Empirically computed probability profiles such as are shown in figure 1b are explained by algebraic
computations, leading to limit shapes as shown in figure 1a. We computed probability profiles for a
number of instances of two-dimensional QRW. The pictures, which appear scattered throughout the
paper, are quite varied. Not only did we find these pictures visually intriguing, but they pointed us
toward some refinements of the theoretical work in [PW02], which we now describe, beginning with
a more detailed description of the two plots.

On the right is depicted the probability distribution for the location of a particle after 200 steps
of a quantum random walk on the planar integer lattice; the particular instance of QRW is a nearest
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neighbor walk (E = {(0, 1), (0,−1), (1, 0), (−1, 0)}) whose unitary matrix is discussed in Section 4.
Greater probabilities are shown as darker shades of grey. The feasible region, where probabilities are
not extremely close to zero, is the diamond with vertices at the midpoints of the 400× 400 square.
The feasible region appears to be a slightly rounded diamond.

In his Masters Thesis, the second author computed an asymptotically valid formula for the
probability amplitudes associated with some instances of QRW. As n→∞, the probabilities become
exponentially small outside of a certain algebraic set Ξ, but are Θ(n−2) inside of Ξ. Theorem 4.5
of [Bra07] proves such a shape result for a different instance of two-dimensional QRW and conjectures
it for this one, giving the believed characterization of Ξ as an algebraic set. The plot in figure 1a
is a picture of this characterization, constructed by parametrizing Ξ by patches in the flat torus
T0 := (R/2πZ)2 and then depicting the patches by showing the image of a grid embedded in the
torus.

When the plot was constructed, it was intended only to exhibit the overall shape. Nevertheless,
it is visually obvious that significant internal structure is duplicated as well. Identical dark regions
in the shape of a Maltese cross appear inside each of the two figures. To explain this, we consider
the map Φ : T → R2 whose image produces the region Ξ. Let V denote the pole variety of the
generating function F for a given QRW, that is, the complex algebraic hypersurface on which the
denominator H of F vanishes. Let V1 denote the intersection of V with the unit torus T. It is easy
to solve for the third coordinate z as a local function of x and y on V1 and thereby obtain a piecewise
parametrization

(α, β) 7→
(
eiα, eiβ , eiφ(α,β)

)
of V1 by patches in R2. Theorem 3.3 extends the results of [PW02] to show that each point z of V1

produces a polynomially decaying contribution to the probaiblity profile for movement at velocity
(r, s) which is the image of z under the logarithmic Gauss map n of the surface V1 at z:

n(z) :=
(
x
∂H

∂x
, y
∂H

∂y
, z
∂H

∂z

)
.

Formally, n maps into the projective space RP2, but we map this to R2 by taking the projection
π(r, s, t) := (r/t, s/t, 1). In other words, the plot is the image of the grid (Z/100Z)2 under the
following composition of maps:

(Z/100Z)2 ι−→ S1 × S1 (1,1,φ)−−−−→ V n−→ RP2 π−→ R2 . (1.1)

The intensity of an image of a uniform grid of dots is proportional to the inverse of the Jacobian
of the mapping. The Jacobian of the composition is the product of the Jacobians of the factors,
the most significant factor being the Gauss map, n. Its Jacobian is just the Gaussian curvature
(in logarithmic coordinates). The darkest regions therefore correspond to the places where the
curvature of logV1 vanishes. Alignment of this picture with the empirical amplitudes can only
mean that the formulae for asymptotics of generating functions given in [PW02] blow up when the
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Gaussian curvature of logV1 vanishes. This observation allowed us to produce new expressions for
the quantities in the conclusions of theorems in [PW02], where lengthy polynomials were replaced
by quantities involving Gaussian curvatures.

To summarize, the purpose of this paper is twofold:

1. In Theorem 4.9, we prove the shape conjecture from [Bra07]; further instances of this are
proved in Theorems 4.2 and 4.7.

2. In Theorems 3.3 and 3.5 we reformulate the main result in [PW02] to clarify the relation
between the asymptotics of a multivariate rational generating function and the curvature of
the pole variety in logarithmic coordinates.

The organization of the remainder of this paper is as follows. Section 2 gives some background on
quantum random walks, notions of Gaussian curvature, amoebas of Laurent polynomials, the mul-
tivariate Cauchy formula, and certain standard applications of the stationary phase method to the
evaluation of oscillating integrals. Section 3 contains general results on rational multivariate asymp-
totics that will be used in the derivation of the QRW limit theorems. In particular, Theorem 3.3
gives a new formulation of the main result of [PW02], while Theorem 3.5 proves a version of these
results in situations where the geometry of V1 is more complicated than can be handled by the meth-
ods of [PW02]. Finally, Section 4 applies these results to a collection of instances of two-dimensional
nearest neighbor QRW in which the unitary matrices are elements of one-parameter families named
S(p), A(p) and B(p), 0 < p < 1. This results in Theorems 4.2, 4.7 and 4.9 respectively. The QRW
in figure 1 has unitary matrix B(1/2), while the following figures show examples of the S(1/2) and
A(5/9) quantum random walks.

(a) limit (b) probabilities at time 200

Figure 2: the S(1/2) QRW
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(a) limit (b) probabilities at time 200

Figure 3: the A(5/9) QRW
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2 Preliminaries

2.1 Quantum random walks

The quantum random walk is a model for the motion of a single quantum particle evolving in Zd

under a time and translation invariant Hamiltonian for which the probability profile of a particle
after one time step, started from a known location, is uniform on the neighbors. Such a process was
first constructed in [ADZ93]. Let d ≥ 1 be the spatial dimension. Let E = {v(1), . . . ,v(k)} ⊆ Zd be
a set of finite cardinality k. Let U be a unitary matrix of size k. The set Zd × E indexes the set
of pure states of the QRW with parameters k,E and U . Let Id⊗ U denote the operator that sends
(r,v(j)) to (r, Uv(j)), that is, it leaves the location unchanged but operates on the chirality by U .
Let σ denote the operator that sends (r,v(j)) to (r + v(j),v(j)), that is, it translates the location
according to the chirality and does not change the chirality. The product σ · (Id⊗U) is the operator
we call QRW with parameters k,E and U . Let us denote this by Q.

For 1 ≤ i, j ≤ k and r ∈ Zk,
ψ(i,j)

n r := 〈e0,i|Qn|er,j〉

denotes the amplitude at time n for a particle starting at location 0 in chirality i to be in location
r and chirality j. Let z denote (z1, . . . , zd+1) and define

F (i,j)(z) :=
∑
n,r

ψ(i,j)
n (r)zr1

1 · · · zrd

d zn
d+1 (2.1)

which denotes the spacetime generating function for n-step transitions from chirality i to chirality
j and all locations. Let F(z) denote the matrix (F (i,j))1≤i,j≤k. Let M denote the diagonal matrix
whose entries are the monomials {zr : r ∈ E}. When d = 2 we use (x, y, z) for (z1, z2, z3) and (r, s)
for r; for a two-dimensional nearest neighbor QRW, therefore, the notation becomes

F (i,j)(x, y, z) =
∑
n,r,s

ψ(i,j)
n (r, s)xryszn

and

M =


x 0 0 0
0 x−1 0 0
0 0 y 0
0 0 0 y−1

 .

An explicit expression for F may be derived via an elementary enumerative technique known as
the transfer matrix method [Sta97; GJ83]. For d = 1 and a particular choice of U (the Hadamard
matrix), this rational function is computed in [ABN+01]. In [BP07, Section 3], the following formula
is given for the matrix generating function F:

F(z) = (I − zd+1MU)−1
. (2.2)

6



The (i, j)-entry of the matrix, F (i,j), may therefore be written as a rational function G/H where

H = det(I − zd+1MU) .

The following result is easy but crucial. It is valid in any dimension d ≥ 1. Let Td denote the unit
torus in Cd.

Proposition 2.1 (torality). The denominator H of the spacetime generating function for a quantum
random walk has the property that

(z1, . . . , zd) ∈ Td and H(z) = 0 =⇒ |zd+1| = 1 . (2.3)

Proof: If (z1, . . . , zd) ∈ Td then M is unitary, hence MU is unitary. The zeros of det(I−zd+1MU)
are the reciprocals of eigenvalues of MU , which are therefore complex numbers of unit modulus. �

Proposition 2.2. Let H be any polynomial and let V denote the pole variety, namely the set
{z : H(z) = 0}. Let V1 := V ∩Td+1. Assume the torality hypothesis (2.3). Let p ∈ V1 be any point
for which ∇H(p) 6= 0. Then V1 is a smooth d-dimensional manifold in a neighborhood of p.

Proof: We will show that ∂H/∂zd+1(p) 6= 0. It follows by the implicit function theorem that there
is an analytic function g : Cd → C such that for z in some neighborhood of p, H(z) = 0 if and only
if zd+1 = g(z1, . . . , zd)). Restricting (z1, . . . , zd) to the unit torus, the torality hypothesis implies
zd+1 = 1, whence V1 is locally the graph of a smooth function.

To see that ∂H/∂zd+1(p) 6= 0, first change coordinates to zj = pj exp(iθj) and zd+1 = pd+1 exp(iσ).
Letting H̃ := H ◦ exp, the new torality hypothesis is (θ1, . . . , θd) ∈ Rd and H(θ1, . . . , θd, σ) = 0 im-
plies σ ∈ R. We are given ∇H̃(0) 6= 0 and are trying to show that ∂H̃/∂σ(0) 6= 0.

Consider first the case d = 1 and let θ := θ1. Assume for contradiction that ∂H̃/∂σ(0, 0) =
0 6= ∂H̃/∂θ(0, 0). Let H̃(θ, σ) =

∑
j,k≥0 bj,kθ

jσk be a series expansion for H̃ in a neighborhood of
(0, 0). We have b0,0 = 0 6= b1,0. Let ` be the least positive integer for which the b0,` 6= 0; such an
integer exists (otherwise H̃(0, σ) ≡ 0, contradicting the new torality hypothesis) and is at least 2 by
the vanishing of ∂H/∂σ(0, 0). Then there is a Puiseux expansion for the curve {H̃ = 0} for which
σ ∼ (b1,0θ/b0,`)1/`. This follows from [BK86] although it is quite elementary in this case: as σ, θ → 0,
the power series without the (1, 0) and (0, `) terms sums to O(|θ|2 + |θσ|+ |σ|`+1) = o(|θ|+ |σ|`) (use
Hölder’s inequality); in order for H̃ to vanish, one must therefore have b1,0θ+ b0,`σ

` = o(|θ|+ |σ|`),
from which σ ∼ (b1,0θ/b0,`)1/` follows. The only way the new torality hypothesis can now be satisfied
is if ` = 2 and b1,0θ/b0,` is always positive; but θ may take either sign, so we have a contradiction.

Finally, if d > 1, again we must have b0,...,0,` 6= 0 in order to avoid H̃(0, . . . , 0, σ) ≡ 0. Let r ∈ Rd

be any vector not orthogonal to ∇H̃(0) and let G(θ, σ) := H̃(r1θ, . . . , rdθ, σ). Then ∂G/∂θ(0, 0) 6=
0 = ∂G/∂σ(0, 0) and the new torality hypothesis holds for G; a contradiction then results from the
above analysis for the case d = 1. �
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A Hadamard matrix is one whose entries are all ±1. There is more than one rank-4 uni-
tary matrix that is a constant multiple of a Hadamard matrix, but for some reason the “standard
Hadamard” QRW in two dimensions is the QRW whose unitary matrix is

UHad :=
1
2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 .

This is referred to by Konno [IKK04; WKKK08] as the “Grover walk” because of its relation to the
quantum search algorithm of L. Grover. Shown in figure 4a is a plot of the probability profile for the
position of a particle performing a standard Hadamard QRW for 200 time steps. This is the only
two-dimensional QRW we are aware of for which even a nonrigorous analysis had previously been
carried out. On the right, in figure 4b, is the analogous plot of the region of non-exponential decay.

(a) limit (b) exact probabilities at time 200

Figure 4: Moore’s Hadamard QRW

Another 4×4 unitary Hadamard matrix reflects the symmetries of (Z/(2Z))2 rather than Z/(4Z):

ŨHad :=
1
2


1 1 1 1
−1 1 −1 1
1 −1 −1 1
−1 −1 1 1

 .

This matrix also goes by the name of S(1/2) and is a member of the first family of QRW that we will
analyze. There is no reason to stick with Hadamard matrices. Varying U further produces a number
of other probability profiles including the families S(p), A(p) and B(p) analyzed in Section 4.

2.2 Differential Geometry

For a smooth orientable hypersurface V ⊂ Rd+1, the Gauss map n sends each point p ∈ V to a
consistent choice of normal vector. We may identify n(p) with an element of Sd. For a given patch
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P ⊂ V containing p, let n[P ] := ∪q∈P n(q), and denote the area of a patch P in either V or Sd as
A[P ]. Then the Gauss-Kronecker curvature of V at p is defined as

K := lim
P→p

A(n[P ])
A[P ]

. (2.4)

When d is odd, the antipodal map on Sd has determinant −1, whence the particular choice of unit
normal will influence the sign of K, which is therefore only well defined up to sign. When d is
even, we take the numerator to be negative if the map n is orientation reversing and we have a
well defined signed quantity. Clearly, K is equal to the Jacobian of the Gauss map at the point p.
For computational purposes, it is convenient to have a formula for the curvature of the graph of a
function from Rd to R.

Proposition 2.3. Suppose that in a neighborhood of the point p, the smooth hypersurface V ⊆ Rd+1

is the graph of a function h mapping the origin to p; that is, in some neighborhood of the origin,

V = {(x, τ) : τ = h(x)}. Let ∇ := ∇h(0) and H := det
(

∂h

∂ui∂uj
(0)

)
1≤i,j≤d

denote respectively the

gradient and Hessian determinant of h at the origin. Then the curvature of V at the origin is given
by

K =
H√

1 + |∇|2
2+d

.

The square root is taken to be positive and in case d is odd, the curvature is with respect to a unit
normal in the direction in which the dependent variable increases.

Proof: Let X : U ⊆ Rd → Rd+1 denote the parametrizing map defined by

X(u) := (u1, . . . , ud, h(u1, . . . , ud))

on a neighborhood U of the origin. Let π be the restriction to V of projection of Rd+1 onto the first
d coordinates, so π inverts X on U . Define a vector

N(u) :=
(
∂h

∂u1
, . . . ,

∂h

∂ud
,−1

)
normal to V at X(u) and let N̂ denote the corresponding unit normal N/|N|. Observe that |N| =√

1 + |∇h|2, and in particular, that |N(0)| =
√

1 + |∇|2. The Jacobian of π at the point p is, up to
sign, the cosine of the angle between the zd+1 axis and the normal to the tangent plane to V at p.
Thus

|J(π(p))| = |N̂ · ed+1|
|N̂||ed+1|

=
1/|N(0)|

1 · 1
=

1√
1 + |∇|2

. (2.5)

The Gaussian curvature at the point p is, by definition, the Jacobian of the map N̂ ◦ π at p.
Using J to denote the Jacobian, write N̂ as | · | ◦N and apply the chain rule to see that

K = J(π(p)) · J(N)(0) · J(| · | )(N(0)) =
1√

1 + |∇|2
· J(N)(0) · J(| · | )(∇,−1) . (2.6)
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Here, |·| is considered as a map from Rd×{−1} to Sd; at the point y, its differential is an orthogonal
projection onto the plane orthogonal to (y,−1) times a rescaling by |(y,−1)|−1, whence

J(| · | )(y) =
√

1 + |y|2
−1√

1 + |y|2
−d
. (2.7)

Because N maps into the plane zd+1 = −1 we may compute J(N) from the partial derivatives
∂Ni/∂xj = ∂2h/∂xi∂xj , leading to J(N)(0) = H. Putting this together with (2.7) gives

J(N̂)(0) =
H√

1 + |∇|2
d+1

(2.8)

and using (2.6) and (2.5) gives

K =
H√

1 + |∇|2
d+2

,

proving the proposition. �

We pause to record two special cases, the first following immediately from ∇h(0) = 0. If Q is
a homogeneous quadratic form, we let ||Q|| denote the determinant of the Hessian matrix of Q; to
avoid confusion, we point out that the diagonal elements aii of this matrix are twice the coefficient
of x2

i in Q. The determinant will be the same when the coefficients of ||Q|| may be computed with
respect to any orthonormal basis.

Corollary 2.4. Let P be the tangent plane to V at p and let v be a unit normal. Suppose that V is
the graph of a smooth function h over P, that is,

V = {p+ u + h(u)v : u ∈ U ⊆ P} .

Let Q be the quadratic part of h, that is, h(u) = Q(u) + O(|u|3). Then the curvature of V at p is
given by

K = ||Q|| .

�

Corollary 2.5 (curvature of the zero set of a polynomial). Suppose V is the set {x : H(x) = 0}
and suppose that p is a smooth point of V, that is, ∇H(p) 6= 0. Let ∇ and Q denote respectively
the gradient and quadratic part of H at p. Let Q⊥ denote the restriction of Q to the hyperplane ∇⊥
orthogonal to ∇. Then the curvature of V at p is given by

K =
||Q⊥||
|∇|d

. (2.9)

Proof: Replacing H by |∇|−1H leaves V unchanged and reduces to the case |∇H(p)| = 1; we there-
fore assume without loss of generality that |∇| = 1. Letting u⊥ + λ(u)∇ denote the decomposition
of a generic vector u into components in 〈∇〉 and ∇⊥, the Taylor expansion of H near p is

H(p+ u) = ∇ · u +Q⊥(u) +R
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where R = O(|u⊥|3 + |λ(u)||u⊥|). Near the origin, we solve for λ to obtain a parametrization of V
by ∇⊥:

λ(u) = Q⊥(u) +O(|u|3) .

The result now follows from the previous corollary. �

2.3 Amoebae and Cauchy’s formula

Let F = G/H be a quotient of Laurent polynomials, with pole variety V := {z : H(z) = 0}. Let
Log : (C∗)d+1 → Rd+1 denote the log-modulus map, defined by

Log (z) := (log |z1|, . . . , log |zd+1|) .

The amoeba of H is defined to be the image under Log of the variety V. To each component B of
the complement of this amoeba in Rd+1 corresponds to a Laurent series expansion of F . When F is
the (d+ 1)-variable spacetime generating function of a d-dimensional QRW, we will be interested in
the component B0 containing a translate of the negative zd+1-axis; this corresponds to the Laurent
expansion that is an ordinary series in the time variable and a Laurent series in the space variables.
For QRW, the point 0 is always on the boundary of B0. In general, all components of the complement
of any amoeba are convex. For further details and properties of amoebas, see [GKZ94, Chapter 6].

For any r ∈ Rd+1, let r̂ denote the unit vector r/|r|. Two important hypotheses that will be
satisfied for QRW are as follows.

The function r · x is maximized over B0 at a specified point x∗ ; (2.10)

we will be primarily concerned with those r̂ for which this maximizing point is the origin, and we
denote by K the set of r̂ for which this holds: thus for r̂ ∈ K and x ∈ B0, r · x ≤ 0 with equality
when x = 0. Secondly, we assume that the set W = W(r) of z = exp(x + iy) such that

H(z) = 0 and ∇logH(z) ‖ r̂ (2.11)

is finite. The set W(r) depends on r only through r̂. The gradient of H ◦ exp at the point z ∈ W is
equal to (z1∂H/∂z1, . . . , zd+1∂H/∂zd+1) and will be denoted ∇logH(z). It is immediate from (2.11)
that ∇logH(z) is a multiple of the real vector r.

Before we proceed we point out a condition under which (2.11) is always satisfied. Suppose that
V1 is smooth off a finite set W, and we let r be some direction such that hypothesis (2.11) fails. The
set W(r) is algebraic, so if it is infinite it contains a curve, which is a curve of constancy for the
logarithmic Gauss map. This implies that the Jacobian of the logarithmic Gauss map vanishes on
the curve, which is equivalent to vanishing Gaussian curvature at every point of the curve. Thus, if
we restrict r to the subset of V1 where K 6= 0, then hypothesis (2.11) is automatically satisfied.
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The coefficients ar of the Laurent series corresponding to B0 may be computed via Cauchy’s
integral formula. Define the flat torus T0 := (R/(2πZ))d+1. The following proposition is well known.

Proposition 2.6 (Cauchy’s Integral Formula). For any u interior to B0,

ar =
(

1
2π

)d+1

exp(−r · u)
∫

T0

exp(−ir · y)F ◦ exp(u + iy) dy . (2.12)

Corollary 2.7. Let λ := λ(r̂) := sup{r̂ · x : x ∈ B0}. For any λ′ < λ, the estimate

|ar′ | = o(exp(−λ′|r′|))

holds uniformly as r′ →∞ in some cone with r in its interior.

Proof: Pick u interior to B0 such that r · u > λ′. There is some ε > 0 and some cone K with
r in its interior such that r′ · u ≥ λ′ + ε for all r′ ∈ K. The function F is bounded on the torus
exp(u + iy), and the corollary follows from Cauchy’s formula. �

Note: We allow for the possibility that hypothesis (2.11) holds for no points with modulus 1. In
the asymptotic estimate (3.6) below, the sum will be empty and we will be able to conclude that
ar = O(|r|−(d+1)/2), as opposed to Θ(|r|−d/2) in the more interesting regime; we will not be able
to conclude that ar decays exponentially, as it does when r /∈ K. This will correspond to the case
where in fact r ∈ K \K.

2.4 Oscillating integrals

Let M be an oriented d-manifold, let φ : M→ R be a smooth function and let A be a smooth d-form
on M. Say that p∗ ∈ M is a critical point for φ if dφ(p∗) = 0. Equivalently, in coordinates, p∗ is
critical if the gradient vector ∇φ(p∗) vanishes. At a critical point, φ(p)−φ(p∗) is a smooth function
of p which vanishes to order at least 2 at p = p∗. Say that a critical point p∗ for φ is quadratically
nondegenerate if the quadratic part is nondegenerate; in coordinates, this means that the Hessian
matrix

H(φ; p∗) :=
(

∂2φ

∂xi∂xj
(p∗)

)
1≤i,j≤k

has nonzero determinant. It is well known (e.g., [BH86; Won89]) that the integral
∫
M exp(iλφ(y))A(y) dy

can be asymptotically estimated via a stationary phase analysis. The following formulation is
adapted from [Ste93].

If p 7→ (x1, . . . , xd) is a local right-handed coordinatization, we denote by η[p, dx] the value A(p)
for the function A such that η = A(p) dx. If the real matrix M has nonvanishing real eigenvalues, we
denote a signature function σ(M) := n+(M)− n−(M) where n+(M) (respectively n−(M)) denotes
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the number of positive (respectively negative) eigenvalues of M . Given φ and η as above, and a
critical point p∗ for φ, we claim that the quantity F defined by

F(φ, η, p∗) := e−iπσ/4 |detH(φ; p∗)|−1/2
η[p∗, dx] (2.13)

does not depend on the choice of coordinatization. To see this, note that the symmetric matrix
H has nonzero real eigenvalues, whence iH has purely imaginary eigenvalues and the quantity
e−iπσ/4|detH(φ; p∗)|−1/2 is a −1/2 power of det(iH), in particular, the product of the reciprocals
of the principal square roots of the eigenvalues. Up to the sign choice, this is invariant because a
change of coordinates with Jacobian J at p∗ divides η[p∗, dx] by J and H(φ; p∗) by J2. Invariance
of the sign choice follows from connectedness of the special orthogonal group, implying that any two
right-handed coordinatizations are locally homotopic and the sign choice, being continuous, must
be constant.

Lemma 2.8 (nondegenerate stationary phase integrals). Let φ be a smooth function on a d-manifold
M and let η be a smooth, compactly supported d-form on M. Assume the following hypotheses.

(i) The set W of critical points of φ on the support of η is finite and non-empty.

(ii) φ is quadratically nondegenerate at each p∗ ∈ W.

Then ∫
M

exp(iλφ) η =
(

2π
λ

)d/2 ∑
p∗∈W

eiλφ(p∗)F(φ, η, p∗) +O
(
λ−(d+1)/2

)
. (2.14)

Remarks. The stationary phase method actually gives an infinite asymptotic development for this
integral. In our application, the contributions of order λ−d/2 will not cancel, in which case (2.14)
gives an asymptotic formula for the integral. The remainder term (see [Ste93]) is bounded by a
polynomial in the reciprocals of |∇φ| and detH and partial derivatives of φ (to order two) and η (to
order one); it follows that the bound is uniform if φ and η vary smoothly with (i) and (ii) always
holding.

Proof: Let {Nα} be a finite cover of M by open sets containing at most one critical point of φ,
with each Nα covered by a single chart map and no two containing the same critical point. Let {ψα}
be a partition of unity subordinate to {Nα}. Write

I :=
∫
M

exp(iλφ) η

as
∑

α Iα where

Iα :=
∫
Nα

exp(iλφ) η ψα .
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According to [Ste93, Proposition 4 of VIII.2.1], when Nα contains no critical point of φ then Iα is
rapidly decreasing, i.e, Iα(λ) = o(λ−N ) for every N . According to [Ste93, Proposition 6 of VIII.2.3],
when Nα contains a single nondegenerate critical point p∗ for φ then, using the fact that ψα(p∗) = 1,

Iα =
(

2π
λ

)d/2

A(p∗)
d∏

j=1

µ
−1/2
j +O

(
λ−d/2−1

)
where η = A(x)dx in the local chart map, {µj} are the eigenvalues of iH in this chart map, and the
principal −1/2 powers are chosen. Summing over α then proves the lemma. �

As a corollary, we derive the asymptotics for the Fourier transform of a smooth d-form on an
oriented d-manifold immersed in Rd+1. Let M be such a manifold and let K(p) denote the curvature
of M at p. If η is a smooth, compactly supported d-form on M, denote η[p] = η[p, dx] with respect
to the immersion coordinates, and define the Fourier transform η̂ by

η̂(r) :=
∫
M
eir̂·x · η .

Corollary 2.9. Let K be a compact subset of the unit sphere. Assume that for r̂ ∈ K, the set W
of critical points for the phase function r̂ · x is finite (possibly empty), and all critical points are
quadratically nondegenerate. For x ∈ W, let τ(x) denote the index of the critical point, that is,
the difference between the dimensions of the positive and negative tangent subspaces for the function
r̂ · x. Then

η̂(r) =
(

2π
|r|

)d/2 ∑
x∗∈W

eir·x∗η[x∗]K(x∗)−1/2e−iπτ(x∗)/4 +O
(
λ−(d+1)/2

)
uniformly as |r| → ∞ with r̂ ∈ K.

Proof: Plugging φ = r̂ ·x into Lemma 2.8, and comparing with (2.13) we see that we need only to
verify for each x∗ ∈ W that

e−iπσ/4 |detH(φ;x∗)|−1/2
η[x∗, dx] = η[x∗] |K(x∗)|−1/2

e−iπτ(x∗)/4 .

With the immersed coordinates, σ = τ , and this amounts to verifying that |detH(φ;x∗)| = |K(x∗)|.
Let P denote the tangent space to M at x∗ and let u1, . . . , ud be an orthonormal basis for P. Let
v be the unit vector in direction r̂, which is orthogonal to P because x∗ is critical for φ. In this
coordinate system, express M as a graph over P. Thus locally,

M = {x∗ + u + h(u)v : u ∈ P}

for some smooth function h with h(0) and ∇h(0) vanishing. Let Q denote the quadratic part of h.
By Corollary 2.4, we have K(x∗) = ||Q||. But

φ(x∗ + u + h(u)v) = φ(x∗) + h(u)

whence H(φ;x∗) = Q, completing the verification. �

14



3 Results on multivariate generating functions

In this section, we state general results on asymptotics of coefficients of rational multivariate gen-
erating functions. These results extend previous work of [PW02] in two ways: the hypotheses are
generalized to remove a finiteness condition, and the conclusions are restated in terms of Gaussian
curvature. Our two theorems concern reductions of the (d+1)-variable Cauchy integral to something
more manageable; the second theorem is an extension of the first.

We give some notation and hypotheses that are assumed throughout this section. Let F = G/H

be the quotient of Laurent polynomials in d + 1 variables z := (z1, . . . , zd+1) and let B0 be a
component of the complement of the amoeba of H containing a translate of the negative zd+1-axis
(see Section 2.3). Assume 0 ∈ ∂B0 and let F =

∑
r arz

r be the Laurent series corresponding to B0.
Let V denote the set {z ∈ Cd+1 : H(z) = 0} and V1 := V ∩ T denote the intersection of V with the
unit torus. Let W := V1 ∩ {z : ∇H(z) = 0} denote the singular set of V1. Let K := K(0) denote
the cone of r̂ for which the maximality condition (2.10) is satisfied with x∗ = 0 and let N be any
compact subcone of the interior of K such that (2.11) holds for r̂ ∈ N (finitely many critical points).

3.1 When V is smooth on the unit torus

We start with the definition/construction of the residue form in the case of a generic rational function
F = P/Q with singular variety VQ.

Proposition 3.1 (residue form). There is a unique d-form η, holomorphic everywhere ∇Q does
not vanish such that η ∧ dQ = P dz. We call it the residue form for F on VQ and denote it by
RES (F dz).

Remark. To avoid ambiguous notation, we denote the usual residue at a simple pole a of a univariate
function f by

residue(f ; a) = lim
z→a

(z − a)f(z) .

Proof: To prove uniqueness, let η1 and η2 be two solutions. Then (η1−η2)∧dQ = 0. The inclusion
ι : VQ → Cd induces a map ι∗ that annihilates any form ξ with ξ ∧ dQ = 0. Hence η1 = η2 when
they are viewed as forms on VQ.

To prove existence, suppose that (∂Q/∂zd+1)(z) 6= 0. Then the form

η :=
P

∂Q/∂zd+1
dz1 · · · dzd (3.1)

is evidently a solution. One has a similar solution assuming ∂Q/∂zj is nonvanishing for any other
j. The form is therefore well defined and nonsingular everywhere that ∇Q is nonzero. �
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From the previous proposition, RES (F dz) is holomorphic wherever ∇H 6= 0, and in particular,
on V1 \W.

Lemma 3.2. Let F,G,H,V, B0,V1 and W be as stated in the beginning of this section. Assume
torality (2.3) and suppose that the singular set W is empty. Then ar may be computed via the
following holomorphic integral.

ar =
(

1
2πi

)d ∫
V1

z−r−1RES (F dz) . (3.2)

Proof: As a preliminary step, we observe that the projection π : V → Cd onto the first d coordinates
induces a fibration of V1 with discrete fiber of cardinality 2d, everywhere except on a set of positive
codimension. To see this, first observe (cf. (2.2)) that the polynomial H has degree 2d in the
variable zd+1. Let Y ⊆ V be the subvariety on which ∂H/∂zd+1 vanishes. Then on the regular
set U := T \ π(Y ), the inverse image of π contains 2d points and there are distinct, locally defined
smooth maps y1(x), . . . , y2d(x) that are inverted by π. The fibration

π−1[U ] π−→ U

is the aforementioned fibration with fiber cardinality 2d.

Next, we apply Cauchy’s integral formula with u = −ed+1. Let S1 and S2 denote the circles in
C1 of respective radii e−1 and 1 + s, and let Tj := Td × Sj for j = 1, 2. By (2.3), neither T1 nor T2

intersects V, so beginning with the integral formula and integrating around T1, we have

ar =
(

1
2πi

)d+1 ∫
T1

z−r−1F (z) dz

=
(

1
2πi

)d+1 [∫
T1

z−r−1F (z)dz−
∫

T2

z−r−1F (z)dz
]

+
(

1
2πi

)d+1 ∫
T2

z−r−1F (z)dz .

Expressing the integral over Tj as an iterated integral over Td×Sj shows that the quantity in square
brackets is ∫

Td

[∫
S1

z−r−1F (z) dzd+1 −
∫

S2

z−r−1F (z) dzd+1

]
dz† (3.3)

where z† denotes (z1, . . . , zd). The inner integral is the integral in zd+1 of a bounded continuous
function of (z†, zd+1), so it is a bounded function of z†. We may always write the inner integral as
a sum of residues. In fact, when z† ∈ U it is the sum of 2d simple residues, and since Td \ U has
measure zero, we may rewrite (3.3) as

2πi
∫

U

[
2d∑

k=1

z−r−1residue(F (z†, ·); yk(z†))

]
dz† . (3.4)

On U , we have seen from (3.1) that

RES (F dz)(z) = π∗ [residue (F (z†, ·); zd+1) dz†] (π(z)) ,
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hence, from the fibration, (3.4) becomes

2πi
∫

π−1[U ]

z−r−1RES (F dz) .

Because the complement of π−1[U ] in V1 has measure zero, we have shown that

ar =
(

1
2πi

)d ∫
V1\W

z−r−1RES (F dz) +
(

1
2πi

)d+1 ∫
T2

z−r−1F (z)dz . (3.5)

The integral over T2 is O((1 + s)−rd); because s is arbitrary, sending s→∞ shows this integral to
be zero. We have assumed that W is empty, so (3.5) becomes the desired conclusion (3.2). �

The next theorem has the quantum random walk as its main target, however it is valid for a
general class of rational Laurent series, provided we assume the hypotheses of Lemma 3.2, namely
torality (2.3) and smoothness (W = ∅). Under these hypotheses, the image of V1 under z 7→ (log z)/i
is a smooth co-dimension-one submanifold M of the flat torus; we let K(z) denote the curvature
of M at the point (log z)/i. Of primary interest is the regime of sub-exponential decay, which is
governed by critical points on the unit torus. We therefore let K denote the set of directions r̂ for
which r̂ · x is maximized at x = 0 on the closure B0 of the component of the amoeba complement
in which we are computing a Laurent series. We also assume (2.11) (finiteness of W(r̂)) for each
r̂ ∈ K. Observing that z = exp(ix) ∈ W if and only if x is critical for the function r · x on M, we
may define τ(z) to be the signature of the critical point (log z)/i (the dimension of positive space
minus dimension of negative space) for the function r̂ · x on M.

Theorem 3.3. Under the above hypotheses, let N be a compact subset of the interior of K such
that the curvatures K(z) at all points z ∈ W(r̂) are nonvanishing for all r̂ ∈ N . Then as |r| → ∞,
uniformly over r̂ ∈ N ,

ar =
(

1
2π|r|

)d/2 ∑
z∈W

z−r G(z)
|∇logH(z)|

1√
|K(z)|

e−iπτ(z)/4 +O
(
|r|−(d+1)/2

)
(3.6)

provided that ∇logH is a positive multiple of r̂ (if it is a negative multiple, the estimate must be
multiplied by −1). When r̂ /∈ K then ar = o(exp(−c|r|)) for some positive constant c, which is
uniform if r̂ ranges over a compact subcone of the complement of K.

Proof: The conclusion in the case where r /∈ K follows from Corollary 2.7. In the other case,
assume r ∈ N and apply Lemma 3.2 to express ar in the form (3.2):

ar =
(

1
2πi

)d ∫
V1

z−rRES
(
F
dz
z

)
.

The chain of integration is a smooth d-dimensional submanifold of the unit torus in Rd+1, so when we
apply the change of variables z = exp(iy), the chain of integration becomes a smooth submanifold
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M of the flat torus T0, hence locally an immersed d-manifold in Rd+1. We have dz = iz dy, so
F (z)dz/z = id F ◦ exp(y) dy and functoriality of RES implies that

RES
(
F
dz
z

)
= RES (F ◦ exp dy) .

After the change of coordinates, therefore, the integral becomes

ar = (2π)−dη̂(r) =
(

1
2π

)d ∫
M
e−ir·y η

where η := RES (F ◦ exp dy). By hypothesis, η is smooth and compactly supported, so if we apply
Corollary 2.9 and divide by (2π)d we obtain

ar =
(

1
2π|r|

)d/2 ∑
z∈W

z−rη[z] |K(z)|−1/2
e−iπτ(z)/4 +O

(
|r|−(d+1)/2

)
.

Finally, we evaluate η[z] in a coordinate system in which the (d + 1)st coordinate is r̂. We see
from (3.1) that

η =
G(z)

∂H/∂r̂(z)
dA

where dr̂ ∧ dA = dz. Because the gradient of H is in the direction r̂, this boils down to η =
G(z)/|∇logH(z)| at the point z, finishing the proof. �

3.2 V contains noncontributing cone points

In this section, we generalize Theorem 3.3 to allow ∇H to vanish at finitely many points of V. The
key is to ensure that the contribution to the Cauchy integral near these points does not affect the
asymptotics. This will be a consequence of an assumption about the degrees of vanishing of G and
H at points of W. We begin with some estimates in the vein of classical harmonic analysis. Suppose
η is a smooth p-form on a smooth cone in Rd+1; the term “smooth” for cones means smooth except
at the origin. We say η is homogeneous of degree k if in local coordinates it is a finite sum of
forms A(z) dzi1 ∧ · · · ∧ dzip with A homogeneous of degree k − p, that is, A(λz) = λk−pA(z). A
smooth p-form η on a smooth cone is said to have leading degree α if

η = η◦ +
∑

i1,...,ip

O(|z|α−p+1 dzi1 ∧ dzip) (3.7)

with η◦ homogeneous of degree α. The following lemma is a special case of the big-O lemma
from [BP08]. That lemma requires a rather complicated topological construction from [ABG70]; we
give a self-contained proof, due to Phil Gressman, for the special case required here.

Lemma 3.4. Let V0 be a smooth (d−1)-dimensional manifold in Sd and let V denote the cone over
V0 in Rd+1. Let η be a compactly supported d-form of leading degree α > 0 on V. Then∫

V
eir·zη = O(|r|−α) .
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Proof: Assume without loss of generality that η is supported on the unit polydisk {z : |z| ≤ 1},
where |z| :=

√∑d+1
j=1 |zj |2 is the usual euclidean norm on Cd+1. The union of the interiors of the

annuli
Bn := {z : 2−n−2 ≤ |z| ≤ 2−n}

is the open unit polydisk, minus the origin. Let θn : B0 → Bn denote dilation by 2−n and let
ηn := θ∗nη|B0 be the pullback to B0 from Bn of the form η. Let η◦ denote the homogeneous part
of η, that is, the unique form satisfying (3.7). The forms ηn are asymptotically equal to 2−αnη◦

in the following sense: for each L, the partial derivatives of 2αnηn up to order L converge to the
corresponding partial derivatives of η◦, uniformly on B0. Let χn be smooth functions, compactly
supported on the interior of B0, and with partial derivatives up to any fixed order bounded uniformly
in n. Then for any N > 0 there is an estimate∫

B0

eir·zχn(z) · (2αnηn(z)) = O
(
|r|−N

)
(3.8)

uniformly in n. This is a standard result, an argument for which may be found in [Ste93, Proposi-
tion 4 of Section VIII.2], noting that uniform bounds on the partial derivatives of coefficients of χnηn

up to a sufficiently high order L suffice to prove Stein’s Proposition 4 for the class ηn, uniformly in
n. To make the O-notation explicit, we rewrite (3.8) as∫

B0

eir·zχn(z)ηn(z) ≤ gN (|r|) 2−αn |r|−N (3.9)

for some functions gN (x) each going to zero as x→∞.

Next, let {ψn : n ≥ 0} be a partition of unity subordinate to the cover {Bn}. We may choose ψn

so that 0 ≤ ψn ≤ 1 and so that the partial derivatives of ψn up to a fixed order L are bounded by
CL2n where CL does not depend on n. We estimate

∫
Bn

eir·zψnη in two ways. First, using |ψn| ≤ 1
and η(z) = O(|z|α−d dzi1 · · · dzid

), we obtain∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ ≤ C 2−nd sup
z∈Bn

|z|α−d ≤ C ′ 2−nα (3.10)

for some constants C,C ′ independent of n. On the other hand, pulling back by θn, we observe that
the partial derivatives of θ∗nψn up to order L are bounded by CL independently of n. Using (3.9),
for any N > 0 we choose L = L(N) appropriately to obtain∣∣∣∣∫

Bn

eir·zψnη

∣∣∣∣ =
∣∣∣∣∫

B0

ei(r/2n)·z(θ∗nψn) · (2αnηn)
∣∣∣∣

≤ gN

(
|r|
2n

)
2−αn

(
|r|
2n

)−N

for all n,N , where gN are real functions going to zero at infinity.
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Let n0(r) be the least integer such that 2−n0 ≤ 1/|r|. Our last estimate implies that for n =
n0 − j < n0, ∣∣∣∣∫

Bn

eir·zψnη

∣∣∣∣ ≤ 2−αn gN

(
|r|
2n

) (
|r|
2n

)−N

= 2−αn0

[
2αj gN

(
2j |r|

2n0

) (
2j |r|

2n0

)−N
]
.

Once N > α, the quantity in the square brackets is summable over j ≥ 1, giving∑
n<n0

∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ = O
(
2−αn0

)
.

On the other hand, (3.10) is summable over n ≥ n0, so we have∑
n≥n0

∣∣∣∣∫
Bn

eir·zψnη

∣∣∣∣ = O
(
2−αn0

)
.

The last two estimates, along with |r| = Θ(2n0), prove the lemma. �

Given an algebraic variety V := {H = 0}, let p be an isolated singular point of V. Let H◦ = H◦
p

denote the leading homogeneous term of H at p, namely the homogeneous polynomial of some degree
m such that H(p+z) = H◦(z)+O(|z|m+1); the degree m will be the least degree of any term in the
Taylor expansion of H near p. The normal cone to V at p is defined to be the set of all normals
to the homogeneous variety Vp := {z : H◦

p (p+ z) = 0}. We remark that r is in the normal cone to
V at p if and only if r · z has (a line of) critical points on Vp.

Theorem 3.5. Let F,G,H,V, B0,V1 and W be as stated at the beginning of this section. Assume
torality (2.3). Suppose that the singular set W is finite and that for each p ∈ W, the following
hypotheses are satisfied.

(i) The residue form η has leading degree α > d/2 at p.

(ii) The cone Vp is projectively smooth and r is not in the normal cone to V at p.

Then a conclusion similar to that of Theorem 3.3 holds, namely the sum (3.6) over the points zj /∈ W
where ∇H ‖ r gives the asymptotics of ar up to a correction that is o(|r|−d/2).

Proof: By [Tou68, Cor. 2”], condition (ii) implies that the function H(p + z) is bi-analytically
conjugate to the function H◦

p , that is, locally there is a bi-analytic change of coordinates Ψp such
that H◦

p ◦Ψp = H(p+ z). Now for each p ∈ W, let Up be a neighborhood of p in V sufficiently small
so that it contains no other p′ ∈ W, contains no yj , and so that the bi-analytic map Ψp is defined
on Up. Let U0 be a neighborhood of the complement of the union of the sets Up. Using a partition
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of unity subordinate to {Up, U0}, we replicate the beginning of the proof of Theorem 3.3 to see that
it suffices to show ∫

Up

eir·yRES (F dx) = o(|r|−d/2) .

Changing coordinates via Ψp gives an integral of a smooth, compactly supported form η on the cone
Vp which is homogeneous of order α > d/2. Lemma 3.4 estimates the integral to be O(|r|−α), which
completes the proof. �

4 Application to 2-D Quantum Random Walks

As before, we let F = (F (i,j))1≤i,j≤k where

F (i,j)(x, y, z) =
∑
r,s,n

a(i,j)
r,s,nx

ryszn

and a
(i,j)
r,s,n is the amplitude for finding the particle at location (r, s) at time n in chirality j if it

started at the origin at time zero in cardinality i. Each entry F (i,j) has some numerator G(i,j) and
the same denominator H = det(I − zMU). In addition, we will denote the image of the gauss map
of V1 \W as G. We note that r̂ ∈ G precisely when

There is some z in the unit torus for which H(z) = 0 and ∇logH(z) ‖ r̂ . (4.11)

In fact, we can make a stronger statement as follows.

Lemma 4.1. G ⊂ K.

Proof of Lemma 4.1: Let z satisfy (4.11) for some r̂. Because V is smooth at z, a neighborhood of
z (or a patch including z) in V is mapped by the coordinatewise Log map to a support patch to B0

which is normal to r̂. This patch lies entirely outside B0 by the convexity of amoeba complements.
In the limit we see the following. If we take the real version of the complex tangent plane to V ∈ Cd+1

at z and map by the coordinatewise log map, the result is a support hyperplane to B0 which again,
lies completely outside B0 (except at Log |z|) by convexity. Now when r̂ ∈ G, equation (4.11) is
satisfied with z ∈ V1. Thus Log |z| = 0 and r̂ ∈ K. The desired conclusion follows. �

We will apply the results of Section 3 to several one-parameter families of two-dimensional
QRW’s. Each analysis requires us to verify properties of the corresponding family of generating
functions.
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4.1 The family S(p)

We begin by introducing a family S(p) of orthogonal matrices with p ∈ (0, 1):

S(p) =


√

p√
2

√
p√
2

√
1−p√
2

√
1−p√
2

−
√

p√
2

√
p√
2

−
√

1−p√
2

√
1−p√
2√

1−p√
2

−
√

1−p√
2

−
√

p√
2

√
p√
2

−
√

1−p√
2

−
√

1−p√
2

√
p√
2

√
p√
2

 .

The matrix S(1/2) is the alternative Hadamard matrix referred to earlier as ŨHad. A probability
profile was shown in figure 2; here is a picture for another parameter value, namely 1/8. The
following theorem, conjectured in [Bra07], shows why similarity of the pictures is not a coincidence.

(a) limit (b) probabilities at time 200

Figure 5: the S(1/8) walk

Theorem 4.2. For the quantum random walk with unitary matrix U = S(p), let G′ be a compact
subset of the interior of G such that the curvatures K(z) at all points z ∈ W(r̂) are nonvanishing
for all r̂ ∈ G′. Fix chiralities i, j, let G := G(i,j), and let ar := ar,s,n denote the amplitude to be at
position (r, s) at time n. Then as |r| → ∞, uniformly over r̂ ∈ G′,

ar = (−1)δ 1
2π|r|

∑
z∈W

z−r G(z)
|∇logH(z)|

1√
|K(z)|

e−iπτ(z)/4 +O
(
|r|−3/2

)
(4.12)

where δ = 1 if ∇logH is a negative multiple of r̂ (so as to change the sign of the estimate) and
zero otherwise. When r̂ ∈ [−1, 1]2 \ G then for every integer N > 0 there is a C > 0 such that
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Pr (r) ≤ C|r|−N with C uniform as r ranges over a neighborhood N of r whose closure is disjoint
from the closure of G.

Before proving this theorem we interpret its implication for the probability profile. The proba-
bility of finding the particle at (r, s) in the given chiralities at the given time is equal to |ar|2. We
only care about ar up to a unit complex multiple, so we don’t care whether δ is zero or one, but
we must keep track of phase factors inside the sum because these affect the interference of terms
from different z ∈ W. In fact, the nearest neighbor QRW has periodicity (because all possible steps
are odd); the manifestation of this is that W consists of conjugate pairs. When r + s and n have
opposite parities the summands in the formula for ar cancel. Otherwise the probability amplitude
|ar|2 will be Θ(n−2), uniformly over compact regions avoiding critical values in the range of the
logarithmic Gauss map but blowing up at these values.

Proof of Theorem 4.2: As G ⊂ K by lemma 4.1, the result when r̂ ∈ G′ is immediate once we
have shown that for any S(p), its generating function satisfies the hypotheses of Theorem 3.3. We
establish this in the lemma below.

Lemma 4.3. Let H := H(p) = det (I − zM(x, y)S(p)). Then for 0 < p < 1, ∇H 6= 0 on T3.
Consequently, V1 := VH ∩ T3 is smooth.

Theorem 3.3 will not be helpful in proving the case when r̂ ∈ [−1, 1]2 \G. To prove this condition
we present the following lemma, which is a generalization of [Ste93, Proposition 4 of Section VIII.2].

Lemma 4.4. Let M be a compact d-manifold. Suppose α is smooth and that f is a smooth function
taking values in R/(2πL), with no critical points in M. Then

I(λ) =
∫
M
eiλf(x)α(x)dx = O(λ−N ) (4.13)

as λ→∞ through multiples of L, for every N ≥ 0.

We will see below that V1 is a fourfold (unbranched) cover of the two-torus. Any such cover is
compact. In the calculation of ar, we have f(y) = −r̂ · y and λ = |r|. Thus a direction r̂ is not in
G precisely when f(y) has no critical points in V1. Uniform exponential decay of amplitudes for r
bounded outside the image of the gauss map follows. �

We now prove the above lemmas in reverse order.

Proof of Lemma 4.4 : As M is compact it admits a finite open cover {Ui}i∈I with subordinate
partition of unity {φi}i∈I . We decompose the integral
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I(λ) =
∫
M
eiλf(x)α(x)dx

=
∫
M
eiλf(x)α(x)

∑
i∈I

φi(x)dx

=
∑
i∈I

∫
M
eiλf(x)α(x)φi(x)dx

=
∑
i∈I

∫
Ui

eiλf(x)α(x)φi(x)dx

We will show that for each i ∈ I,
∫

Ui
eiλf(x)α(x)φi(x)dx is rapidly decreasing (the requirement above

for I(λ)). As the cover Ui is finite, this will give us our result.

For a given i ∈ I, we let ψ(x) := α(x)φi(x) which is then smooth with compact support. For
each x0 in the support of ψ(x), there is a unit vector ξ and a small ball B(x0), centered at x0, such
that ξ ·(∇f)(x) ≥ c > 0 for some real c uniformly for all x ∈ B(x0). We then decompose the integral∫

Ui
eiλf(x)ψ(x)dx as a finite sum ∑

k

∫
eiλf(x)ψk(x)dx

where each ψk is smooth and has compact support in one of these balls. It then suffices to prove
the corresponding estimate for each summand. Now choose a coordinate system x1, . . . , xd so that
x1 lies along ξ. Then∫

eiλf(x)ψk(x)dx =
∫ (∫

eiλf(x1,...,xd)ψk(x1, ..., xd)dx1

)
dx2 . . . dxd

Now by [Ste93, Proposition 1 of Section VIII.2] the inner integral is rapidly decreasing, giving us
our desired conclusion. �

For the next two proofs, we clear denominators to obtain the following explicit polynomial:
H = (x2y2 +y2−x2−1+2xyz2)z2−2xy−

√
2pz(xy2−y−x+z2y−z2x+z2xy2 +z2x2y−x2y). We

make the substitution α =
√

2p to facilitate the use of Gröbner Bases, which require polynomials as
inputs. Use the notation Hx for ∂H

∂x , and similarly with y and z.

Proof of Lemma 4.3:

Using the Maple command Basis([H, Hx, Hy, Hz], plex(x, y, z, α) we get a Gröbner Basis with first
term zα2(α2 − 1)(α2 − 2) = 2zp(2p− 1)(2p− 2). Thus to show that S(p) results in a variety whose
intersection with T is smooth for p ∈ (0, 1), we need only consider the case when p = 1/2. In this case
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α = 1 and the Gröbner Basis for the ideal where (H,∇H) = 0 is (−z+z5, z3 +2y−z,−z−z3 +2x).
Here B1 vanishes on the unit circle for z = ±1,±i. However, for z = ±1, B2 vanishes only when
y = 0 and for z = ±i, B3 vanishes only when x = 0. Thus ∇H does not vanish on T3. �

Further analysis of the limit shape for S(p)

Proposition 4.5. For each pair (x, y), there are four distinct values z1, z2, z3, z4 such that (x, y, zi) ∈
V1 for i ∈ 1, 2, 3, 4. Consequently, the projection (x, y, z) 7→ (x, y) is a smooth four-covering of T2

by V1.

Proof: Since H has degree four in z, it has at most four z values in C for each pair (x, y), hence
at most four z values in V1. Recall from Proposition 2.1 that all solutions to H(x, y, z) = 0 for a
given (x, y) in the unit torus have |z| = 1 as well. Hence, if ever there are fewer than four z values
for a given (x, y), then there are fewer than four solutions to H(x, y, ·) = 0 and the implicit function
theorem must fail. Consequently, ∂H

∂z = 0. This cannot be true, however, by the following argument.
We have ruled out Hx = Hy = Hz = 0 on V1, so if Hz = 0, then the point (x, y, z) contributes
toward asymptotics in the direction (r, s, 0) for some (r, s) 6= (0, 0). The particle moves at most one
step per unit time, so this is impossible. �

To facilitate discussions of subsets of the unit torus, we let (α, β, γ) denote the respective argu-
ments of (x, y, z), that is, x = eiα, y = eiβ , z = eiγ . We may think of α, β and γ as belonging to the
flat torus (R/2πZ)3.

Proposition 4.6. V1 can be decomposed into connected components as V1 = AqB qC qD, where
A,B,C and D will be the components containing the γ values 0, π/2, π and 3π/2, respectively.

Proof: Let χ := {(x, y, z) : z4 = −1}. We begin by establishing that |V1 ∩ χ| = 8 with two
points for each of the fourth roots of −1. Furthermore, −π/4 ≤ γ ≤ π/4 on A, π/4 ≤ γ ≤ 3π/4
on B, 3π/4 ≤ γ ≤ 5π/4 on C, and 5π/4 ≤ γ ≤ 7π/4 on D. These observations suffice to prove
the proposition, because the smooth variety V1 cannot have an intersection with a torus that is
pinched down to a point; the only possibility is therefore that these values of γ are extreme values
on components of V1.

To check the first of these statements, use the identities cos γ = (z+z−1)/2, sin γ = (z−z−1)/(2i),
as well as the analogous identities for α and β, to write the equation of V in terms of α, β and γ.
We find that H(x, y, z) = 0 if and only if

0 = L(α, β, γ) := 2 sin γ cos γ −
√

2p(sinβ cos γ + cosα sin γ) + cosα sinβ . (4.14)

Substituting γ = π/4 results in

1− (sinβ + cosα)
√
p+ cosα sinβ = 0 .
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Verifying that sinβ =
√
p is not a solution, and dividing by sinβ −√p, we find that

cosα =
1−√p sinβ
sinβ −√p

.

The right-hand side is in [−1, 1] only when sinβ = ±1. Thus when γ = π/4, the pair (α, β) is either
(π, π/2) or (0, 3π/2).

To check the remaining statements, we introduce the following set of isometries for V1. Define

φA(α, β, γ) := (−α,−β,−γ)

φB(α, β, γ) :=
(
β +

π

2
, α+

π

2
, γ +

π

2

)
φC(α, β, γ) := (α+ π, β + π, γ + π)

φD(α, β, γ) :=
(
β +

3π
2
, α+

3π
2
, γ +

3π
2

)
Verifying that φA, φB and φC (and hence φD which is equal to φC ◦ φB) are isometries is a simple
exercise in trigonometry using equation 4.14, which we will omit. Each isometry inherits its name
from the region it proves isometric with A. Using these isometries, we see that γ is equal to 3π/4,
5π/4 and 7π/4 exactly twice on V1. �

We remark upon the existence of an additional eight-fold isometry within each connected com-
ponent: φ1(α, β, γ) := (α, β + π,−γ), φ2(α, β, γ) := (−α, β, γ) and φ3(α, β, γ) := (α, π − β, γ).
These symmetries manifest themselves in the plots in figures 2 and 5 as follows. The image is
clearly the superposition of two pieces, one horizontally oriented and one vertically oriented. Each
of these two is the image of the Gauss map on two of the regions A,B,C,D, and each of these
four regions maps to the plot in a 2 to 1 manner on the interior, folding over at the bound-
ary. To verify this, we observe that if p0 contributes to asymptotics in the direction (r, s) then
φA(p0), φB(p0), φC(p0), φD(p0), φ1(p0), φ2(p0) and φ3(p0) contribute to asymptotics in the directions
(r, s)(s, r), (r, s), (s, r), (−r,−s), (−r, s) and (r,−s), respectively. Thus while the image of the Gauss
map is two overlapping leaves, the Gauss map of A and C contribute to one leaf, while the Gauss
map of B and D contribute to the other.

We end the analysis with a few observations on the way in which the plots were generated. Our
procedure was as follows. Solving for sin γ in (4.14), we obtained

sin γ = sinβ
√

2p cos γ − cosα
2 cos γ −

√
2p cosα

. (4.15)

Squaring (4.14) and making the substitution sin2 γ = 1− cos2 γ, we found that(
1− cos2 γ

) (
2 cos γ −

√
2p cosα

)2

−
(
1− cos2 β

) (√
2p cos γ − cosα

)2

= 0

which we used to get the four solutions for γ in terms of α and β. We then let α and β vary over
a grid embedded in the 2-torus and solved for the four values of γ to obtain four points in V1; this
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Figure 6: The variety V1 for p = 1/2

is the composition of the first two maps in (1.1). Differentiation of H(eiα, eiβ , eiγ) = 0 shows that
the projective direction (r, s, t) corresponding to a point (α, β, γ) is given by r/t = −∂γ/∂α, s/t =
−∂γ/∂β. Implicit differentiation of (4.14) then gives four explicit values for (r/t, s/t) in terms of α
and β. This is the composition of the last two maps in (1.1), with the parametrization of RP2 by
(r/t, s/t) corresponding to the choice of a planar rather than a spherical slice.

4.2 The family A(p)

We now present a second family of orthogonal matrices A(p) below. In order for the matrices to be
real, we restrict p to the interval (0, 1/

√
3).

A(p) =


p p p

√
1− 3p2

−p p −
√

1− 3p2 p

p −
√

1− 3p2 −p p

−
√

1− 3p2 −p p p


This family intersects the family S(p) in one case, namely A(1/2) = S(1/2); for any (p, p′) ∈

(0, 1)2 other than (1/2, 1/2), we have A(p) 6= S(p′). The following theorem follows from Lemma 4.4
along with a new lemma, namely Lemma 4.8 below, analogous to Lemma 4.3.

Theorem 4.7. If 0 < p < 1/
√

3 then Theorem 4.2 holds for the unitary matrix A(p) in place of the
matrix S(p). �
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Lemma 4.8. Let H := H(p) = det (I − zM(x, y)A(p)). Then for 0 < p < 1/
√

3, ∇H 6= 0 on T3.
Consequently, V1 := VH ∩ T3 is smooth.

Proof of Lemma 4.8: We clear our denominator by setting H := (−xy) det(I −MA(p)z), now to
get

H = 2(x−1)(x+1)(y2+1)z2p2−(−y−x+xy2+z2y−x2y+z2xy2−z2x+z2x2y)zp+(yz2−x)(xz2+y) .

As no
√

1− p2 term appears, we can determine a Gröbner Basis without making a substitution.
The Maple command Basis([H, Hx, Hy, Hz], plex(x, y, z, p) delivers a Basis with first term p3z(2p +
1)(8p2 − 3)(2p2 − 1)(2p− 1). The roots of the first four factors fall outside of our interval (0, 1/

√
3)

while the root of the last factor corresponds to the matrix S(1/2) for which we know V1 is smooth
from the discussion above. �

Again we use theorem 3.3 to correctly predict asymptotics for individual directions. We show
probability profiles for a number of parameter values.
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Figure 7: The profile for A(1/6) shows how the QRW approaches degeneracy at the endpoints
p→ 0, 1
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Figure 8: p increases from 1/3 to 5/9, switching the direction of the tilt
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4.3 The family B(p)

To demonstrate the application of theorem 3.5 we introduce a third family of orthogonal matrices,
B(p), with p ∈ (0, 1).

B(p) =


√

p√
2

√
p√
2

√
1−p√
2

√
1−p√
2

−
√

p√
2

√
p√
2

−
√

1−p√
2

√
1−p√
2

−
√

1−p√
2

√
1−p√
2

√
p√
2

−
√

p√
2

−
√

1−p√
2

−
√

1−p√
2

√
p√
2

√
p√
2


We have already seen a walk generated by such a matrix, as Figure 1 depicted the walk generated

by B(1/2). We note that B(p) is almost identical to S(p) with the one exception being the multi-
plication of the third row by −1. As was the case with the S(p) walks we can see strong similarities
between the image of the gauss map and the probability profile for various values of p.

Figure 9: The image of the Gauss map alongside the probability profile for the B(2/3) walk

In contrast to the cases of S(p) and A(p), we will not be able to apply Theorem 3.3 because V1

is not smooth.

Theorem 4.9. For the quantum random walk with unitary matrix U = B(p), let G′ be a compact
subset of the interior of G such that the curvatures K(z) at all points z ∈ W(r̂) are nonvanishing
for all r̂ ∈ G′. Then as |r| → ∞, uniformly over r̂ ∈ G′,

ar = ± 1
2π|r|

∑
z∈W

z−r G(z)
|∇logH(z)|

1√
|K(z)|

e−iπτ(z)/4 +O
(
|r|−3/2

)
. (4.16)

When r̂ ∈ [−1, 1]2 \ G then for every integer N > 0 there is a C > 0 such that Pr (r) ≤ C|r|−N with
C uniform as r ranges over a neighborhood N of r whose closure is disjoint from the closure of G.
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Proof: First, we apply lemma 4.4 with the lemma being applicable as we will see below that
V1 := VH ∩ T3 is a two-fold cover of T2 and thus compact. The conclusion when r̂ ∈ [−1, 1]2 \ G
follows. We get the conclusion in the case where r̂ ∈ G′ by verifying the hypotheses of theorem 3.5
in the following lemmas.

Lemma 4.10. Let H := H(p) = det (I − zM(x, y)B(p)). Then for 0 < p < 1, the set W =
{(x, y, z) : (H,∇H) = 0} consists only of the four points (x, y, z) = ±(1, 1,

√
p/2± i

√
1− p/2).

Lemma 4.11. For any 0 < p < 1 we have the following conclusions for each p0 ∈ W for the
generating function associated to the unitary matrix U = B(p).

(i) The residue form η has leading degree α > d/2 at p0.

(ii) The cone Vp0 is projectively smooth and r is not in the normal cone to V at p0.

Proof of Lemma 4.10: The proof of Lemma 4.10 is similar to the corresponding proofs in the two
previous examples, so we give only a sketch. Computing H from (2.2) and the subsequent formula
yields

H = 2xy(z4 + 1)− (x+ y + xy2 + x2y)(z3 + z)
√

2p+ (4pxy + x2 + x2y2 + 1 + y2)z2

= xyz2 · [4p+ (4.17)

2(z2 + z−2)−
(
(x+ x−1) + (y + y−1)

)
(z + z−1)

√
2p+ (x+ x−1)(y + y−1)

]
,

Treating p as a parameter and computing a Gröbner basis of {H,Hx,Hy,Hz} with term order
plex(x, y, z) one obtains {x3 − x, y − x, z(x2 − 1), z2 − 2x

√
pz + 2x2}. Removing the extraneous

roots when one of x, y or z vanishes, what remains is ±(1, 1, z) where z solves z2− 2
√
pz+ 2 = 0. �

Proof of Lemma 4.11: Condition (i) follows from the fact that for each p0 ∈ W, the numerator
G(p)(x, y, z) vanishes as well as the denominator H(p) which only vanishes to order 1. To prove (ii),
we compute the local geometry of {H = 0} near the four points found in the previous lemma. We will
do this for the points with positive (x, y) = (1, 1); the case (x, y) = (−1,−1) is similar. Substituting
x = 1 + u, y = 1 + v, z = z0 + w into H and then reducing modulo z2

0 − 2
√
pz0 + 2, we find that

the leading homogeneous term in the variables {u, v, w} is 4[
√
p(1 − p)(u2 + v2) − (2 − p)w2]. For

0 < p < 1, this is the cone over a nondegenerate ellipse and therefore smooth. The dual cone is the
set of (r, s, t) with r2 + s2 = 2−p

(1−p)
√

p t
2. The minimum value of 2−p

(1−p)
√

p on [0, 1] is greater than 4,
while the vectors (r, s, t) inside the image of the Gauss map all have r2 + s2 < 4t2, whence r is never
in the normal cone to V at p0. �

Beginning with (4.18), we see that (x, y, z) ∈ V1 ⇐⇒

2 cos2 γ − (cosα+ cosβ)
√

2p cos γ + cosα cosβ + p− 1 = 0 . (4.18)
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Thus for given α and β, the four values of γ are given explicitly by

γ = ± arccos

 (cosα+ cosβ)
√

2p±
√

2p (cosα+ cosβ)2 − 8 cosα cosβ − 8p+ 8

4

 . (4.19)

We then differentiate 4.18 with respect to α and β to obtain the partial derivatives

∂γ

∂α
=

sinα
sin γ

· cosβ −
√

2p cos γ√
2p(cosα+ cosβ)− 4 cos γ

and
∂γ

∂β
=

sinβ
sin γ

· cosα−
√

2p cos γ√
2p(cosα+ cosβ)− 4 cos γ

.

Remark. The fact that we can solve explicitly for γ with this family allows us to more clearly depict
the connection between curvature and asymptotics. Using Proposition 2.3 and (4.19), we let Maple
evaluate ∇ as well as

H =

[
∂2γ
∂α2

∂2γ
∂α∂β

∂2γ
∂β∂α

∂2γ
∂α2

]

We then plot K against − ∂γ
∂α and − ∂γ

∂β as (α, β) varies over the two-dimensional torus.

Figure 10: A graph of curvature versus direction for the B(1/2) walk
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In the above picture we see the expected cross within a diamond region where curvature is low,
though the view is obstructed by regions of higher curvature.

To remedy this problem we restrict our view of the K axis to focus on the smallest values of K
which in turn contribute to the largest probabilities. The resulting picture thus predicts the regions
that will appear darkest in the probability profile.

Figure 11: A graph of the areas of lowest curvature and hence highest probabilities for the B(1/2)
walk
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[BP07] A. Bressler and R. Pemantle. Quantum random walks in one dimension via generating
functions. In Proceedings of the 2007 Conference on the Analysis of Algorithms, volume
AofA 07, page 11. LORIA, Nancy, France, 2007.

[BP08] Y. Baryshnikov and R. Pemantle. Tilings, groves and multiset permutations:
asymptotics of rational generating functions whose pole set is a cone. arXiv,
http://front.math.ucdavis.edu/0810.4898: 79, 2008.

[Bra07] W. Brady. Quantum random walks on Z2. Master of Philosophy Thesis, The University
of Pennsylvania, 2007.

[CIR03] Hilary A. Carteret, Mourad E. H. Ismail, and Bruce Richmond. Three routes to the
exact asymptotics for the one-dimensional quantum walk. J. Phys. A, 36:8775–8795,
2003.

[GJ83] I. P. Goulden and D. M. Jackson. Combinatorial enumeration. A Wiley-Interscience
Publication. John Wiley & Sons Inc., New York, 1983. With a foreword by Gian-Carlo
Rota, Wiley-Interscience Series in Discrete Mathematics.

[GKZ94] I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants and Multidi-
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